JP2020063172A - Silica purification method and silica particle - Google Patents

Silica purification method and silica particle Download PDF

Info

Publication number
JP2020063172A
JP2020063172A JP2018195839A JP2018195839A JP2020063172A JP 2020063172 A JP2020063172 A JP 2020063172A JP 2018195839 A JP2018195839 A JP 2018195839A JP 2018195839 A JP2018195839 A JP 2018195839A JP 2020063172 A JP2020063172 A JP 2020063172A
Authority
JP
Japan
Prior art keywords
silica
aqueous solution
concentration
water
water flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018195839A
Other languages
Japanese (ja)
Other versions
JP7174483B2 (en
Inventor
潔 野中
Kiyoshi Nonaka
潔 野中
増田 賢太
Kenta Masuda
賢太 増田
一坪 幸輝
Yukiteru Ichinotsubo
幸輝 一坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2018195839A priority Critical patent/JP7174483B2/en
Publication of JP2020063172A publication Critical patent/JP2020063172A/en
Application granted granted Critical
Publication of JP7174483B2 publication Critical patent/JP7174483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

To provide a purification method capable of obtaining high-purity silica in which a concentration of a metal element subjected to be removed is sufficiently reduced by a relatively simple method even from a raw material that may contain an impurity metal element such as liquid glass.SOLUTION: The silica purification method that purifies silica produced by neutralization of an aqueous solution of alkali silicate with an aqueous solution of a mineral acid includes the steps of: receiving in an immersion tank the silica having generated, immersing a silica layer composed of aggregate of the silica and gaps thereof in an aqueous solution that has pH of 1.0 or less, contains a mineral acid, and is added with a complexing agent; and flowing the aqueous solution at a relative velocity with respect to the silica layer in a range of 0.01 cm/min or more to 0.2 cm/min or less, and with a water flow rate as much as a predetermined amount that is 1.0 time or more of a volume of the immersion tank of a range where the silica layer exists.SELECTED DRAWING: Figure 1

Description

本発明は、ケイ酸アルカリ水溶液と鉱酸水溶液との中和によって生成したシリカの精製方法、およびシリカ粒子に関する。   The present invention relates to a method for purifying silica produced by neutralizing an aqueous solution of alkali silicate and an aqueous solution of mineral acid, and silica particles.

シリカは、高純度石英ガラスの製造、吸湿剤などの原料となり、用途によっては高純度な製品が必要となる。シリカの製造方法には、四塩化ケイ素(ガス)やテトラエトキシシラン(液体)などの高純度材料を元に製造する方法や、水ガラスなどのケイ酸アルカリ水溶液を原料とし、鉱酸によりゲル化あるいは析出沈殿させる方法がある。前者は高純度なシリカが得られるが原料コストが高い。後者の原料は安価であるが、酸性下にあるシリカがアルカリ金属や正電荷のイオンを取り込みやすいことから、洗浄にコストを要するという課題があった。   Silica is a raw material for producing high-purity quartz glass, a hygroscopic agent, etc., and a high-purity product is required depending on the application. Silica can be produced by using high-purity materials such as silicon tetrachloride (gas) or tetraethoxysilane (liquid), or by using an aqueous solution of alkali silicate such as water glass as a raw material and gelling with mineral acid. Alternatively, there is a method of precipitation. The former gives high-purity silica, but the raw material cost is high. Although the latter raw material is inexpensive, there is a problem in that cleaning is costly because silica under acid is likely to take in alkali metals and positively charged ions.

特許文献1には、シリカ合成の際に四塩化ケイ素を使用することで高純度なシリカ水溶液を得、更に陽イオン交換処理を行うことによって高純度なゲル状シリカを得る方法が記載されている。   Patent Document 1 describes a method of obtaining a high-purity silica aqueous solution by using silicon tetrachloride at the time of silica synthesis and further obtaining a high-purity gel-like silica by performing a cation exchange treatment. .

また、特許文献2には、シリカヒドロゲルに対してキレート剤及び鉱酸からなる洗浄液で洗浄することで、酸性下におけるキレート剤の効果で金属イオンを除去し、高純度化する方法が記載されている。   Further, Patent Document 2 describes a method of purifying silica hydrogel with a cleaning liquid composed of a chelating agent and a mineral acid to remove metal ions due to the effect of the chelating agent under acidic conditions and to obtain high purity. There is.

また、特許文献3には、安価な水ガラス(ケイ酸アルカリ水溶液)を元に、これに限外ろ過、陽イオン交換、キレートイオン交換処理を行ってケイ酸水溶液を高純度化することで、これを元に高純度なシリカゾルを得る方法が記載されている。   Further, in Patent Document 3, based on inexpensive water glass (alkali silicate aqueous solution), ultrafiltration, cation exchange, and chelate ion exchange treatment are performed on the glass to purify the silicic acid aqueous solution, A method for obtaining a highly pure silica sol based on this is described.

特開2015−020916号公報JP, 2005-020916, A 特開2003−146646号公報JP, 2003-146646, A 特開2017−036209号公報JP, 2017-0336209, A

特許文献1〜3は、いずれもケイ酸アルカリ水溶液を酸で処理してシリカ固形物を得ると共に不純物を除去するものであるが、特許文献1は原料に四塩化ケイ素を用いることから原料が高価である。特許文献2は、各元素が5ppm以下、実施例ではTi濃度が1ppm程度のものが得られているが、用途によっては純度が十分でない。特許文献3は、原料溶液に対し、限外ろ過、イオン交換、キレートイオン交換と多段階の精製処理を行っており、精製コストが比較的高くなる。   Although Patent Documents 1 to 3 all treat an alkaline silicate aqueous solution with an acid to obtain a silica solid substance and remove impurities, Patent Document 1 uses silicon tetrachloride as a raw material, so the raw material is expensive. Is. In Patent Document 2, although each element is 5 ppm or less, and the Ti concentration is about 1 ppm in Examples, the purity is not sufficient depending on the use. In Patent Document 3, ultrafiltration, ion exchange, chelate ion exchange, and other multistage purification treatments are performed on the raw material solution, and the purification cost is relatively high.

本発明は、このような事情に鑑みてなされたものであり、水ガラスなどの不純物となる金属元素が含まれ得る原料からも、比較的簡便な方法で、除去対象の金属元素の濃度が十分に低減された高純度なシリカを精製することができる精製方法、およびシリカ粒子を提供することを目的とする。   The present invention has been made in view of such circumstances, and even from a raw material that may contain a metal element that becomes an impurity such as water glass, a relatively simple method provides a sufficient concentration of the metal element to be removed. An object of the present invention is to provide a purification method and silica particles capable of purifying high-purity silica reduced to a minimum.

(1)上記の目的を達成するため、本発明のシリカの精製方法は、ケイ酸アルカリ水溶液と鉱酸水溶液との中和によって生成したシリカを精製する方法であって、浸漬槽に生成した前記シリカを収容し、前記シリカの集合およびその間隙によって形成されるシリカ層を、pHが1.0以下であり、鉱酸を含み、錯形成剤を添加した水溶液に浸漬する工程と、前記水溶液を、前記シリカ層に対する流速が0.01cm/min以上0.2cm/min以下の範囲で、通水量が前記シリカ層の存在する範囲の前記浸漬槽の体積の1.0倍以上となる所定の量、通水させる工程と、を含むことを特徴としている。   (1) In order to achieve the above object, the method for purifying silica according to the present invention is a method for purifying silica produced by neutralization of an aqueous solution of alkali silicate and an aqueous solution of mineral acid, which is produced in a dipping tank. A step of immersing the silica layer containing silica and formed by the aggregate of the silica and the gaps thereof in an aqueous solution having a pH of 1.0 or less, a mineral acid and a complexing agent added thereto; A predetermined amount such that the water flow rate is 1.0 times or more the volume of the dipping tank in the range where the silica layer exists, in the range of the flow rate to the silica layer of 0.01 cm / min or more and 0.2 cm / min or less. And a step of allowing water to pass therethrough.

このように、ケイ酸アルカリ水溶液の中和によって得られたシリカ粒子に対して、除去対象の金属元素と錯体を形成する薬剤(錯形成剤)を含む強酸性の水溶液に浸漬した状態で、水溶液を低速で通水することで水溶液がゆっくりと置換され、除去対象の金属の濃度を十分に低減する精製が可能となる。   Thus, the silica particles obtained by neutralizing the aqueous solution of alkali silicate are immersed in a strongly acidic aqueous solution containing a chemical agent (complex forming agent) that forms a complex with the metal element to be removed, By slowly passing water through, the aqueous solution is slowly replaced, and it becomes possible to carry out purification with a sufficiently reduced concentration of the metal to be removed.

(2)また、本発明のシリカの精製方法は、前記水溶液を通水させる工程において、前記通水量を1.5倍以上の所定の量、通水させることを特徴としている。これにより、除去対象の金属の濃度をより低減する精製が可能となる。   (2) Further, the method for purifying silica according to the present invention is characterized in that, in the step of passing the aqueous solution, the predetermined amount of water passing is 1.5 times or more. As a result, it becomes possible to carry out purification for further reducing the concentration of the metal to be removed.

(3)また、本発明のシリカの精製方法において、前記水溶液を通水させる工程は、4時間以上継続して実施されることを特徴としている。これにより、除去対象の金属の濃度を十分に低減する精製が可能となる。   (3) Further, in the method for purifying silica according to the present invention, the step of allowing the aqueous solution to pass is carried out continuously for 4 hours or more. As a result, it becomes possible to carry out purification by sufficiently reducing the concentration of the metal to be removed.

(4)また、本発明のシリカの精製方法において、前記錯形成剤は、過酸化水素であることを特徴としている。これにより、Tiの濃度を十分に低減する精製が可能となる。   (4) Further, in the silica purification method of the present invention, the complex-forming agent is hydrogen peroxide. As a result, it becomes possible to purify the Ti concentration sufficiently.

(5)また、本発明のシリカの精製方法において、前記錯形成剤は、EDTA−2Naであることを特徴としている。これにより、Cuの濃度を十分に低減する精製が可能となる。   (5) Further, in the method for purifying silica according to the present invention, the complex-forming agent is EDTA-2Na. As a result, it becomes possible to carry out purification by sufficiently reducing the Cu concentration.

(6)また、本発明のシリカ粒子は、Ti濃度が100ppb以下、平均粒径が500μm以上3000μm以下であることを特徴としている。本発明の精製方法は、ケイ酸アルカリ水溶液の中和によって得られたシリカ粒子の精製に好適に使用され、錯形成剤が過酸化水素である場合、Ti濃度を十分に低減させることができるため、このようにTi濃度が低く粒径の大きなシリカ粒子を製造できる。   (6) The silica particles of the present invention are characterized by having a Ti concentration of 100 ppb or less and an average particle size of 500 μm or more and 3000 μm or less. The purification method of the present invention is suitably used for the purification of silica particles obtained by neutralization of an aqueous alkali silicate solution, and when the complexing agent is hydrogen peroxide, the Ti concentration can be sufficiently reduced. Thus, silica particles having a low Ti concentration and a large particle size can be produced.

本発明のシリカの精製方法は、水ガラスなどの低品位な原料からも、比較的簡便な方法で、除去対象の金属元素の濃度が、例えば100ppb以下であるような高純度なシリカを得ることができる。   The method for purifying silica of the present invention is a relatively simple method, even from low-quality raw materials such as water glass, to obtain high-purity silica in which the concentration of the metal element to be removed is, for example, 100 ppb or less. You can

試料および比較例の精製に使用した精製装置の概念図である。It is a conceptual diagram of the purification apparatus used for the purification of the sample and the comparative example. (a)、(b)いずれも精製装置の変形例を示す概念図である。(A), (b) is a conceptual diagram which shows the modification of a refining device. 試料1から12および比較例1、2の通水速度、置換回数および測定されたTiの濃度を示す表である。It is a table which shows the water flow rate of Samples 1 to 12 and Comparative Examples 1 and 2, the number of substitutions, and the measured Ti concentration.

本発明者らは、鋭意研究の結果、ケイ酸アルカリ水溶液と鉱酸水溶液との中和によって生成したシリカ粒子を、除去対象の金属元素と錯体を形成する薬剤(錯形成剤)を含む強酸性の水溶液(洗浄液)に浸漬した状態で、洗浄液をシリカ層に対して低速で通水させ、置換させることで、除去対象の金属元素の濃度が十分に低減されたシリカ粒子を得ることができることを見出し、本発明を完成させた。以下に、本発明の実施形態について説明する。   As a result of intensive research, the inventors of the present invention have found that silica particles produced by neutralization of an aqueous solution of alkali silicate and an aqueous solution of mineral acid contain a strong acid containing a drug (complex forming agent) that forms a complex with a metal element to be removed. By soaking the cleaning liquid in the aqueous solution (cleaning liquid) of water at a low speed through the silica layer for replacement, it is possible to obtain silica particles in which the concentration of the metal element to be removed is sufficiently reduced. Heading, completed the present invention. Hereinafter, embodiments of the present invention will be described.

シリカは、二酸化珪素(SiO)または二酸化珪素によって構成される物質の総称である。シリカは、石英、クリストバライトなどの結晶質シリカと、シリカフューム、シリカゲルなどの非晶質シリカに大別される。シリカの構造は、シリカゲルのような多孔質のものも石英のようなソリッドのものもある。 Silica is a general term for substances composed of silicon dioxide (SiO 2 ) or silicon dioxide. Silica is roughly classified into crystalline silica such as quartz and cristobalite, and amorphous silica such as silica fume and silica gel. The structure of silica may be porous such as silica gel or solid such as quartz.

本発明において、精製対象となるシリカは、水ガラスなどのケイ酸アルカリ水溶液を原料とし、鉱酸によりゲル化あるいは析出沈殿させる方法により製造されたものである。このような方法により製造されたシリカは、原料由来の不純物を含むため、高純度なシリカとして使用するためには、精製、洗浄を行う必要がある。   In the present invention, the silica to be purified is produced by a method in which an aqueous solution of alkali silicate such as water glass is used as a raw material and gelled or precipitated by a mineral acid. Since the silica produced by such a method contains impurities derived from the raw materials, it is necessary to purify and wash the silica in order to use it as high-purity silica.

しかし、シリカは水を保持する性質があり、また酸性下ではシリカ表面のシラノール基(Si−OH)から水素が乖離して負に帯電(Si−O)するため、ケイ酸アルカリ水溶液あるいは酸性溶液に由来する金属イオンがシリカ表面に保持され、水での洗浄を行っても残留しやすい。 However, silica has the property of holding water, also negatively charged hydrogen from silanol groups on the silica surface under acidic (Si-OH) is deviated (Si-O -) to, aqueous alkali silicate solution or an acidic The metal ions derived from the solution are retained on the silica surface and easily remain even after washing with water.

このような製造方法で金属不純物の少ないシリカを得るためには、原料となるケイ酸アルカリ水溶液を高純度原料から調製する方法(特許文献1)、ケイ酸アルカリ水溶液からイオン交換処理などにより金属不純物を除去する方法(特許文献3)などが考えられるが、原料の精製工程を要し、高コストである。これに対して本発明の方法では、シリカ粒子を生成させるための酸性水溶液での処理の延長でシリカの精製ができ、金属不純物の濃度として数百ppbという高い純度まで精製することができる。   In order to obtain silica with a small amount of metal impurities by such a manufacturing method, a method of preparing an alkali silicate aqueous solution as a raw material from a high-purity raw material (Patent Document 1), metal impurities by an ion exchange treatment or the like from the alkali silicate aqueous solution. Although a method of removing the impurities (Patent Document 3) and the like are conceivable, a raw material refining step is required and the cost is high. On the other hand, according to the method of the present invention, silica can be purified by extending the treatment with an acidic aqueous solution for producing silica particles, and can be purified to a high purity of several hundred ppb as the concentration of metal impurities.

[シリカの精製方法]
本発明のシリカの精製方法は、以下のとおりである。まず、ケイ酸アルカリ水溶液と鉱酸の中和によって生成したシリカを鉱酸を含有させたまま浸漬槽に収容し、シリカの集合およびその間隙によって形成されるシリカ層を洗浄液となる水溶液に浸漬する。浸漬槽は、洗浄液またはイオン交換水を通水させたときにシリカ層全体がまんべんなく通水される構造であればどのような形状であってもよい。洗浄液の詳細は後述する。
[Method for purifying silica]
The method for purifying silica of the present invention is as follows. First, an aqueous solution of alkali silicate and silica produced by neutralization of mineral acid are stored in a dipping tank while containing the mineral acid, and the silica layer formed by the aggregates of silica and the gaps between the silica is immersed in an aqueous solution serving as a cleaning liquid. . The dipping tank may have any shape as long as it has a structure in which the entire silica layer is evenly passed when the washing liquid or the ion-exchanged water is passed. Details of the cleaning liquid will be described later.

洗浄対象のシリカは、平均粒径3000μm以下、最大粒径10000μm以下であることが好ましい。このように最大粒径を小さくすることで、粗大なシリカ粒子の内部に不純物となる金属イオンが残存する可能性を小さくできる。最大粒径がこれより大きい粒子は、精製、洗浄前に取り除いてもよいし、粉砕してもよい。また、シリカ粒子の平均粒径が所望の値より大きかった場合は、精製、洗浄後に粉砕することが好ましい。   The silica to be cleaned preferably has an average particle size of 3000 μm or less and a maximum particle size of 10,000 μm or less. By reducing the maximum particle size in this way, it is possible to reduce the possibility that metal ions as impurities will remain inside the coarse silica particles. Particles having a maximum particle size larger than this may be removed or crushed before purification and washing. Further, when the average particle size of the silica particles is larger than a desired value, it is preferable to pulverize after purification and washing.

浸漬槽を有する精製装置としては、例えば、図1、図2(a)、(b)のような精製装置を使用することができる。図1は、後述する試料および比較例の精製に使用した精製装置の概念図である。図1の精製装置1は、管状容器3にシリカ粒子を充填して、シリカ粒子の両端をガラスウール5または多孔質のセラミック板で押さえてシリカ層として固定したものである。管状容器3の一方から洗浄水を通水し、他方から排出する。また、図2(a)および(b)は、いずれも精製装置の変形例を示す概念図である。図2(a)および(b)の精製装置1は、上面が開放された容器7にシリカ粒子を充填してシリカ層としたものである。図2(a)の精製装置1は、容器7の下端のボールバルブ9から洗浄液を排出しつつ、容器7の開放側のローラーポンプ11から洗浄液を供給し通水する。また、図2(b)の精製装置1は、容器7の下端のローラーポンプ11から洗浄液を供給し通水すると、容器7上端の開放側から自然に洗浄液が排出される。   As the refining device having the immersion tank, for example, the refining device as shown in FIGS. 1, 2A and 2B can be used. FIG. 1 is a conceptual diagram of a purification device used for purification of a sample and a comparative example described later. The purifying apparatus 1 of FIG. 1 is one in which silica particles are filled in a tubular container 3 and both ends of the silica particles are pressed by glass wool 5 or a porous ceramic plate to be fixed as a silica layer. Wash water is passed from one side of the tubular container 3 and discharged from the other side. Further, FIGS. 2A and 2B are both conceptual diagrams showing a modification of the refining device. 2 (a) and 2 (b) is a purification apparatus 1 in which a container 7 having an open upper surface is filled with silica particles to form a silica layer. 2A, the cleaning liquid is discharged from the ball valve 9 at the lower end of the container 7, and the cleaning liquid is supplied from the roller pump 11 on the open side of the container 7 to pass water. 2B, when the cleaning liquid is supplied from the roller pump 11 at the lower end of the container 7 to pass water, the cleaning liquid is naturally discharged from the open side of the upper end of the container 7.

次に、洗浄液をシリカ層に対して所定の範囲の速度で通水し、シリカ層の周囲、間隙にある洗浄液を新たな洗浄液と徐々に置換する。洗浄液を通水する工程は、洗浄液のシリカ層に対する相対速度(通水速度)が0.01〜0.2cm/minの範囲となるように制御する。洗浄液のシリカ層に対する相対速度は、所定の範囲内にあれば、通水する工程中で一定であっても変化してもよい。洗浄液のシリカ層に対する相対速度の計算方法は後述する。   Next, the cleaning liquid is passed through the silica layer at a speed within a predetermined range to gradually replace the cleaning liquid around and around the silica layer with a new cleaning liquid. The step of passing the cleaning liquid is controlled so that the relative speed (water flow speed) of the cleaning liquid to the silica layer is in the range of 0.01 to 0.2 cm / min. The relative speed of the cleaning liquid with respect to the silica layer may be constant or changed during the step of passing water as long as it is within a predetermined range. A method for calculating the relative speed of the cleaning liquid with respect to the silica layer will be described later.

洗浄液のシリカ層に対する相対速度が0.01cm/minより小さいと、精製時間が長くなり非効率である。また、除去対象の金属元素の濃度を低減させる効果が小さくなる場合がある。洗浄液のシリカ層に対する相対速度が0.2cm/minより大きいと、除去対象の金属元素の濃度を低減させる効果が小さくなる場合がある。なお、洗浄液を通水するとは、洗浄液に浸されたシリカ層に新たな洗浄液を所定の相対速度となるように供給し、元の洗浄液と入れ替えることをいう。洗浄液の排水は、供給した量と同量行うことが好ましい。   When the relative speed of the cleaning liquid to the silica layer is less than 0.01 cm / min, the purification time becomes long and inefficient. Further, the effect of reducing the concentration of the metal element to be removed may be reduced. If the relative speed of the cleaning liquid to the silica layer is greater than 0.2 cm / min, the effect of reducing the concentration of the metal element to be removed may be reduced. In addition, passing the cleaning liquid means supplying a new cleaning liquid to the silica layer immersed in the cleaning liquid at a predetermined relative speed and replacing the original cleaning liquid. It is preferable to drain the cleaning liquid in the same amount as the supplied amount.

洗浄液の通水は、通水量がシリカ層の存在する範囲の浸漬槽の体積の1.0倍以上となる所定の量、通水させる。洗浄液をこのような量通水することで、使用する洗浄液の量が少量であっても除去対象の金属元素の濃度を十分に低減させることができる。また、洗浄液の通水は、通水量がシリカ層の存在する範囲の浸漬槽の体積の1.5倍以上の所定の量、通水させることが好ましい。なお、通水量を置換回数で定義してもよい。例えば、通水量がシリカ層の存在する範囲の浸漬槽の体積の1.0倍であることと置換回数が1.0回であることは同じことを表す。置換回数の定義については後述する。   The cleaning liquid is passed through a predetermined amount such that the amount of water passing is 1.0 times or more the volume of the dipping tank in the range where the silica layer exists. By passing the cleaning liquid through such an amount, the concentration of the metal element to be removed can be sufficiently reduced even if the amount of the cleaning liquid used is small. Further, it is preferable that the cleaning liquid is allowed to flow in a predetermined amount of 1.5 times or more the volume of the dipping tank in the range where the silica layer exists. The water flow rate may be defined by the number of replacements. For example, the fact that the water flow rate is 1.0 times the volume of the dipping tank in the range where the silica layer exists and the number of times of replacement is 1.0 represent the same thing. The definition of the number of replacements will be described later.

洗浄液の通水は、4時間以上継続して実施することが好ましい。このように時間をかけて通水することで、除去対象の金属の濃度を十分に低減する精製が可能となる。通水時間の上限は、通水量と通水速度との関係で定まるため、特に設定する必要はないが、効率を考えると72時間以下であることが好ましい。また、洗浄液の通水の途中で通水を中断する場合もトータルの通水時間が4時間以上となるように通水することが好ましい。   It is preferable that the washing liquid is continuously passed for 4 hours or more. By passing water over a period of time in this manner, it becomes possible to perform purification with a sufficiently reduced concentration of the metal to be removed. The upper limit of the water passage time is determined by the relationship between the water passage amount and the water passage speed, and therefore it is not necessary to set it in particular, but it is preferably 72 hours or less in consideration of efficiency. Further, even when the water flow is interrupted during the water flow of the cleaning liquid, it is preferable that the total water flow time is 4 hours or more.

所定の量の洗浄液を通水した後、イオン交換水を通水して洗浄する。イオン交換水を通水する速度は、どのようなものであってもよい。イオン交換水の通水は、出口側の水の電気伝導度が0.2mS/m以下となるまで行うことが好ましい。イオン交換水は、電気伝導度が5.0mS/m以下であることが好ましい。   After passing a predetermined amount of cleaning liquid, ion-exchanged water is passed for cleaning. The ion-exchanged water may flow at any speed. It is preferable that the ion-exchanged water is passed until the electric conductivity of the water on the outlet side becomes 0.2 mS / m or less. The ion-exchanged water preferably has an electric conductivity of 5.0 mS / m or less.

次に、浸漬槽の洗浄液を排出し、シリカを取り出す。そして、シリカを乾燥させる。シリカを乾燥させる方法、温度および時間はどのようなものであってもよい。例えば、熱風循環式乾燥機、流動床式乾燥機を用いることができ、乾燥温度は120℃以上であることが好ましい。   Next, the cleaning liquid in the dipping tank is discharged and silica is taken out. Then, the silica is dried. Any method, temperature and time for drying the silica may be used. For example, a hot air circulation dryer and a fluidized bed dryer can be used, and the drying temperature is preferably 120 ° C or higher.

[洗浄液]
洗浄液は、鉱酸を含むpHが1.0以下の水溶液である。鉱酸は、どのようなものであってもよく、シリカの生成に使用した鉱酸と同一であっても異なっていてもよい。例えば、硫酸、硝酸、塩酸などを使用できる。使用する鉱酸の種類によって、濃度は適切な範囲にする。例えば、硫酸の場合、20wt%以上45wt%以下とすることができる。
[Cleaning liquid]
The cleaning liquid is an aqueous solution containing mineral acid and having a pH of 1.0 or less. The mineral acid can be any and can be the same as or different from the mineral acid used to form the silica. For example, sulfuric acid, nitric acid, hydrochloric acid or the like can be used. Depending on the type of mineral acid used, the concentration should be within the appropriate range. For example, in the case of sulfuric acid, it can be 20 wt% or more and 45 wt% or less.

洗浄液は、錯形成剤を添加した水溶液である。錯形成剤は、除去対象の金属元素を含む金属元素と錯体を形成する。そのため、錯形成剤は、除去対象の金属元素によって変更してもよい。例えば、過酸化水素、EDTA−2Naなどを使用できる。使用する錯形成剤の種類によって、濃度は適切な範囲にする。   The cleaning liquid is an aqueous solution containing a complexing agent. The complex forming agent forms a complex with a metal element containing the metal element to be removed. Therefore, the complexing agent may be changed depending on the metal element to be removed. For example, hydrogen peroxide, EDTA-2Na or the like can be used. Depending on the type of complexing agent used, the concentration will be in the appropriate range.

例えば、過酸化水素の濃度は、0.03wt%以上1.0wt%以下であることが好ましい。過酸化水素の濃度は、0.03wt%より小さいと除去対象の金属濃度を低減させる効果が小さくなる。また、1.0wt%より大きくしても除去対象の金属濃度を低減させる効果はあまり大きくならないので、相対的なコストが大きくなる。   For example, the concentration of hydrogen peroxide is preferably 0.03 wt% or more and 1.0 wt% or less. If the concentration of hydrogen peroxide is less than 0.03 wt%, the effect of reducing the concentration of the metal to be removed becomes small. Further, even if it is more than 1.0 wt%, the effect of reducing the concentration of the metal to be removed is not so great, so that the relative cost is increased.

また、例えば、EDTA−2Naの濃度は、0.03wt%以上1.0wt%以下であることが好ましい。EDTA−2Naの濃度は、0.03wt%より小さいと除去対象の金属濃度を低減させる効果が小さくなる。また、1.0wt%より大きくしても除去対象の金属濃度を低減させる効果はあまり大きくならないので、相対的なコストが大きくなる。また、EDTA−2Naは、廃液から除去する必要があるため、1.0wt%より大きくすると除去のコストが大きくなる。   Further, for example, the concentration of EDTA-2Na is preferably 0.03 wt% or more and 1.0 wt% or less. If the concentration of EDTA-2Na is less than 0.03 wt%, the effect of reducing the concentration of the metal to be removed becomes small. Further, even if it is more than 1.0 wt%, the effect of reducing the concentration of the metal to be removed is not so great, so that the relative cost is increased. Further, EDTA-2Na needs to be removed from the waste liquid, so if it is more than 1.0 wt%, the cost of removal increases.

洗浄液を通水している間の洗浄液の温度は、どのようなものであってもよい。例えば、0℃以上40℃以下とすることができる。なお、イオン交換水も同様の範囲にすることができる。   The temperature of the cleaning liquid may be any temperature during the passage of the cleaning liquid. For example, the temperature may be 0 ° C. or higher and 40 ° C. or lower. In addition, ion-exchanged water can be in the same range.

[本発明の精製の原理]
本発明において、精製対象となるシリカは、ケイ酸アルカリ水溶液を酸性溶液に滴下・注入・混合などして生成されたシリカ粒子である。
[Principle of Purification of the Present Invention]
In the present invention, the silica to be purified is silica particles produced by dropping, injecting, mixing, etc., an aqueous solution of alkali silicate with an acidic solution.

シリカは水を保持する性質があり、また酸性下ではシリカ表面のシラノール基(Si−OH)から水素が乖離して負に帯電(Si−O)するため、ケイ酸アルカリ水溶液あるいは酸性水溶液に由来する金属イオンがシリカ表面に保持され、水での洗浄を行っても残留しやすい。 Silica has the property to retain water, also negatively charged hydrogen from silanol groups on the silica surface under acidic (Si-OH) is deviated (Si-O -) to, the aqueous alkali silicate solution or an acidic aqueous solution The derived metal ions are retained on the surface of the silica and are likely to remain even after washing with water.

本発明のシリカの洗浄方法では、強酸に浸漬することでシラノール基の縮合反応(Si−OH+HO−Si→Si−O−Si+HO)を進行させ、酸性下での負電荷を小さくし、金属イオンをシリカ表面に保持されにくくする。また、錯形成剤は、正電荷の金属イオンと錯体を形成することで、金属イオンをシリカ表面に保持されにくくする。更に、洗浄液を通水させると、金属イオンはシリカから排斥される。 The cleaning method of the silica of the present invention, the condensation reaction of silanol groups of (Si-OH + HO-Si → Si-O-Si + H 2 O) proceeded by immersion in a strong acid, to reduce the negative charge under acidic conditions, metal Ions are less likely to be retained on the silica surface. Further, the complex-forming agent forms a complex with a positively charged metal ion, thereby making it difficult for the metal ion to be retained on the silica surface. Further, when the cleaning liquid is passed through, the metal ions are excluded from the silica.

詳細は未解明であるが、洗浄液を通水させる場合においては、流速が高速であるほどナトリウムイオンなどのアルカリ金属のイオンが排出されやすく、低速であるほどアルカリ金属以外の金属イオンが排出されやすくなることが分かった。また、通水しない場合と比較すると、通水する方が金属イオンが排出されやすくなることも分かった。そのため、本発明においては、アルカリ金属以外の金属イオンの残留がより問題となる用途に用いることを想定して、低速での通水を実施することとした。   Although the details have not been elucidated, when passing the cleaning liquid, the faster the flow rate is, the more easily alkali metal ions such as sodium ions are discharged, and the slower the flow rate, the more easily metal ions other than alkali metal are discharged. I found out. It was also found that the metal ions are more easily discharged when the water is passed as compared with when the water is not passed. Therefore, in the present invention, it was decided to carry out water flow at a low speed on the assumption that the metal ion other than the alkali metal would be more problematic to remain.

[精製条件の評価方法について]
(洗浄水の流速の計算)
筒状容器(浸漬槽)の片側から片側へと通水する場合、容器内部のシリカ層に対する相対速度(流速)は下記方法によって求められる。ただし、本発明の洗浄方法は筒状容器での洗浄には限定されず、適用する系ごとにシリカ層と洗浄水の相対速度を計算する。
[Evaluation method of purification conditions]
(Calculation of flow rate of wash water)
When water is passed from one side of a cylindrical container (immersion tank) to one side, the relative velocity (flow velocity) to the silica layer inside the container is determined by the following method. However, the cleaning method of the present invention is not limited to cleaning in a cylindrical container, and the relative speed of the silica layer and the cleaning water is calculated for each system applied.

筒状容器の断面積をS(cm)、単位時間あたりの体積流量をV(cm/min)とする(Vは容器の片側から注水する量、あるいは排水される量を計測する)。この時、洗浄水の流速K(cm/min)は、
K=V/S … (1)
によって計算される。
The cross-sectional area of the cylindrical container is S (cm 2 ), and the volumetric flow rate per unit time is V (cm 3 / min) (V is the amount of water injected from one side of the container or the amount of water discharged). At this time, the flow rate K (cm / min) of the washing water is
K = V / S (1)
Calculated by

(置換回数)
任意形状の容器の片側から片側へと通水する場合を考える。容器(浸漬槽)のシリカ層の存在する範囲の体積をA(cm)、体積流量をV(cm/min)、時間をt(min)とする。容器のシリカ層の存在する範囲の体積とは、シリカと空隙を合わせた体積である。ここで、「置換回数N」とは、
N=V×t/A … (2)
とする。すなわち、置換回数とは、通水量が容器のシリカ層の存在する範囲の体積の何倍であったかを示す値である。なお、本発明は洗浄水を低速で連続的に通水し、洗浄水中の物質の拡散があるため、例えば、置換回数が1回であったとしても当初の浸漬した洗浄水が全量置換されているとは限らない。
(Replacement count)
Consider the case where water is passed from one side to the other side of an arbitrarily shaped container. The volume of the range in which the silica layer of the container (immersion tank) is present is A (cm 3 ), the volume flow rate is V (cm 3 / min), and the time is t (min). The volume of the range in which the silica layer of the container exists is the total volume of silica and voids. Here, the “replacement number N” is
N = V × t / A (2)
And That is, the number of times of replacement is a value indicating how many times the volume of water flow was larger than the volume of the range in which the silica layer of the container was present. In the present invention, the cleaning water is continuously passed at a low speed, and there is diffusion of the substance in the cleaning water. Therefore, for example, even if the replacement frequency is once, the initially immersed cleaning water is completely replaced. Not necessarily.

(シリカの粒径の測定)
シリカの粒径はふるい分級により測定する。シリカがふるい目A(μm)のふるいを全通した場合、すなわち、ふるい上に残ったシリカが視認できない場合、シリカの粒径はAμm以下であるとする。
(Measurement of particle size of silica)
The particle size of silica is measured by sieve classification. When the silica has passed through the sieve having a sieve mesh A (μm), that is, when the silica remaining on the sieve cannot be visually recognized, the particle size of the silica is set to A μm or less.

[錯形成剤として過酸化水素を用いた試料および比較例]
3号ケイ酸ソーダに対し、0.45μmのフィルターによるろ過を行った(ろ過後Ti濃度18000ppb)。濃度35wt%に調整した20℃の希硫酸(Ti濃度250ppb)4.0L(比重1.26g/cm)に対し、硫酸中の過酸化水素濃度が0.1wt%となるよう、35wt%過酸化水素水12.8mL(比重1.13g/cm)を加えた。この硫酸を攪拌しながら、このケイ酸ソーダ540gを、6.0g/sの速度で滴下することによりシリカを析出させた。
[Samples Using Hydrogen Peroxide as Complexing Agent and Comparative Examples]
No. 3 sodium silicate was filtered through a 0.45 μm filter (Ti concentration after filtration: 18000 ppb). With respect to 4.0 L of diluted sulfuric acid (Ti concentration 250 ppb) adjusted to a concentration of 35 wt% (Ti concentration 250 ppb) (specific gravity 1.26 g / cm 3 ), a 35 wt% excess was added so that the hydrogen peroxide concentration in sulfuric acid would be 0.1 wt%. 12.8 mL of hydrogen oxide water (specific gravity 1.13 g / cm 3 ) was added. While stirring this sulfuric acid, 540 g of this sodium silicate was added dropwise at a rate of 6.0 g / s to deposit silica.

(試料1)
この状態のシリカ230gを、硫酸を含有させたまま内径40mmの塩化ビニル管に充填し、両端にガラスウールを充填して保持した。円筒内で充填したシリカの長さは20.8cmであり、シリカの占める体積は261cmであった。この容器に対し、同様に過酸化水素を加えた希硫酸を、1mL/minの速度で8時間通水させた。この時の液の通水速度は0.08cm/minであった。また、通水量は480mLであり、置換回数で1.8回に相当する量であった。
(Sample 1)
230 g of silica in this state was filled in a vinyl chloride tube having an inner diameter of 40 mm while containing sulfuric acid, and glass wool was filled and held at both ends. The length of the silica filled in the cylinder was 20.8 cm, and the volume occupied by the silica was 261 cm 3 . Dilute sulfuric acid to which hydrogen peroxide was added was passed through this container at a rate of 1 mL / min for 8 hours. The water flow rate at this time was 0.08 cm / min. In addition, the water flow rate was 480 mL, which was an amount equivalent to 1.8 times of replacement.

こののち、同じ装置に、イオン交換水(Ti濃度<10ppb、電気伝導度0.12mS/m)を15mL/minの速度で、出口側の水の電気伝導度が0.2mS/m以下となるまで通水した。シリカを円筒容器から回収し、105℃で24時間乾燥させた。このシリカの化学成分を分析したところ、Ti濃度は80ppbであった。なお、洗浄液および廃液の電気伝導度の測定、および、Tiの濃度の測定は、以下の方法で行った。   After that, in the same device, ion-exchanged water (Ti concentration <10 ppb, electric conductivity 0.12 mS / m) at a rate of 15 mL / min, the electric conductivity of water on the outlet side becomes 0.2 mS / m or less. I passed water. The silica was recovered from the cylindrical container and dried at 105 ° C for 24 hours. When the chemical composition of this silica was analyzed, the Ti concentration was 80 ppb. The electric conductivity of the cleaning liquid and the waste liquid and the Ti concentration were measured by the following methods.

(Ti濃度の測定方法)
シリカを1mm以下の粒子に解砕し、5gを取る。これを白金製の皿に入れ、硝酸30wt%、フッ化水素酸20wt%となるよう調製した混酸を、汚染のない薬さじで内容物を混合しながらゆっくりとくわえる。皿の中のシリカが視認できなくなったら、200℃のホットプレート上で白金皿を加熱し、内容液を蒸発させる。液体が無くなったら、白金皿を冷ましてから、純水20mL、35%塩酸2mLを加えて120℃で1時間加熱して残渣を溶解させる。これを100mLメスフラスコに移してメスアップする。メスアップした溶液中の元素濃度を、ICP−AESで測定した。
(Method of measuring Ti concentration)
Silica is crushed into particles of 1 mm or less, and 5 g is taken. This is placed in a platinum dish, and a mixed acid prepared so that nitric acid 30% by weight and hydrofluoric acid 20% by weight is slowly added while mixing the contents with a spoon without contamination. When the silica in the dish becomes invisible, heat the platinum dish on a hot plate at 200 ° C to evaporate the contents. When the liquid disappears, cool the platinum dish, add 20 mL of pure water and 2 mL of 35% hydrochloric acid, and heat at 120 ° C. for 1 hour to dissolve the residue. This is transferred to a 100 mL volumetric flask and the volume is raised. The element concentration in the diluted solution was measured by ICP-AES.

ここで、各試薬及び純水は、測定したい金属の含有量が、シリカ中に含まれる金属の含有量に対して5%以下であるような高純度のものでなくてはならない。金属イオンの濃度は、下記の式3によって示される。
シリカ中濃度(ppb)=溶液中濃度(ppb)×メスアップ時の溶液量(mL)/シリカ粉末量(g) … (3)
Here, each reagent and pure water must be of high purity such that the content of the metal to be measured is 5% or less with respect to the content of the metal contained in silica. The concentration of metal ions is given by Equation 3 below.
Concentration in silica (ppb) = concentration in solution (ppb) × solution amount (mL) when measuring up / silica powder amount (g) (3)

(電気伝導度の測定)
洗浄液の電気伝導度は、HORIBA社製ポータブル電気伝導率計ES−71を使用して測定した。
(Measurement of electrical conductivity)
The electric conductivity of the cleaning liquid was measured using a portable electric conductivity meter ES-71 manufactured by HORIBA.

(試料2)
(スケールを大きくした例)
試料1とおなじ方法で作製したシリカ2500gを、通水できる構造の、内径100mmの円筒容器に入れて、両端から多孔質のセラミック板で押さえてシリカ層を固定した。シリカ層の高さは36.0cmであった。ここに、同様の希硫酸を、通水量3mL/minで、24時間にわたって通水した(通水速度0.04cm/min、置換回数1.5回)のち、同様の方法で洗浄した。このシリカのTi濃度は100ppbであった。
(Sample 2)
(Example of large scale)
2500 g of silica prepared by the same method as in Sample 1 was placed in a cylindrical container having an inner diameter of 100 mm and having a structure capable of passing water, and the silica layer was fixed by pressing with porous ceramic plates from both ends. The height of the silica layer was 36.0 cm. The same diluted sulfuric acid was passed through this at a water flow rate of 3 mL / min for 24 hours (water flow rate 0.04 cm / min, replacement frequency 1.5 times), and then washed in the same manner. The Ti concentration of this silica was 100 ppb.

(試料3)
(通水速度を遅くした例)
試料1と同じ条件で、通水量を0.2mL/min、通水時間を36時間とした。(通水速度0.016cm/min、置換回数1.6回)
(Sample 3)
(Example of slowing water flow)
Under the same conditions as in Sample 1, the water flow rate was 0.2 mL / min and the water flow time was 36 hours. (Water flow rate 0.016 cm / min, replacement frequency 1.6 times)

(試料4)
(通水速度を遅くした例2)
試料1と同じ条件で、通水量を0.2mL/min、通水時間を72時間とした。(通水速度0.016cm/min、置換回数3.3回)
(Sample 4)
(Example 2 in which the water flow rate is slowed)
Under the same conditions as in Sample 1, the water flow rate was 0.2 mL / min and the water flow time was 72 hours. (Water flow rate 0.016 cm / min, replacement frequency 3.3 times)

(試料5)
(通水速度を速くした例)
試料1と同じ条件で、通水量を2mL/min、通水時間を4時間とした。(通水速度0.16cm/min、置換回数1.8回)
(Sample 5)
(Example of increasing water flow rate)
Under the same conditions as in Sample 1, the water flow rate was 2 mL / min and the water flow time was 4 hours. (Water flow rate 0.16 cm / min, replacement frequency 1.8 times)

(試料6)
(置換回数を大きくした例)
試料1と同じ条件で、通水量を1mL/min、通水時間を10時間とした。(通水速度0.08cm/min、置換回数2.3回)
(Sample 6)
(Example of increasing the number of replacements)
Under the same conditions as in Sample 1, the water flow rate was 1 mL / min and the water flow time was 10 hours. (Water flow rate 0.08 cm / min, replacement frequency 2.3 times)

(試料7)
(置換回数を大きくした例2)
試料1と同じ条件で、通水量を1mL/min、通水時間を20時間とした。(通水速度0.08cm/min、置換回数4.6回)
(Sample 7)
(Example 2 in which the number of replacements is increased)
Under the same conditions as in Sample 1, the water flow rate was 1 mL / min and the water flow time was 20 hours. (Water flow rate 0.08 cm / min, replacement frequency 4.6 times)

(試料8)
(置換回数が少ない例)
試料1と同じ条件で、通水量を1mL/min、通水時間を2時間とした。(通水速度0.08cm/min、置換回数0.5回)
(Sample 8)
(Example of few replacements)
Under the same conditions as in Sample 1, the water flow rate was 1 mL / min and the water flow time was 2 hours. (Water flow rate 0.08 cm / min, replacement frequency 0.5 times)

(試料9)
(置換回数が少ない例2)
試料1と同じ条件で、通水量を1mL/min、通水時間を4時間とした。(通水速度0.08cm/min、置換回数0.9回)
(Sample 9)
(Example 2 with few replacements)
Under the same conditions as in Sample 1, the water flow rate was 1 mL / min and the water flow time was 4 hours. (Water flow rate 0.08 cm / min, replacement frequency 0.9 times)

(試料10)
(置換回数が少ない例3)
試料1と同じ条件で、通水量を1mL/min、通水時間を6時間とした。(通水速度0.08cm/min、置換回数1.4回)
(Sample 10)
(Example 3 with few replacements)
Under the same conditions as in Sample 1, the water flow rate was 1 mL / min and the water flow time was 6 hours. (Water flow rate 0.08 cm / min, replacement frequency 1.4 times)

(試料11)
(通水速度が速い例)
試料1と同じ条件で、通水量を4mL/min、通水時間を8時間とした。(通水速度0.32cm/min、置換回数7.3回)
(Sample 11)
(Example of high water flow rate)
Under the same conditions as in Sample 1, the water flow rate was 4 mL / min and the water flow time was 8 hours. (Water flow rate 0.32 cm / min, replacement frequency 7.3 times)

(試料12)
(通水速度が速い例2)
試料1と同じ条件で、通水量を4mL/min、通水時間を2時間とした。(通水速度0.32cm/min、置換回数1.8回)
(Sample 12)
(Example 2 with high water flow rate)
Under the same conditions as in Sample 1, the water flow rate was 4 mL / min and the water flow time was 2 hours. (Water flow rate 0.32 cm / min, replacement frequency 1.8 times)

(比較例1)
(同じ硫酸量/シリカ量比で、通水ではなく静置処理を行った例)
試料1の方法と同様の方法で作製したシリカ230gをガラス製のビーカーに入れ、希硫酸480mLを加えて、通水せずに8時間静置したのち、同様の方法で洗浄した。このシリカのTi濃度は870ppbであった。
(Comparative Example 1)
(Example of static treatment at the same sulfuric acid amount / silica amount ratio instead of passing water)
230 g of silica prepared by the same method as that of Sample 1 was placed in a glass beaker, 480 mL of dilute sulfuric acid was added, and the mixture was allowed to stand for 8 hours without passing water and then washed by the same method. The Ti concentration of this silica was 870 ppb.

(比較例2)
(過酸化水素を加えない例)
試料1と同じ条件で、硫酸として、過酸化水素水を添加しないものを使用した。(通水速度0.08cm/min、置換回数1.8回)
(Comparative example 2)
(Example without adding hydrogen peroxide)
Under the same conditions as in Sample 1, sulfuric acid to which hydrogen peroxide solution was not added was used. (Water flow rate 0.08 cm / min, replacement frequency 1.8 times)

図3は、試料1から12および比較例1、2の通水速度、置換回数および測定されたTi濃度を示す表である。洗浄液を通水しない比較例1および洗浄液に過酸化水素(錯形成剤)を含まない比較例2に対して、洗浄液に過酸化水素を含み洗浄液を通水した試料1から12は、いずれもTi濃度が小さくなった。このため、洗浄液に錯形成剤を含み通水することが除去対象とする金属濃度を低減するために有効であることが分かった。   FIG. 3 is a table showing the water flow rates of Samples 1 to 12 and Comparative Examples 1 and 2, the number of substitutions, and the measured Ti concentration. In contrast to Comparative Example 1 in which the cleaning liquid does not pass and Comparative Example 2 in which the cleaning liquid does not contain hydrogen peroxide (complex forming agent), all of Samples 1 to 12 in which the cleaning liquid contains hydrogen peroxide and the cleaning liquid passes are Ti. The concentration has decreased. Therefore, it has been found that it is effective to pass the water containing the complexing agent in the cleaning liquid to reduce the concentration of the metal to be removed.

試料11は、Ti濃度が比較的低くなっているが、置換回数が多くなっているため効率的ではない。また、試料12は、同じ置換回数で通水速度の小さい試料1および試料5と比較するとTi濃度が高くなっている。これにより、通水速度はあまり高すぎない方がよいことが分かった。   Sample 11 has a relatively low Ti concentration, but is not efficient because the number of times of substitution is large. Further, the sample 12 has a higher Ti concentration than the sample 1 and the sample 5, which have the same number of substitutions and a small water flow rate. From this, it was found that the water flow rate should not be too high.

試料8、9、10、1、6、7は、通水速度が同じで置換回数がこの順で大きくなっている。また、Ti濃度は試料7を除いてこの順で小さくなっている。これにより、置換回数は大きい方がよいことが分かった。精製の効率を考えると、置換回数は、1回以上であればよく、1.5回以上であればより好ましい。   Samples 8, 9, 10, 1, 6, and 7 have the same water flow rate, and the number of times of replacement increases in this order. In addition, the Ti concentration decreases in this order except for sample 7. From this, it was found that the larger the number of replacements, the better. Considering the efficiency of purification, the number of substitutions may be 1 or more, and more preferably 1.5 or more.

試料4は、試料3と通水速度が同じで置換回数が2倍であるが、試料3と比較してTi濃度はあまり低減されていない。また、試料7は、試料6と通水速度が同じで置換回数が2倍であるが、試料6と比較してTi濃度は逆に若干高くなっている。これにより、通水速度が十分に小さいときは、置換回数は大きくしなくてもよいことが分かった。例えば、通水速度が0.01〜0.2cm/minのときは、置換回数は5回より大きくする必要はなく、3回でも十分である。   The sample 4 has the same water flow rate as the sample 3 and the number of times of substitution is twice, but the Ti concentration is not so much reduced as compared with the sample 3. Further, the sample 7 has the same water flow rate as the sample 6 and the number of times of substitution is twice, but the Ti concentration is slightly higher than the sample 6 on the contrary. From this, it was found that the number of times of replacement need not be large when the water flow rate is sufficiently small. For example, when the water flow rate is 0.01 to 0.2 cm / min, the number of times of replacement need not be greater than 5, and 3 times is sufficient.

[錯形成剤としてEDTA−2Naを用いた試料および比較例]
(試料A)
試料1と同様の条件で、硫酸に対し、過酸化水素ではなく、EDTA−2Na(エチレンジアミン四酢酸二ナトリウム)を0.2wt%添加した洗浄液を用いた(水ガラス中のCu濃度:3800ppb、硫酸中のCu濃度:<10ppb)。精製したシリカのCu濃度を測定したところ、40ppbであった。
[Sample Using EDTA-2Na as Complexing Agent and Comparative Example]
(Sample A)
Under the same conditions as in Sample 1, a cleaning solution was used in which 0.2 wt% of EDTA-2Na (disodium ethylenediaminetetraacetate) was added to sulfuric acid instead of hydrogen peroxide (Cu concentration in water glass: 3800 ppb, sulfuric acid). Cu concentration in: <10 ppb). When the Cu concentration of the purified silica was measured, it was 40 ppb.

(比較例A、比較例B)
また、EDTA−2Naを添加せずに、同様の精製を行ったシリカ(比較例A、比較例2と同じもの)のCu濃度は230ppmであった。また、比較例1のように、EDTA−2Naを添加した洗浄液を、通水せずに浸漬のみ行ったところ、得られたシリカ(比較例B)のCu濃度は90ppmであった。
(Comparative Example A, Comparative Example B)
In addition, the Cu concentration of silica (same as in Comparative Example A and Comparative Example 2) that was similarly purified without adding EDTA-2Na was 230 ppm. Further, as in Comparative Example 1, when the cleaning liquid containing EDTA-2Na was only immersed without passing water, the Cu concentration of the obtained silica (Comparative Example B) was 90 ppm.

錯形成剤としてEDTA−2Naを使用した場合、Cu濃度を低減できた。このため、除去対象とする金属に応じて錯形成剤を変更することで、他の金属元素についても、錯形成剤によって表面に金属イオンが保持されるのを防ぎ、ゆっくりと洗浄液を通水させる方法によって、除去対象とする金属濃度を低減する精製が可能であると考えられる。なお、本発明の精製は洗浄水が強酸性であるため、強酸性下でも錯形成能を発揮する錯形成剤を選定する必要がある。   When EDTA-2Na was used as the complexing agent, the Cu concentration could be reduced. Therefore, by changing the complexing agent depending on the metal to be removed, it is possible to prevent the metal ion from being held on the surface by the complexing agent for other metal elements and to slowly pass the cleaning liquid. It is considered that the method enables purification to reduce the concentration of the metal to be removed. Since the washing water used in the purification of the present invention is strongly acidic, it is necessary to select a complex-forming agent that exhibits a complex-forming ability even under strongly acidic conditions.

以上の結果から、本発明のシリカの精製方法は、除去対象とする金属濃度を低減させた高純度なシリカを得るために有効であると言える。   From the above results, it can be said that the method for purifying silica of the present invention is effective for obtaining high-purity silica with a reduced metal concentration to be removed.

1 精製装置
3 管状容器
5 ガラスウール
7 容器
9 ボールバルブ
11 ローラーポンプ
1 Refining Device 3 Tubular Container 5 Glass Wool 7 Container 9 Ball Valve 11 Roller Pump

Claims (6)

ケイ酸アルカリ水溶液と鉱酸水溶液との中和によって生成したシリカを精製する方法であって、
浸漬槽に生成した前記シリカを収容し、前記シリカの集合およびその間隙によって形成されるシリカ層を、pHが1.0以下であり、鉱酸を含み、錯形成剤を添加した水溶液に浸漬する工程と、
前記水溶液を、前記シリカ層に対する相対速度が0.01cm/min以上0.2cm/min以下の範囲で、通水量が前記シリカ層の存在する範囲の前記浸漬槽の体積の1.0倍以上となる所定の量、通水させる工程と、を含むことを特徴とするシリカの精製方法。
A method for purifying silica produced by neutralization of an aqueous alkaline silicate solution and an aqueous mineral acid solution,
The silica produced is contained in a dipping tank, and the silica layer formed by the aggregate of the silica and the gaps between the silica is immersed in an aqueous solution having a pH of 1.0 or less, a mineral acid, and a complexing agent added. Process,
The aqueous solution has a relative velocity with respect to the silica layer of 0.01 cm / min or more and 0.2 cm / min or less, and a water flow rate of 1.0 times or more the volume of the dipping tank in the range where the silica layer exists. And a step of allowing water to flow therethrough.
前記水溶液を通水させる工程において、前記通水量を1.5倍以上の所定の量、通水させることを特徴とする請求項1記載のシリカの精製方法。   The method for purifying silica according to claim 1, wherein, in the step of allowing the aqueous solution to pass, a predetermined amount of water passing 1.5 times or more is passed. 前記水溶液を通水させる工程は、4時間以上継続して実施されることを特徴とする請求項1または請求項2記載のシリカの精製方法。   The method for purifying silica according to claim 1 or 2, wherein the step of passing the aqueous solution is continuously performed for 4 hours or more. 前記錯形成剤は、過酸化水素であることを特徴とする請求項1から請求項3のいずれかに記載のシリカの精製方法。   The method for purifying silica according to any one of claims 1 to 3, wherein the complexing agent is hydrogen peroxide. 前記錯形成剤は、EDTA−2Naであることを特徴とする請求項1から請求項3のいずれかに記載のシリカの精製方法。   The method for purifying silica according to any one of claims 1 to 3, wherein the complexing agent is EDTA-2Na. Ti濃度が100ppb以下、平均粒径が500μm以上3000μm以下であることを特徴とするシリカ粒子。   A silica particle having a Ti concentration of 100 ppb or less and an average particle diameter of 500 μm or more and 3000 μm or less.
JP2018195839A 2018-10-17 2018-10-17 Silica purification method and silica particles Active JP7174483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018195839A JP7174483B2 (en) 2018-10-17 2018-10-17 Silica purification method and silica particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018195839A JP7174483B2 (en) 2018-10-17 2018-10-17 Silica purification method and silica particles

Publications (2)

Publication Number Publication Date
JP2020063172A true JP2020063172A (en) 2020-04-23
JP7174483B2 JP7174483B2 (en) 2022-11-17

Family

ID=70386888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018195839A Active JP7174483B2 (en) 2018-10-17 2018-10-17 Silica purification method and silica particles

Country Status (1)

Country Link
JP (1) JP7174483B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252308A (en) * 1990-02-28 1991-11-11 Hagiwara Giken:Kk Antimicrobial composition containing silica gel as matrix
JPH07187646A (en) * 1993-12-28 1995-07-25 Nippon Silica Ind Co Ltd Method for washing silica hydrogel
JPH09110413A (en) * 1995-10-24 1997-04-28 Mizusawa Ind Chem Ltd Spherical silica gel having increased macropore and its production
JP2001192223A (en) * 1999-12-28 2001-07-17 Watanabe Shoko:Kk Method for manufacturing high purity synthetic quartz powder
JP2001233628A (en) * 2000-02-23 2001-08-28 Watanabe Shoko:Kk Method of producing synthetic quartz glass powder
JP2003146646A (en) * 2001-11-20 2003-05-21 Tosoh Corp Lumpy, high purity silica, and production method therefor
JP2014012618A (en) * 2012-07-04 2014-01-23 Taiheiyo Cement Corp Apparatus and method for producing amorphous silica
JP2015020916A (en) * 2013-07-16 2015-02-02 ケイ・エス・ティ・ワ−ルド株式会社 Method for manufacturing high-purity synthetic silica powder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252308A (en) * 1990-02-28 1991-11-11 Hagiwara Giken:Kk Antimicrobial composition containing silica gel as matrix
JPH07187646A (en) * 1993-12-28 1995-07-25 Nippon Silica Ind Co Ltd Method for washing silica hydrogel
JPH09110413A (en) * 1995-10-24 1997-04-28 Mizusawa Ind Chem Ltd Spherical silica gel having increased macropore and its production
JP2001192223A (en) * 1999-12-28 2001-07-17 Watanabe Shoko:Kk Method for manufacturing high purity synthetic quartz powder
JP2001233628A (en) * 2000-02-23 2001-08-28 Watanabe Shoko:Kk Method of producing synthetic quartz glass powder
JP2003146646A (en) * 2001-11-20 2003-05-21 Tosoh Corp Lumpy, high purity silica, and production method therefor
JP2014012618A (en) * 2012-07-04 2014-01-23 Taiheiyo Cement Corp Apparatus and method for producing amorphous silica
JP2015020916A (en) * 2013-07-16 2015-02-02 ケイ・エス・ティ・ワ−ルド株式会社 Method for manufacturing high-purity synthetic silica powder

Also Published As

Publication number Publication date
JP7174483B2 (en) 2022-11-17

Similar Documents

Publication Publication Date Title
JP5897043B2 (en) High purity silica granule for quartz glass application and its production method
Zereffa et al. Clay Ceramic Filter for Water Treatment.
JP5032223B2 (en) Method for cleaning polysilicon crushed material
Satapathy et al. Potassium bromate modification of the granular activated carbon and its effect on nickel adsorption
JPS62186924A (en) Method and device for removing dust and gas contaminat from exhaust gas
Wang et al. Quantifying gel properties of industrial waste-based geopolymers and their application in Pb2+ and Cu2+ removal
CN106423045B (en) A kind of modified montmorillonoid sorbent preparation method of Treatment of Zinc-containing Wastewater
TWI768033B (en) Manufacturing method of polysilicon crushed material, and method of managing surface metal concentration of polysilicon crushed material
CN104525093B (en) Hg in a kind of removing flue gas0magnetic adsorbent and preparation and application
CN105143104A (en) Method for purifying silane compound or chlorosilane compound, method for producing polycrystalline silicon, and method for regenerating weakly basic ion-exchange resin
CN104671498A (en) Treatment method and device of wastewater containing superfine silicon powder
JP2013158727A (en) Fluorine remover and treatment method for fluorine-containing liquid
TW200533599A (en) Method and apparatus for purifying inorganic halides and oxyhalides using zeolites
JP2020063172A (en) Silica purification method and silica particle
WO2001047808A1 (en) Method for producing silica particles, synthetic quartz powder and synthetic quartz glass
JP7079057B2 (en) Silica cleaning method
CN106669590B (en) It is a kind of based on the heavy metal mesoporous adsorption material and its preparation method and application that molybdenum ore tailings is raw material
FR3055558A1 (en) NANOCOMPOSITE SOLID MATERIAL BASED ON HEXA- OR OCTACYANOMETALLATES OF ALKALI METALS, PROCESS FOR PREPARING THE SAME, AND PROCESS FOR EXTRACTING METAL CATIONS.
JPH0739888A (en) Method for preparing activated water
JP5354577B2 (en) Phosphorous adsorbent and production method
JP4649677B2 (en) Method for producing high-purity silica particles, high-purity silica particles obtained thereby, and method for producing high-purity quartz glass particles using the same
CN110813243A (en) Preparation method of sodium acetate modified natural zeolite for calcium ion adsorption
JP4070154B2 (en) Ultra high purity silica powder and method for producing the same, and silica glass crucible for pulling single crystal using the ultra high purity silica powder
Sarbatly et al. Particle size distribution and purification of red clay for industrial use
JPS60204612A (en) Production of high purity silicon dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221102

R150 Certificate of patent or registration of utility model

Ref document number: 7174483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150