JPH09106904A - Ferrite powder for bonded magnet and bonded magnet using thereof - Google Patents

Ferrite powder for bonded magnet and bonded magnet using thereof

Info

Publication number
JPH09106904A
JPH09106904A JP7288163A JP28816395A JPH09106904A JP H09106904 A JPH09106904 A JP H09106904A JP 7288163 A JP7288163 A JP 7288163A JP 28816395 A JP28816395 A JP 28816395A JP H09106904 A JPH09106904 A JP H09106904A
Authority
JP
Japan
Prior art keywords
powder
ferrite
average particle
bonded magnet
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7288163A
Other languages
Japanese (ja)
Other versions
JP3257936B2 (en
Inventor
Yoshitaka Orihara
美貴 織原
Kazuyuki Nakagami
和之 中上
Ryuichi Amo
隆一 天羽
Noriaki Nobeoka
則明 延岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON BENE KOGYO KK
Dowa Holdings Co Ltd
Original Assignee
NIPPON BENE KOGYO KK
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17726628&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH09106904(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NIPPON BENE KOGYO KK, Dowa Mining Co Ltd filed Critical NIPPON BENE KOGYO KK
Priority to JP28816395A priority Critical patent/JP3257936B2/en
Publication of JPH09106904A publication Critical patent/JPH09106904A/en
Application granted granted Critical
Publication of JP3257936B2 publication Critical patent/JP3257936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide magnet plumbite type ferrite powder with which a bonded magnet, having the maximum energy product (BH) max of specific value or higher, can be obtained. SOLUTION: This ferrite powder is the magnet plumbite type ferrite powder for a bonded magnet having the average particle diameter of 0.9 to 1.5μm, the compression density when compressed at the pressure of 1 ton/cm<2> is 3.40g/cm<3> or higher, the melt flow rate is 7g/10min or higher, and the powder PH when measured by JIS-K5101 is 7 to 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,AV,OA機器,
自動車電装部品等に使用される小型モーターや,複写機
のマグネットロール等に使用される高磁力のボンド磁石
を構成するためのフエライト粉末に関する。
TECHNICAL FIELD The present invention relates to AV, OA equipment,
TECHNICAL FIELD The present invention relates to a ferrite powder for constituting a small motor used for automobile electrical components and the like, and a high magnetic bond magnet used for a magnet roll of a copying machine.

【0002】[0002]

【従来の技術】一般に,磁石の磁力を示す最大エネルギ
ー積(BH)maxは,残留磁束密度Brと保磁力iH
cにより決まる。残留磁束密度Brは磁石の密度ρと磁
粉の飽和磁化σs,配向度(Br/4πIs)により下
式で表される。 Br=4π×(ρ)×(σs)×(配向度)
2. Description of the Related Art Generally, the maximum energy product (BH) max, which indicates the magnetic force of a magnet, is determined by the residual magnetic flux density Br and the coercive force iH.
determined by c. The residual magnetic flux density Br is represented by the following equation based on the density ρ of the magnet, the saturation magnetization σs of the magnetic powder, and the orientation degree (Br / 4πIs). Br = 4π × (ρ) × (σs) × (degree of orientation)

【0003】一方,保磁力iHcはフエライト系の場
合,結晶異方性と形状異方性および単磁区構造の理論で
説明されている。
On the other hand, the coercive force iHc is explained by the theory of crystal anisotropy, shape anisotropy and single domain structure in the case of a ferrite system.

【0004】ボンド磁石と焼結磁石の大きな違いは密度
ρである。フエライト系焼結磁石の密度5.0g/cm
3 に対し,ボンド磁石では樹脂やゴム等のバインダーが
入るため当然密度はこれより低くなり,磁力は下がる。
したがって,ボンド磁石の磁力を高くするには,フエラ
イト粉末の含有率を増やすことが必須の課題となる。し
かし,フエライト粉末の含有率を増やすとバインダーと
の混練時に高粘度となり,負荷が増大して混練物の生産
性が低下し,極端な場合には混練不可になる。そして,
混練物の成形時にも流動性が悪いのでやはり生産性が低
下し,極端な場合には成形不可になる。
A big difference between the bonded magnet and the sintered magnet is the density ρ. Density of sintered ferrite magnets 5.0g / cm
On the other hand, in the case of bonded magnets, since binders such as resin and rubber enter the bonded magnets, the density naturally becomes lower than this and the magnetic force decreases.
Therefore, in order to increase the magnetic force of the bond magnet, increasing the content rate of the ferrite powder is an essential issue. However, if the content of the ferrite powder is increased, the viscosity becomes high during kneading with the binder, the load increases, and the productivity of the kneaded product decreases, and in extreme cases, the kneading becomes impossible. And
Since the fluidity of the kneaded product is poor even when it is molded, the productivity is reduced, and in extreme cases, molding becomes impossible.

【0005】このボンド磁石特有の課題を解決するため
に,バインダーの選定やフエライト粉末の表面処理等の
面での改良が行われているが,基本的にはフエライト粉
末自身の高充填性を確保することが最も重要である。フ
エライト粉末の充填性は一般的には粒度分布と圧縮密度
との関連性が高い。
In order to solve the problems peculiar to the bonded magnet, the selection of the binder and the surface treatment of the ferrite powder have been improved, but basically, the high filling property of the ferrite powder itself is ensured. To do is most important. The filling property of the ferrite powder is generally highly related to the particle size distribution and the compressed density.

【0006】従来,このようなフエライト粉末の製造方
法として例えば特公昭55−26605号公報および特
公昭63−34610号公報に記載された方法が知られ
ている。前者は高温で焼成して粗大結晶粒子を成長さ
せ,これを粉砕して粗大粒子の間隙を埋めるような微粒
子を作る方法であり,後者は平均粒径0.5〜1.5μm
のフエライト微粉末と平均粒径30〜250μmのフエ
ライト粗粉とを配合する方法である。
Conventionally, as a method for producing such a ferrite powder, for example, the methods described in JP-B-55-26605 and JP-B-63-34610 are known. The former is a method of firing at high temperature to grow coarse crystal grains and crushing them to make fine particles that fill the gaps between the coarse grains, and the latter is an average grain size of 0.5 to 1.5 μm.
Of fine ferrite powder and coarse ferrite powder having an average particle diameter of 30 to 250 μm.

【0007】これらの方法でも圧縮密度が高く,高充填
性のフエライト粉末は得られるが,充填性以外にボンド
磁石として高磁力化に必要な特性要因についての考慮が
不充分で,得られるボンド磁石の最大エネルギー積(B
H)maxは最高レベルでも2.2〜2.3MGOeが限
度であった。
With these methods, ferrite powder having a high compression density and a high packing property can be obtained. However, in addition to the packing property, the bond magnet obtained can not be sufficiently considered in terms of the characteristic factors necessary for increasing the magnetic force of the bond magnet. Maximum energy product of (B
H) max was limited to 2.2 to 2.3 MGOe even at the highest level.

【0008】例えば単に圧縮密度だけを追求したフエラ
イト粉末では,バインダーとの混練負荷を下げたり,そ
の混練物の流動性を上げて成形性を改善するには十分で
はない。粉体の混練性や流動性は確かに圧縮密度によっ
ても影響も受けるが,その他の要因として粒子形状,粒
子の表面状態の影響も無視できないからである。また粒
子形状や粒子の表面状態は配向度および保磁力との関連
性も強い。
For example, a ferrite powder that pursues only the compression density is not sufficient to reduce the kneading load with the binder or increase the fluidity of the kneaded product to improve the moldability. This is because the kneadability and fluidity of the powder are certainly affected by the compression density, but other factors such as the particle shape and the surface condition of the particles cannot be ignored. Further, the particle shape and the surface condition of the particles are closely related to the degree of orientation and the coercive force.

【0009】粒子形状の点からフエライト粒子を見る
と,配向に適した粒子形状はC軸方向の異方性が高い六
角板状であるが,射出成形等の磁場配向タイプでは板状
比(a軸方向の粒径/c軸方向の粒径)が小さいほど,
粒子が動き易く高流動性が得られる。また,当然粒子間
焼結が少ないほど配向しやすい。
Looking at the ferrite particles in terms of particle shape, the particle shape suitable for orientation is a hexagonal plate shape with high anisotropy in the C-axis direction, but in the magnetic field orientation type such as injection molding, the plate shape ratio (a The smaller the axial grain size / c-axis grain size, the more
The particles move easily and high fluidity is obtained. Naturally, the less the interparticle sintering, the easier the orientation.

【0010】粒子の表面形態については不明な点が多い
が,バインダーとの親和性から,混練時,成形時におけ
る粘度との関連がありそうである。粘度が低いほど高流
動性となり配向度が上がり,また機械的ストレスが弱い
ので保持力の低下も少ないであろう。
Although there are many unclear points regarding the surface morphology of the particles, it is likely that the surface morphology of the particles is related to the viscosity at the time of kneading and molding due to the affinity with the binder. The lower the viscosity, the higher the fluidity, the higher the degree of orientation, and the weaker the mechanical stress, the less the retention will decrease.

【0011】保磁力iHcについては,結晶異方性と形
状異方性,単磁区構造等によって説明されている。例え
ばストロンチウムフエライトは,バリウムフエライトよ
りも結晶異方性が大きいので高iHcが得られる。また
板状比は小さいほど形状異方性による減磁が少ないので
高iHcになる。粉砕して平均粒子径が小さくなると単
磁区構造に近づくので(ただし,同時に歪みも生じるの
でこの歪みをアニールで除去すると)高iHcが得られ
る。なお,アニールしたものは混練および成形時に機械
的ストレスを受けてiHcが下がるが,平均粒子径が小
さいとこのストレスを受けにくい。
The coercive force iHc is explained by crystal anisotropy, shape anisotropy, single domain structure and the like. For example, strontium ferrite has a larger crystal anisotropy than barium ferrite, so that high iHc can be obtained. Further, the smaller the plate ratio, the less the demagnetization due to the shape anisotropy, and the higher the iHc becomes. When the average particle size is reduced by pulverization, the structure approaches a single domain structure (however, since strain is also generated at the same time, this strain is removed by annealing), a high iHc can be obtained. The annealed material receives mechanical stress during kneading and molding to lower iHc, but if the average particle size is small, this stress is less likely to be received.

【0012】残留磁束密度Brについては飽和磁化σs
が決め手となる。マグネトプランバイト型(以下M型と
略称することがある)フエライトにおける飽和磁化σs
の理論値としては,ストロンチウムフエライトが72e
mu/g,バリウムフエライトが71emu/gである
のに対し,一般市販品は70emu/g程度とかなり理
論値に近いところまで向上しているので,これ以上のσ
sの大幅な向上は難しい。現在,飽和磁化を上げる手段
とし,M型よりも高い理論値78emu/gを有するW
型フエライトも一部検討されているが,製法が複雑でコ
ストも高いため実用化には達してない。
Regarding the residual magnetic flux density Br, the saturation magnetization σs
Is the decisive factor. Saturation magnetization σs in magnetoplumbite type (hereinafter sometimes abbreviated as M type) ferrite
The theoretical value of Strontium ferrite is 72e
Mu / g and barium ferrite are 71 emu / g, whereas general commercial products have improved to about 70 emu / g, which is quite close to the theoretical value.
It is difficult to significantly improve s. At present, W having a theoretical value of 78 emu / g higher than that of the M type is used as a means for increasing the saturation magnetization.
Some types of ferrite have been studied, but they have not been put to practical use because the manufacturing method is complicated and the cost is high.

【0013】以上のように,フエライト粉末の組成,粒
度,粒度分布,表面性は,ボンド磁石の充填性,混練
性,成形性,配向性,保磁力,飽和磁化と複雑に絡んで
おり,これらをバランス良く制御することによって初め
てボンド磁石の高(BH)max化が達成される。これ
らの制御には,組成(原料,モル比,添加物),焼成,
粉砕,アニール等の単位操作が一般的であるが,これら
の組み合わせを最適化することが重要となる。
As described above, the composition, particle size, particle size distribution and surface property of the ferrite powder are intricately involved with the filling property, kneading property, moldability, orientation property, coercive force and saturation magnetization of the bonded magnet. A high (BH) max of the bonded magnet can be achieved only by controlling B in a well-balanced manner. These controls include composition (raw materials, molar ratio, additives), firing,
Unit operations such as crushing and annealing are common, but it is important to optimize these combinations.

【0014】しかし,前記の特公昭55−26605号
公報および特公昭63−34610号公報では,特に充
填性だけを重視し,その他の複数要因については十分に
考慮されていない。そのため,特性を制御する単位操作
も単純すぎるため,複雑な特性要因を十分に制御するの
は困難であり,フエライト系ボンド磁石の(BH)ma
xは2.2〜2.3MGOeが最高レベルであった。事
実,現状の市場においても,この最高レベルを超えるフ
エライト系ボンド磁石は出現していない。
However, in Japanese Patent Publication No. 55-26605 and Japanese Patent Publication No. 63-34610, only the filling property is emphasized and other factors are not sufficiently taken into consideration. Therefore, it is difficult to sufficiently control the complicated characteristic factors because the unit operation for controlling the characteristic is too simple, and the (BH) ma of the ferrite type bonded magnet is difficult to control.
The highest level of x was 2.2 to 2.3 MGOe. In fact, even in the current market, no ferrite-type bonded magnets exceeding this highest level have appeared.

【0015】このため,(BH)max=2.5〜4.0
MGOeが要求される分野ではフエライト系焼結磁石が
使用されている。だが,焼結磁石は欠け割れが発生した
り,研磨が必要なため生産性に劣ることと,複雑な形状
への加工が困難であるという固有の問題がある。最近,
希土類磁石を用いたボンド磁石がこの分野で一部使用さ
れているが,希土類磁石はフエライトの20倍のコスト
高であり,また錆びやすいという問題がある。
Therefore, (BH) max = 2.5-4.0
Ferrite-based sintered magnets are used in fields where MGOe is required. However, sintered magnets have the inherent problems of chipping and cracking, poor productivity due to the need for polishing, and difficulty in processing into complex shapes. Recently,
Bonded magnets using rare earth magnets are partially used in this field, but rare earth magnets are 20 times more expensive than ferrite and have the problem of being easily rusted.

【0016】このような背景から,加工性が良好で安価
なフエライト系M型ボンド磁石において(BH)max
≧2.5MGOeを達成することが,AV,OA機器,
自動車の電装部品等の小型モーターや複写機のマグネッ
トロールの用途分野で強く要望されている。
From such a background, in a ferrite type M-type bonded magnet which has good workability and is inexpensive, (BH) max
Achieving ≧ 2.5 MGOe means AV, OA equipment,
There is a strong demand in the application fields of small motors such as electric components of automobiles and magnet rolls of copying machines.

【0017】[0017]

【発明が解決しようとする課題】したがって 本発明
は,上記したフエライト系ボンド磁石の問題点を解決
し,前記の要望に応えるべく,従来技術の水準を越える
(BH)max≧2.5MGOeのフエライト系ボンド
磁石の開発を課題としたものである。
Therefore, the present invention solves the above-mentioned problems of the ferrite-based bonded magnets, and in order to meet the above-mentioned demand, the ferrite having a (BH) max ≧ 2.5 MGOe exceeding the level of the prior art. The development of bonded magnets is an issue.

【0018】[0018]

【課題を解決するための手段】前記の課題は,平均粒子
径が0.30〜0.50μmの微粉15〜40重量%と,
平均粒子径が1.00〜2.50μmの粗粉残部とを混合
して得た平均粒子径が0.9〜1.5μmであって,粉体
PHが7〜10の範囲,下記のMFR測定法に従ってフ
エライト量93重量%で測定したメルトフローレートが
7g/10min以上であるマグネトプランバイト型フ
エライト粉末によって実質上解決できることがわかっ
た。
[Means for Solving the Problems] The above problems are as follows: 15 to 40% by weight of fine powder having an average particle size of 0.30 to 0.50 μm,
The average particle size obtained by mixing with the rest of the coarse powder having an average particle size of 1.00 to 2.50 μm is 0.9 to 1.5 μm, the powder PH is in the range of 7 to 10, and the MFR is as follows. It was found that this can be practically solved by a magnetoplumbite type ferrite powder having a melt flow rate of 7 g / 10 min or more measured with a ferrite amount of 93% by weight according to the measuring method.

【0019】すなわち本発明によれば,マグネトプラン
バイト型フエライトの粉末であって,平均粒子径が0.
9〜1.5μm,JIS K−5101で測定した粉体
PHが7〜10,更には下記のMFR測定法に従ってフ
エライト量93重量%で測定したメルトフローレートが
7g/10min以上である,1ton/cm2 の圧力で圧
縮したときの圧縮密度が3.40g/cm3 以上のボン
ド磁石用フエライト粉末を提供する。
That is, according to the present invention, the powder is a magnetoplumbite-type ferrite and has an average particle size of 0.1.
9 to 1.5 μm, the powder PH measured by JIS K-5101 is 7 to 10, and the melt flow rate measured at a ferrite amount of 93% by weight according to the following MFR measuring method is 7 g / 10 min or more, 1 ton / Provided is a ferrite powder for a bonded magnet, which has a compression density of 3.40 g / cm 3 or more when compressed at a pressure of cm 2 .

【0020】このフエライト粉末の粒度分布の幾何標準
偏差σgが1.8〜2.5であるのが一層好ましく,また
BET法で測定した比表面積が1.5〜4.0m2/gであ
る。
It is more preferable that the geometric standard deviation σg of the particle size distribution of this ferrite powder is 1.8 to 2.5, and the specific surface area measured by the BET method is 1.5 to 4.0 m 2 / g. .

【0021】このフエライト粉末は,平均粒子径が0.
30〜0.50μmのマグネトプランバイト型フエライ
トの微粉と,平均粒子径が1.00〜2.50μmのマグ
ネトプランバイト型フエライトの粗粉を準備する工程,
前記の微粉15〜40重量%と前記の粗粉残部とを混合
する工程,およびこの混合工程の前または後においてこ
れらの粉体を800〜1100℃でアニールする工程,
更には,アニール工程後の粉体のPHを7〜10に調整
する工程からなる製造方法によって製造することができ
る。
This ferrite powder has an average particle size of 0.1.
A step of preparing fine powder of magnetoplumbite type ferrite of 30 to 0.50 μm and coarse powder of magnetoplumbite type ferrite having an average particle size of 1.00 to 2.50 μm,
Mixing 15 to 40% by weight of the fine powder with the remainder of the coarse powder, and annealing the powder at 800 to 1100 ° C. before or after the mixing step,
Further, it can be manufactured by a manufacturing method including a step of adjusting the pH of the powder after the annealing step to 7 to 10.

【0022】そして,本発明によれば,平均粒子径が
0.9〜1.5μmのマグネトプランバイト型フエライト
の粉末93重量%以上を樹脂系バインダーを用いて成形
してなる(BH)maxが2.5MGOe以上のフエラ
イト系ボンド磁石を提供する。該磁石の成形密度は3.
90g/cm3 以上である。
According to the present invention, 93% by weight or more of magnetoplumbite-type ferrite powder having an average particle diameter of 0.9 to 1.5 μm is molded by using a resinous binder to obtain (BH) max. Provide a ferrite-based bonded magnet of 2.5 MGOe or more. The molding density of the magnet is 3.
90 g / cm 3 or more.

【0023】[0023]

【発明の実施の形態】フエライト系ボンド磁石において
高磁力化を達成するには,フエライト粉末のボンド磁石
中へ高充填することと配向度を上げることが必須条件で
ある。そして,高充填性のフエライト粉末を得るには粒
度分布を広くし,圧縮密度を高くする方法が効果的であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION In order to achieve a high magnetic force in a ferrite-based bonded magnet, it is essential to highly fill the bonded magnet with a ferrite powder and to increase the degree of orientation. A method of broadening the particle size distribution and increasing the compression density is effective for obtaining highly-filled ferrite powder.

【0024】Furnas等によって二成分系のランダ
ム充填モデルが提案されている。最密充填された大粒子
間隙をちょうど満たすように小粒子を最密充填する場
合,大粒子の重量割合が70%付近で最大充填率を与え
る。ただし,粒径比は0.2以下がであることが必要で
ある。
A two-component random packing model has been proposed by Furnas et al. When the close packing of the small particles is performed so as to just fill the gap between the close packed large particles, the maximum packing ratio is given when the weight ratio of the large particles is around 70%. However, the particle size ratio must be 0.2 or less.

【0025】本発明者らは,マグネトプランバイト型フ
エライト粉末について,充填性と配向度の高い製造条件
を知るべく広汎な試験研究を行った。その結果,平均粒
子径が0.30〜0.50μmのマグネトプランバイト型
フエライトの微粉15〜40重量%と,平均粒子径が
1.00〜2.50μmのマグネトプランバイト型フエラ
イトの粗粉残部を混合して得た平均粒径0.9〜1.5μ
mの粉末が高充填性と高配向度をもたらすことがわかっ
た。
The present inventors have conducted extensive test studies on magnetoplumbite type ferrite powder in order to know the manufacturing conditions with high filling property and high degree of orientation. As a result, 15-40% by weight of fine particles of magnetoplumbite-type ferrite having an average particle diameter of 0.30-0.50 μm and the remainder of the coarse particles of magnetoplumbite-type ferrite having an average particle diameter of 1.00-2.50 μm. Average particle size obtained by mixing
It has been found that the m powder gives a high packing property and a high degree of orientation.

【0026】この場合,粒度分布の幾何標準偏差σgが
1.8〜2.5の範囲となるものが特に充填性と配向度が
高い。この幾何標準偏差σgは公知のレーザー回折式粒
度分布測定装置によって測定できる。本発明例では日本
電子株式会社製の商品名“HELOS & RODO
S”のレーザー回折式粒度分布測定装置を用いてσgを
測定した。
In this case, when the geometric standard deviation σg of the particle size distribution is in the range of 1.8 to 2.5, the filling property and the orientation degree are particularly high. This geometric standard deviation σg can be measured by a known laser diffraction type particle size distribution measuring device. In the example of the present invention, the product name “HELOS & RODO” manufactured by JEOL Ltd.
Σg was measured using an S ″ laser diffraction particle size distribution analyzer.

【0027】この充填性と配向度の高いマグネトプラン
バイト型フエライト粉末を得るには,先ず微粉原料とし
て,平均粒子径0.8〜1.5μmの例えばストロンチウ
ムフエライトまたはバリウムフエライトを使用し,これ
を粉砕するか或いは粉砕後に分級して平均粒子径0.3
0〜0.50μmの範囲に入る微粉を準備する。この粉
砕時に平均粒子径を0.3μm未満にまで粉砕すること
は必要ではない。このような超微粉にまで粉砕すると,
粉砕時間が長くなり生産性の観点からマイナスであるば
かりでなく,ボンド磁石化後の磁気特性も低下する。他
方,0.5μmを越える場合には,粗粉との混合したと
きに圧縮密度が低くなりボンド磁石への高充填に不適当
となる。
In order to obtain the magnetoplumbite type ferrite powder having a high packing property and a high degree of orientation, first, for example, strontium ferrite or barium ferrite having an average particle diameter of 0.8 to 1.5 μm is used as a fine powder raw material. Average particle size of 0.3 after crushing or after crushing
Prepare a fine powder that falls within the range of 0 to 0.50 μm. It is not necessary to grind the average particle diameter to less than 0.3 μm during this grinding. When crushed to such an ultrafine powder,
Not only is the crushing time longer and the productivity is negative, but the magnetic properties after forming a bonded magnet also deteriorate. On the other hand, when it exceeds 0.5 μm, the compression density becomes low when mixed with coarse powder, which is not suitable for high filling of the bonded magnet.

【0028】一方,粗粉原料としては平均粒子径3.0
〜4.0μmの例えばストロンチウムフエライトまたは
バリウムフエライトを使用し,これを粉砕するか或いは
粉砕後に分級して平均粒子径1.00〜2.50μmの範
囲に入る粗粉を得る。1.00μm未満では微粉との混
合粉は圧縮密度が低くなり,ボンド磁石への高充填に不
適当である。他方,2.50μmを越える場合はボンド
磁石化後の配向度と保磁力が著しく低下するようにな
る。
On the other hand, as the coarse powder raw material, the average particle diameter is 3.0.
.About.4.0 .mu.m, for example, strontium ferrite or barium ferrite, is crushed or classified after crushing to obtain a coarse powder having an average particle size in the range of 1.00 to 2.50 .mu.m. If it is less than 1.00 μm, the mixed powder with the fine powder has a low compression density and is unsuitable for high filling of the bonded magnet. On the other hand, when it exceeds 2.50 μm, the orientation degree and the coercive force after forming the bond magnet are remarkably lowered.

【0029】このようにして準備した平均粒子径0.3
0〜0.50μmの微粉と,平均粒子径1.00〜2.5
0μmの粗粉を用いて,微粉15〜40重量%で残部が
粗粉となる混合比率を有するフエライト粉末を作る。微
粉が15重量%未満では混合粉の圧縮密度が低く高充填
に不適当となり,またボンド磁石に成形後の保磁力も低
くなる。他方微粉が40重量%を越えると,ボンド磁石
製造の際,バインダーとの混練および成形時の粘度が高
くなりすぎてボンド磁石化が困難になり,また成形でき
ても磁粉の配向度が低くなって残留磁束密度Brが下が
る。
The average particle size thus prepared is 0.3
Fine powder of 0-0.50 μm and average particle size of 1.0-2.5
Using 0 μm of coarse powder, ferrite powder having a mixing ratio of 15 to 40% by weight of fine powder and the balance being coarse powder is prepared. If the fine powder is less than 15% by weight, the compression density of the mixed powder is low and it is not suitable for high filling, and the coercive force after molding into a bonded magnet is also low. On the other hand, if the amount of fine powder exceeds 40% by weight, the viscosity during kneading with a binder and during molding becomes too high during bond magnet production, making it difficult to form a bond magnet, and even if molding is possible, the degree of orientation of magnetic powder becomes low. As a result, the residual magnetic flux density Br decreases.

【0030】以上のような混合比で微粉と粗粉を混合後
にアニール処理を施すか,或いは微粉と粗粉を別々にア
ニール処理してから混合する。このアニール処理によっ
て,微粉・粗粉製造時の粉砕の際に結晶粒子中に発生し
た歪みを除去することができる。アニール温度は800
〜1100℃が好ましい。800℃未満ではアニールの
効果が十分に達成されず,保磁力と飽和磁化が低くな
る。また1100℃を越えると焼結が進んで,圧縮密度
と配向性が低下する。
The fine powder and the coarse powder are mixed at the above mixing ratio and then annealed, or the fine powder and the coarse powder are separately annealed and then mixed. By this annealing treatment, it is possible to remove the strain generated in the crystal grains during the pulverization during the production of fine and coarse powders. Annealing temperature is 800
~ 1100 ° C is preferred. If the temperature is lower than 800 ° C, the effect of annealing is not sufficiently achieved, and the coercive force and the saturation magnetization are lowered. On the other hand, if the temperature exceeds 1100 ° C., the sintering proceeds, and the compression density and orientation decrease.

【0031】そして,最終的に粉体のPHを7〜10に
調整する。このPH調整には水洗や酸性物質による処理
等が採用できる。酸性物質としては,塩酸,硫酸,硝酸
等の無機酸が好ましい。カップリング剤等の有機物の表
面処理剤はフエライト粉末の表面に付着残留することに
よってその効果が発揮されるが,水洗および酸性物質に
よるPH調整後には,かようなカップリング剤の使用量
を減らすことができるため,ボンド磁石における磁粉の
含有率低下を抑えられる。本発明粉の場合,アニール後
の粉体PHは11以上となり,この状態ではバインダー
との親和性に問題があり,高充填での混練および成形が
困難になる。粉体PHを7〜10に調整するとバインダ
ーとの親和性が増し粘度が下がるため,混練時の負荷を
下げ,成形時の流動性を上げることができる。なおPH
値はJIS K−5101に規定の測定方法による。
Finally, the pH of the powder is adjusted to 7-10. For this pH adjustment, washing with water or treatment with an acidic substance can be adopted. As the acidic substance, inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid are preferable. The effect of organic surface treatment agents such as coupling agents is exhibited by remaining on the surface of the ferrite powder, but after washing and adjusting the pH with acidic substances, the amount of such coupling agents used is reduced. Therefore, it is possible to suppress a decrease in the content ratio of the magnetic powder in the bonded magnet. In the case of the powder of the present invention, the powder PH after annealing becomes 11 or more, and in this state, there is a problem with the affinity with the binder, and it becomes difficult to knead and mold with high filling. When the powder PH is adjusted to 7 to 10, the affinity with the binder increases and the viscosity decreases, so that the load during kneading can be reduced and the fluidity during molding can be increased. PH
The value is based on the measuring method specified in JIS K-5101.

【0032】このようにして,平均粒子径が0.9〜1.
5μm,比表面積が1.5〜4.0m2/g,粒度分布の
幾何標準偏差が1.8〜2.5,圧縮密度が3.40〜3.
60g/cm3 ,粉体PHが7〜10のマグネトプラン
バイト型フエライト粉末が得られる。ここで,平均粒子
径は空気透過法による比表面積測定装置で測定できる。
かような測定装置として例えば島津製作所製の商品名S
S−100型の装置がある。また,比表面積はBET法
によって測定したものを意味する。この比表面積測定装
置としては,例えばユアサアイオニクス株式会社製のモ
ノソーブが使用できる。
In this way, the average particle size is 0.9-1.
5 μm, specific surface area 1.5-4.0 m 2 / g, geometric standard deviation of particle size distribution 1.8-2.5, compression density 3.40-3.
A magnetoplumbite-type ferrite powder having a powder PH of 60 g / cm 3 and 7 to 10 is obtained. Here, the average particle diameter can be measured by a specific surface area measuring device by the air permeation method.
As such a measuring device, for example, product name S manufactured by Shimadzu Corporation
There is an S-100 type device. Further, the specific surface area means that measured by the BET method. As this specific surface area measuring device, for example, a monosorb manufactured by Yuasa Ionics Co., Ltd. can be used.

【0033】本発明のフエライト粉末は,メルトフロー
レート(MFR)が従来品のものにはない高い値を示す
という特質がある。その具体例は,後記実施例にも示す
が,従来品の水準を超えるフエライト量93重量%で測
定したメルトフローレートが7g/10min以上の高
流動を示す。ここで,MFRの値は,JIS K−72
10に規定の熱可塑性プラスチックの流れ試験方法に準
じてフエライト粉末と樹脂のコンパウンドの流動性を測
定したものを意味する。その具体的な試験例を以下に挙
げる。
The ferrite powder of the present invention has the characteristic that it has a high melt flow rate (MFR), which is not found in conventional products. Specific examples thereof are shown in Examples below, but the melt flow rate measured at a ferrite amount of 93% by weight, which exceeds the level of conventional products, shows a high flow of 7 g / 10 min or more. Here, the value of MFR is JIS K-72.
It means that the fluidity of the compound of the ferrite powder and the resin was measured according to the flow test method for thermoplastics specified in 10. The specific test example is given below.

【0034】メルトフローレート (MFR) の測定 JIS K−7210に規定の熱可塑性プラスチックの
流れ試験方法に準じてフエライト粉末と樹脂のコンパウ
ンドの流動性を評価するにあたり,フエライト粉末試料
を,次の条件で1次表面処理,乾燥,樹脂調合,2次表
面処理,乾燥,混練の工程を順次経たうえ,これをMF
R測定装置でメルトフローレートを測定する。
Measurement of Melt Flow Rate (MFR) In order to evaluate the fluidity of a compound of a ferrite powder and a resin in accordance with the flow test method for thermoplastics specified in JIS K-7210, a ferrite powder sample was subjected to the following conditions. Then, the primary surface treatment, drying, resin blending, secondary surface treatment, drying, and kneading are sequentially performed, and then MF is applied.
The melt flow rate is measured with an R measuring device.

【0035】 (1) フエライト粉末:2500g採取 (2) 1次表面処理:S−320 20g 水 10g メタノール 23.8g 処理装置;ハイスピードミキサー (3) 乾燥 :100℃×90分 (4) 樹脂混合 :前記の乾燥粉 2450g 12−ナイロン 157.8g(フエライト93%の場合) 混合装置;ハイスピードミキサー(実施例記載のもの) (5) 2次表面処理:該樹脂と粉末の混合粉 全量 2607.8g 処理剤:オレイン酸 9.7g メタノール 24.8g 処理装置;ハイスピードミキサー (6) 乾燥 :100℃×30分 (7) 混練 :温度 220℃ 混練装置 KCK70−22VEX(6) (8) MFR測定 :温度 270℃ 荷重 10Kg 試料挿入量 15g 測定装置 メルトインデクサー(1) Ferrite powder: 2500 g (2) Primary surface treatment: S-320 20 g Water 10 g Methanol 23.8 g Treatment device; High-speed mixer (3) Drying: 100 ° C. × 90 minutes (4) Resin mixing : Dry powder 2450 g 12-nylon 157.8 g (in the case of 93% ferrite) Mixing device: High speed mixer (as described in the examples) (5) Secondary surface treatment: Total amount of mixed powder of the resin and powder 2607. 8g Treatment agent: Oleic acid 9.7g Methanol 24.8g Treatment device; High speed mixer (6) Drying: 100 ° C x 30 minutes (7) Kneading: Temperature 220 ° C Kneading device KCK70-22VEX (6) (8) MFR measurement : Temperature 270 ° C. Load 10 Kg Sample insertion amount 15 g Measuring device Melt indexer

【0036】この測定に使用する樹脂と装置の具体例は
後記の実施例に記載した。本発明のフエライト粉はフエ
ライト93重量%で残部が樹脂のコンパウンドでも流動
性を示し,MFR値が7g/10min以上となるのに
対し,従来品はフエライト93重量%では全く流動性を
示さない。
Specific examples of the resin and the apparatus used for this measurement are described in the examples below. The ferrite powder of the present invention is 93% by weight of ferrite and shows fluidity even when the balance is resin compound, and the MFR value is 7 g / 10 min or more, whereas the conventional product does not show fluidity at 93% by weight of ferrite.

【0037】この流動特性を有した本発明のフエライト
粉は,これをフエライト93重量%以上となるように樹
脂系バインダーを用いて成形することによって(BH)
maxが2.5MGOe以上のフエライト系ボンド磁石
が得られる。この場合の成形密度は3.90g/cm3
以上である。
The ferrite powder of the present invention having this fluidity characteristic is molded by using a resin binder so that the ferrite content is 93% by weight or more (BH).
A ferrite bonded magnet having a max of 2.5 MGOe or more can be obtained. The molding density in this case is 3.90 g / cm 3.
That is all.

【0038】以下に本発明の実施例を挙げて,その効果
を具体的に示す。
The effects of the present invention will be specifically described below with reference to examples of the present invention.

【0039】[0039]

【実施例】【Example】

〔実施例1〕 (1)微粉の製造 酸化鉄と炭酸ストロンチウムをモル比で5.2になるよ
うに秤量して混合し,これを水で造粒し,乾燥後,電気
炉中1000℃で2時間焼成した。この焼成品をハンマ
ーミル(商品名サンプルミル)で粉砕し,さらに湿式粉
砕機(商品名ウエットミル)で湿式粉砕し,平均粒子径
が0.43μmのストロンチウムフエライト微粉を得
た。
[Example 1] (1) Manufacture of fine powder Iron oxide and strontium carbonate were weighed and mixed in a molar ratio of 5.2, granulated with water, dried, and then in an electric furnace at 1000 ° C. It was baked for 2 hours. This fired product was crushed with a hammer mill (trade name sample mill) and further wet crushed with a wet crusher (trade name wet mill) to obtain strontium ferrite fine powder having an average particle diameter of 0.43 μm.

【0040】(2)粗粉の製造 酸化鉄と炭酸ストロンチウムをモル比で5.7になるよ
うに秤量して混合し,これを水で造粒し,乾燥後,電気
炉中1200℃で2時間焼成した。この焼成品をサンプ
ルミルで粉砕し,さらに該ウエットミルで湿式粉砕し
て,平均粒子径が1.61μmのストロンチウムフエラ
イト粗粉を得た。
(2) Manufacture of coarse powder Iron oxide and strontium carbonate were weighed and mixed so that the molar ratio was 5.7, and this was granulated with water, dried, and then dried at 1200 ° C. in an electric furnace at 2 ° C. Burned for hours. The calcined product was pulverized with a sample mill and further wet pulverized with the wet mill to obtain strontium ferrite coarse powder having an average particle diameter of 1.61 μm.

【0041】(3)混合粉(フエライト粉末)の製造 (1)の微粉30重量%と(2)の粗粉残部(70重量%)を
秤量し,これを良く混合し,その混合粉を電気炉中95
0℃で1時間焼成(アニール)した。得られた焼成品を
20%の濃度になるように水中でリパルプ水洗した。こ
れを濾過,乾燥し,解砕して最終粉末として,次のスト
ロンチウムフエライト粉末を得た。 平均粒子径:1.27μm, 比表面積 :2.35m2/g, 粒度分布の幾何標準偏差:2.04, 圧縮密度 :3.44g/cm3 , 粉体PH :9.5
(3) Production of mixed powder (ferrite powder) 30% by weight of the fine powder of (1) and the rest (70% by weight) of the coarse powder of (2) were weighed and mixed well, and the mixed powder was electrically mixed. 95 in the furnace
It was baked (annealed) at 0 ° C. for 1 hour. The obtained fired product was washed with repulp in water to a concentration of 20%. This was filtered, dried, and crushed to obtain the following strontium ferrite powder as the final powder. Average particle size: 1.27 μm, specific surface area: 2.35 m 2 / g, geometric standard deviation of particle size distribution: 2.04, compression density: 3.44 g / cm 3 , powder PH: 9.5

【0042】(4)ボンド磁石の製造 前記の(3)で得られたフエライト粉末93部をミキサー
で攪拌しながらシラン系カップリング剤0.6部で表面
処理し,粉末状の12−ナイロン6.04部を混合し,
さらにオレイン酸0.36部を添加する。次いで, 混練
機で220℃で混練ペレット化した後,12KOeの磁
界中で射出成形し,直径15mm×高さ8mmの円柱状
異方性ボンド磁石を得た。この磁石をBHトレーサーで
測定したところ,最大エネルギー積(BH)max=
2.63MGOeの高磁力品であった。
(4) Production of Bonded Magnet 93 parts of the ferrite powder obtained in (3) above was surface-treated with 0.6 part of a silane coupling agent while stirring with a mixer, and powdered 12-nylon 6 Mix .04 parts,
Further, 0.36 part of oleic acid is added. Then, after kneading and pelletizing at 220 ° C. with a kneader, injection molding was performed in a magnetic field of 12 KOe to obtain a cylindrical anisotropic bonded magnet having a diameter of 15 mm and a height of 8 mm. When this magnet was measured with a BH tracer, the maximum energy product (BH) max =
The product had a high magnetic force of 2.63 MGOe.

【0043】(5)メルトフローレート (MFR) の測定 JIS K−7210に規定の熱可塑性プラスチックの
流れ試験方法に準じてフエライト粉末と樹脂のコンパウ
ンドの流動性を評価する。フエライト粉末試料を本文に
記載したMFRの測定順序(1) 〜(7) に従って処理し,
前記(8) のMFR値を測定する。ここで,使用した処理
装置および樹脂は次のとおりである。
(5) Measurement of melt flow rate (MFR) The fluidity of the compound of the ferrite powder and the resin is evaluated according to the flow test method for thermoplastics defined in JIS K-7210. The ferrite powder sample was processed according to the MFR measurement sequence (1) to (7) described in the text,
The MFR value in (8) above is measured. The processing equipment and resin used here are as follows.

【0044】1次表面処理,樹脂混合および2次表面処
理に使用したハイスピードミキサーとして,深江工業株
式会社製の商品名FS−GC−5JDを使用した。この
ミキサーは缶体全容量が11リットルのインペラー型高
速攪拌装置であり,いずれの処理も周速:8m/se
c,処理時間:5分である。
As the high speed mixer used for the primary surface treatment, the resin mixing and the secondary surface treatment, Fukae Industry Co., Ltd. trade name FS-GC-5JD was used. This mixer is an impeller-type high-speed agitator with a total can volume of 11 liters.
c, processing time: 5 minutes.

【0045】混練に使用した混練装置はKCK株式会社
製の連続混練押出式の型式:KCK70−22VEX
(6)を用いた。
The kneading device used for kneading is a continuous kneading extrusion type model: KCK70-22VEX manufactured by KCK Corporation.
(6) was used.

【0046】MFRの測定に用いたメルトインデクサー
は,東洋精機株式会社製の型式:C−5059D2を用
いた。この装置の構造はJIS−K7210に準ずるも
のである。
The melt indexer used for the measurement of MFR was Model C-5059D2 manufactured by Toyo Seiki Co., Ltd. The structure of this device conforms to JIS-K7210.

【0047】1次表面処理に使用したS−320は,チ
ッソ株式会社製のシラン系カップリング剤である。ま
た,樹脂混合工程で使用した樹脂は12−ナイロン樹脂
(比重1.02〜1.04)である。
S-320 used for the primary surface treatment is a silane coupling agent manufactured by Chisso Corporation. The resin used in the resin mixing step is 12-nylon resin (specific gravity 1.02 to 1.04).

【0048】この条件でメルトフローレート(MFR
値)を測定したところ,本例のMFR値は10.3g/
10minであった。
Under these conditions, the melt flow rate (MFR
Value), the MFR value of this example was 10.3 g /
It was 10 minutes.

【0049】〔実施例2〜5〕微粉の平均粒子径と混合
比率を変えた以外は,実施例1と同様にして混合フエラ
イト粉末およびボンド磁石を得た。得られたフエライト
粉末およびボンド磁石の特性を表1および表2に示し
た。また,各フエライト粉末のMFR値を表2に示し
た。表示のように,実施例2〜5のボンド磁石はいずれ
も(BH)maxが2.5MGOe以上の高磁力品であ
った。
[Examples 2 to 5] A mixed ferrite powder and a bonded magnet were obtained in the same manner as in Example 1 except that the average particle diameter of fine powder and the mixing ratio were changed. The properties of the obtained ferrite powder and the bonded magnet are shown in Tables 1 and 2. The MFR value of each ferrite powder is shown in Table 2. As shown, all the bonded magnets of Examples 2 to 5 were high magnetic force products having a (BH) max of 2.5 MGOe or more.

【0050】〔比較例1〜4〕微粉の平均粒子径と混合
比率を変えた以外は,実施例1と同様にして混合フエラ
イト粉末およびボンド磁石を得た。得られたフエライト
粉末およびボンド磁石の特性を表1および表2に,また
各フエライト粉末のMFR値を表2に示した。比較例1
は微粉の混合比率が低いもの,比較例2は微粉の混合比
率が高いもの,比較例3は微粉の平均粒子径が小さいも
の,そして比較例4は微粉の平均粒子径が大きいもので
ある。比較例3で得られたボンド磁石は(BH)max
が2.3MGOe台と低かった。また,比較例1,2お
よび4で得られたフエライト粉末のMFRは測定不可で
あり,これを射出成形したら流動性が悪いため成形機に
詰まり成形不可であった。
[Comparative Examples 1 to 4] A mixed ferrite powder and a bonded magnet were obtained in the same manner as in Example 1 except that the average particle diameter of fine powder and the mixing ratio were changed. The properties of the obtained ferrite powder and the bonded magnet are shown in Tables 1 and 2, and the MFR value of each ferrite powder is shown in Table 2. Comparative Example 1
Indicates that the mixing ratio of fine powder is low, Comparative Example 2 indicates that the mixing ratio of fine powder is high, Comparative Example 3 indicates that the average particle size of fine powder is small, and Comparative Example 4 indicates that the average particle size of fine powder is large. The bonded magnet obtained in Comparative Example 3 has (BH) max
Was as low as 2.3 MGOe. In addition, the MFR of the ferrite powders obtained in Comparative Examples 1, 2 and 4 could not be measured, and injection molding thereof resulted in poor flowability, resulting in clogging in a molding machine and molding was impossible.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】〔実施例6〜8〕粗粉の平均粒子径を変更
した以外は,実施例1と同様にして混合フエライト粉末
およびボンド磁石を得た。得られたフエライト粉末およ
びボンド磁石の特性を表3および表4に,また各フエラ
イト粉末のMFR値を表4に示した。表4に見られるよ
うに,実施例6〜8のボンド磁石はいずれも(BH)m
axが2.5MGOe以上の高磁力品であった。
[Examples 6 to 8] A mixed ferrite powder and a bonded magnet were obtained in the same manner as in Example 1 except that the average particle diameter of the coarse powder was changed. The properties of the obtained ferrite powder and the bonded magnet are shown in Tables 3 and 4, and the MFR value of each ferrite powder is shown in Table 4. As can be seen from Table 4, the bonded magnets of Examples 6 to 8 all have (BH) m.
The product had a high magnetic force of ax of 2.5 MGOe or more.

【0054】〔比較例5〜6〕粗粉の平均粒子径を変更
した以外は,実施例1と同様にして混合フエライト粉末
およびボンド磁石を得た。得られたフエライト粉末およ
びボンド磁石の特性を表3および表4に,また各フエラ
イト粉末のMFR値を表4に示した。表示のように,比
較例5は粗粉の平均粒子径が小さいものであり,得られ
たフエライト粉末は成形不可であった。また,比較例6
は粗粉の平均粒子径が大きいものであるが,得られたボ
ンド磁石の(BH)maxは2.32MGOeであっ
た。
[Comparative Examples 5-6] A mixed ferrite powder and a bonded magnet were obtained in the same manner as in Example 1 except that the average particle size of the coarse powder was changed. The properties of the obtained ferrite powder and the bonded magnet are shown in Tables 3 and 4, and the MFR value of each ferrite powder is shown in Table 4. As shown, in Comparative Example 5, the coarse powder had a small average particle diameter, and the obtained ferrite powder could not be molded. In addition, Comparative Example 6
Although the average particle diameter of the coarse powder was large, the (BH) max of the obtained bonded magnet was 2.32 MGOe.

【0055】[0055]

【表3】 [Table 3]

【0056】[0056]

【表4】 [Table 4]

【0057】〔実施例9〜10〕アニール温度を変えた
以外は,実施例1と同様にして混合フエライト粉および
ボンド磁石を得た。得られたフエライト粉末およびボン
ド磁石の特性を表5および表6に,また各フエライト粉
末のMFR値を表6に示した。表示のように,実施例9
〜10のボンド磁石は,いずれも(BH)maxが2.
5MGOe以上の高磁力品であった。
[Examples 9 to 10] A mixed ferrite powder and a bonded magnet were obtained in the same manner as in Example 1 except that the annealing temperature was changed. The characteristics of the obtained ferrite powder and the bonded magnet are shown in Tables 5 and 6, and the MFR value of each ferrite powder is shown in Table 6. As in the display, Example 9
(BH) max is 2. for all of the bonded magnets # 10 to # 10.
The product had a high magnetic force of 5 MGOe or more.

【0058】〔実施例11〕実施例1で得られたアニー
ル後のフエライト粉末について,次のように粉体PHを
調整した。すなわち,フエライト粉末が20%の濃度と
なるように水中でリパルプしたスラリーに,1%濃度の
希塩酸を滴下し,スラリーPHが6.0になるように調
整した。これを濾過,乾燥し,解砕して得られたフエラ
イト粉末およびこのフエライト粉末を用いて実施例1と
同様な方法で製造したボンド磁石の特性を表5および表
6に示した。フエライト粉末のPHは8.3であり,ボ
ンド磁石の(BH)maxは2.64MGOeの高磁力
品であった。
Example 11 With respect to the annealed ferrite powder obtained in Example 1, the powder PH was adjusted as follows. That is, 1% dilute hydrochloric acid was added dropwise to a slurry repulped in water so that the ferrite powder had a concentration of 20%, and the slurry PH was adjusted to 6.0. Table 5 and Table 6 show the properties of the ferrite powder obtained by filtering, drying, and crushing this and the bonded magnet produced by the same method as in Example 1 using this ferrite powder. The ferrite powder had a PH of 8.3, and the bond magnet had a (BH) max of 2.64 MGOe, which was a high magnetic force product.

【0059】〔比較例7〜8〕アニール温度を変えた以
外は,実施例1と同様にして混合フエライト粉およびボ
ンド磁石を得た。得られたフエライト粉末およびボンド
磁石の特性を表5および表6に,また各フエライト粉末
のMFR値を表6に示した。比較例7はアニール温度が
低いもの,比較例8はアニール温度が高いものである。
表示のように比較例7のボンド磁石の(BH)maxは
2.31MGOeであった。また比較例8で得られたフ
エライト粉末は成形不可であった。
[Comparative Examples 7 to 8] A mixed ferrite powder and a bonded magnet were obtained in the same manner as in Example 1 except that the annealing temperature was changed. The characteristics of the obtained ferrite powder and the bonded magnet are shown in Tables 5 and 6, and the MFR value of each ferrite powder is shown in Table 6. Comparative Example 7 has a low annealing temperature, and Comparative Example 8 has a high annealing temperature.
As shown, the (BH) max of the bonded magnet of Comparative Example 7 was 2.31 MGOe. Further, the ferrite powder obtained in Comparative Example 8 could not be molded.

【0060】〔比較例9〕実施例1で得られたアニール
後のフエライト粉末について,次のように粉体PHを調
整した。フエライト粉末が20%の濃度となるように水
中でリパルプしたスラリーに,1%濃度の希塩酸を滴下
し,スラリーPHが4.0になるように調整した。これ
を濾過,乾燥し,解砕して得られた最終粉末の特性を表
5に示した。この粉体のPHは5.7であった。このフ
エライト粉末を用いて,実施例1と同様にボンド磁石の
製造を試みたが,バインダーとの混練物の流動性が悪い
ために,射出成形できなかった。またMFRの測定もで
きなかった。
[Comparative Example 9] With respect to the annealed ferrite powder obtained in Example 1, the powder PH was adjusted as follows. Dilute hydrochloric acid having a concentration of 1% was added dropwise to a slurry repulped in water so that the ferrite powder had a concentration of 20%, and the slurry PH was adjusted to be 4.0. The characteristics of the final powder obtained by filtering, drying and crushing this are shown in Table 5. The pH of this powder was 5.7. Using this ferrite powder, an attempt was made to manufacture a bonded magnet in the same manner as in Example 1, but injection molding could not be performed because the kneaded material with the binder had poor fluidity. Also, the MFR could not be measured.

【0061】〔比較例10〕実施例1で得られたアニー
ル後のフエライト粉末について,粉体PHの調整をしな
いで,実施例1と同様の方法でボンド磁石を製造するこ
とを試みたが,バインダーとの混練物の流動性が悪いた
めに射出成形できなかった。またMFRの測定もできな
かった。
Comparative Example 10 With respect to the annealed ferrite powder obtained in Example 1, an attempt was made to manufacture a bonded magnet by the same method as in Example 1 without adjusting the powder PH. Injection molding could not be performed due to poor fluidity of the kneaded product with the binder. Also, the MFR could not be measured.

【0062】[0062]

【表5】 [Table 5]

【0063】[0063]

【表6】 [Table 6]

【0064】〔実施例12〕微粉と粗粉を混合してから
アニールする代わりに,微粉と粗粉を混合する前に各々
別々に950℃で1時間アニールしてから混合した以外
は,実施例1と同様にして混合フエライト粉およびボン
ド磁石を得た。得られたフエライト粉末とボンド磁石の
特性を表7および表8に,またフエライト粉末のMFR
値を表8に示した。表示のように得られたボンド磁石の
(BH)maxは2.61MGOeの高磁力品であっ
た。
[Embodiment 12] Instead of mixing the fine powder and the coarse powder and then annealing, the fine powder and the coarse powder were separately annealed at 950 ° C. for 1 hour and then mixed, respectively. A mixed ferrite powder and a bonded magnet were obtained in the same manner as in 1. The properties of the obtained ferrite powder and the bonded magnet are shown in Tables 7 and 8, and the MFR of the ferrite powder is shown.
The values are shown in Table 8. The (BH) max of the bond magnet obtained as shown in the figure was 2.61 MGOe, which was a high magnetic force product.

【0065】〔実施例13〕微粉の原料である炭酸スト
ロンチウムを炭酸バリウムに変えた以外は実施例1と同
様にして混合フエライト粉およびボンド磁石を得た(粗
粉の原料は実施例1と同じである)。得られたフエライ
ト粉末とボンド磁石の特性を表7および表8に,またフ
エライト粉末のMFR値を表8に示した。表示のよう
に,得られたボンド磁石の(BH)maxは2.59M
GOeの高磁力品であった。
[Example 13] A mixed ferrite powder and a bonded magnet were obtained in the same manner as in Example 1 except that barium carbonate was used instead of strontium carbonate as a raw material for fine powder (raw powder raw material was the same as in Example 1). Is). The properties of the obtained ferrite powder and the bonded magnet are shown in Tables 7 and 8, and the MFR value of the ferrite powder is shown in Table 8. As shown, the (BH) max of the obtained bonded magnet is 2.59M.
It was a high magnetic force product of GOe.

【0066】〔実施例14〕 (1)微粉の製造 酸化鉄と炭酸ストロンチウムをモル比で5.7になるよ
うに秤量して混合し,これを水で造粒し,乾燥後,電気
炉中1100℃で2時間焼成した。この焼成品をサンプ
ルミルで粉砕し,さらに,ウエットミルで湿式粉砕し
て,平均粒子径が0.85μmのストロンチウムフエラ
イト粉末をえた。これを気流式遠心分級機で分級して,
平均粒子径0.41μmの微粉を得た。
[Example 14] (1) Production of fine powder Iron oxide and strontium carbonate were weighed and mixed so that the molar ratio was 5.7, granulated with water, dried, and then placed in an electric furnace. It was baked at 1100 ° C. for 2 hours. The calcined product was ground with a sample mill and further wet-ground with a wet mill to obtain strontium ferrite powder having an average particle diameter of 0.85 μm. Classify this with an air flow type centrifugal classifier,
A fine powder having an average particle size of 0.41 μm was obtained.

【0067】(2)粗粉の製造 実施例1で得られた粗粉を気流式遠心分級機で分級し
て,平均粒子径2.10μmの粗粉を得た。
(2) Manufacture of coarse powder The coarse powder obtained in Example 1 was classified by a gas flow centrifugal classifier to obtain a coarse powder having an average particle size of 2.10 μm.

【0068】(3)混合粉(フエライト粉末)の製造 前記 (1)の微粉30重量%と (2)の粗粉残部(70重量
%)を秤量後,良く混合し,その混合粉を電気炉中95
0℃で1時間焼成(アニール)した。ついで,焼成品を
20%の濃度になるように水中でリパルプ水洗した。こ
れを濾過,乾燥し解砕して,最終粉末として,次のスト
ロンチウムフエライト粉末を得た。 平均粒子径:1.37μm, 比表面積:2.33m2/g, 粒度分布の幾何標準偏差:2.35, 圧縮密度:3.58g/cm3 , 粉体PH:9.7
(3) Production of mixed powder (ferrite powder) After weighing 30% by weight of the fine powder of (1) and the rest (70% by weight) of the coarse powder of (2), they were mixed well and the mixed powder was heated in an electric furnace. Medium 95
It was baked (annealed) at 0 ° C. for 1 hour. Then, the fired product was washed with repulp in water to a concentration of 20%. This was filtered, dried and crushed to obtain the following strontium ferrite powder as the final powder. Average particle size: 1.37 μm, specific surface area: 2.33 m 2 / g, geometric standard deviation of particle size distribution: 2.35, compression density: 3.58 g / cm 3 , powder PH: 9.7

【0069】(4)ボンド磁石の製造 前記 (3)のフエライト粉末を用いて実施例1と同様にし
てボンド磁石を製造した。表8に示したように,得られ
たボンド磁石の(BH)maxは2.67MGOeの高
磁力品であった。
(4) Production of Bonded Magnet A bonded magnet was produced in the same manner as in Example 1 using the ferrite powder of (3) above. As shown in Table 8, the obtained bonded magnet had a (BH) max of 2.67 MGOe and a high magnetic force.

【0070】〔実施例15〕ボンド磁石の製造時に,フ
エライト粉末93.5部,シランン系カップリング剤0.
6部,12−ナイロン5.54部,オレイン酸0.36部
に変更した以外は,実施例14と同様にボンド磁石を製
造した。表8に示したように,得られたボンド磁石の
(BH)maxは2.77MGOeの高磁力品であっ
た。
[Embodiment 15] 93.5 parts of ferrite powder and 0.1% of a silane coupling agent were used in the production of a bonded magnet.
A bonded magnet was produced in the same manner as in Example 14 except that 6 parts, 5.54 parts of 12-nylon and 0.36 parts of oleic acid were used. As shown in Table 8, the obtained bonded magnet had a (BH) max of 2.77 MGOe and a high magnetic force.

【0071】[0071]

【表7】 [Table 7]

【0072】[0072]

【表8】 [Table 8]

【0073】[0073]

【発明の効果】以上説明したように,本発明のフエライ
ト粉末は,従来のボンド磁石で達成されたことのない
(BH)maxが2.5MGOe以上のボンド磁石が得
られる特性を有する。したがって,AV,OA機器,自
動車電装部品等に使用される小型モーターや,複写機の
マグネットロール等の分野において従来のものにはない
高磁力のボンド磁石を提供することができる。
As described above, the ferrite powder of the present invention has a characteristic that a (BH) max of 2.5 MGOe or more, which has never been achieved by the conventional bonded magnet, can be obtained. Therefore, it is possible to provide a bond magnet having a high magnetic force, which is not available in the past, in the fields of small motors used in AV, OA equipment, automobile electrical components, etc., and magnet rolls of copying machines.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 天羽 隆一 岡山県和気郡佐伯町矢田1099−3 日本弁 柄工業株式会社内 (72)発明者 延岡 則明 岡山県和気郡佐伯町矢田1099−3 日本弁 柄工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryuichi Ama 1099-3 Yata, Saeki-cho, Wake-gun, Okayama Nihon Benai Kogyo Co., Ltd. (72) Noriaki Nobeoka 1099-3 Yada, Saeki-cho, Wake-gun, Okayama Within Japan Bengal Industry Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 マグネトプランバイト型フエライトの粉
末であって,平均粒子径が0.9〜1.5μm,1ton/c
2 の圧力で圧縮したときの圧縮密度が3.40g/c
3 以上およびJIS K−5101で測定した粉体P
Hが7〜10であるボンド磁石用フエライト粉末。
1. A magnetoplumbite-type ferrite powder having an average particle size of 0.9 to 1.5 μm and 1 ton / c.
Compressed density when compressed at a pressure of m 2 is 3.40 g / c
Powder P measured by m 3 or more and JIS K-5101
Ferrite powder for bonded magnets, wherein H is 7 to 10.
【請求項2】 マグネトプランバイト型フエライトの粉
末であって,平均粒子径が0.9〜1.5μm,1ton/c
2 の圧力で圧縮したときの圧縮密度が3.40g/c
3 以上,JIS K−5101で測定した粉体PHが
7〜10および本文記載のMFR測定法に従ってフエラ
イト量93重量%で測定したメルトフローレートが7g
/10min以上であるボンド磁石用フエライト粉末。
2. A magnetoplumbite type ferrite powder having an average particle size of 0.9 to 1.5 μm and 1 ton / c.
Compressed density when compressed at a pressure of m 2 is 3.40 g / c
m 3 or more, the powder PH measured by JIS K-5101 is 7 to 10 and the melt flow rate measured by a ferrite amount of 93% by weight according to the MFR measurement method described in the text is 7 g.
/ 10 min or more ferrite powder for bonded magnet.
【請求項3】 平均粒子径0.9〜1.5μmは,平均粒
子径0.30〜0.50μmのマグネトプランバイト型フ
エライトの微粉15〜40重量%と,平均粒子径1.0
0〜2.50μmのマグネトプランバイト型フエライト
の粗粉残部とを混合して得られたものである請求項1ま
たは2に記載のボンド磁石用フエライト粉末。
3. The average particle size of 0.9 to 1.5 μm is 15 to 40% by weight of fine particles of magnetoplumbite type ferrite having an average particle size of 0.30 to 0.50 μm, and the average particle size is 1.0.
The ferrite powder for bonded magnets according to claim 1 or 2, which is obtained by mixing with the remainder of the coarse powder of magnetoplumbite type ferrite having a size of 0 to 2.50 µm.
【請求項4】 粒度分布の幾何標準偏差σgが1.8〜
2.5である請求項1,2または3に記載のボンド磁石
用フエライト粉末。
4. The geometric standard deviation σg of the particle size distribution is 1.8 to
The ferrite powder for a bonded magnet according to claim 1, wherein the ferrite powder is 2.5.
【請求項5】 BET法で測定した比表面積が1.5〜
4.0m2/gである請求項1,2,3または4に記載の
ボンド磁石用フエライト粉末。
5. The specific surface area measured by the BET method is 1.5 to 5.
The ferrite powder for bonded magnets according to claim 1, 2, 3 or 4, which has an amount of 4.0 m 2 / g.
【請求項6】 平均粒子径が0.30〜0.50μmのマ
グネトプランバイト型フエライトの微粉と,平均粒子径
が1.00〜2.50μmのマグネトプランバイト型フエ
ライトの粗粉を準備する工程,前記の微粉15〜40重
量%と前記の粗粉残部とを混合する工程,およびこの混
合工程の前または後においてこれらの粉体を800〜1
100℃でアニールする工程からなる,平均粒子径が
0.9〜1.5μmで1ton/cm2 の圧力で圧縮したとき
の圧縮密度が3.40g/cm3以上を示すボンド磁石用
フエライト粉末の製造方法。
6. A step of preparing a fine powder of magnetoplumbite-type ferrite having an average particle diameter of 0.30 to 0.50 μm and a coarse powder of magnetoplumbite-type ferrite having an average particle diameter of 1.00 to 2.50 μm. , A step of mixing 15 to 40% by weight of the fine powder with the remainder of the coarse powder, and 800 to 1 of these powders before or after the mixing step.
A ferrite magnet for a bonded magnet, which has a mean particle size of 0.9 to 1.5 μm and a compression density of 3.40 g / cm 3 or more when compressed at a pressure of 1 ton / cm 2 and comprising an annealing step at 100 ° C. Production method.
【請求項7】 平均粒子径が0.30〜0.50μmのマ
グネトプランバイト型フエライトの微粉と,平均粒子径
が1.00〜2.50μmのマグネトプランバイト型フエ
ライトの粗粉を準備する工程,前記の微粉15〜40重
量%と前記の粗粉残部とを混合する工程,この混合工程
の前または後においてこれらの粉体を800〜1100
℃でアニールする工程,およびアニール工程後の粉体の
PHを7〜10に調整する工程からなる,平均粒子径が
0.9〜1.5μmで1ton/cm2の圧力で圧縮したときの
圧縮密度が3.40g/cm3 以上を示すボンド磁石用
フエライト粉末の製造方法。
7. A step of preparing a fine powder of magnetoplumbite-type ferrite having an average particle diameter of 0.30 to 0.50 μm and a coarse powder of magnetoplumbite-type ferrite having an average particle diameter of 1.00 to 2.50 μm. , A step of mixing 15 to 40% by weight of the fine powder with the remainder of the coarse powder, and 800 to 1100 of these powders before or after the mixing step.
Compressing when compressed at a pressure of 1 ton / cm 2 with an average particle size of 0.9 to 1.5 μm, which consists of a step of annealing at ℃, and a step of adjusting the PH of the powder after the annealing step to 7 to 10. A method for producing a ferrite powder for a bonded magnet, which has a density of 3.40 g / cm 3 or more.
【請求項8】 平均粒子径が0.9〜1.5μmのマグネ
トプランバイト型フエライトの粉末93重量%以上を樹
脂系バインダーを用いて成形してなる(BH)maxが
2.5MGOe以上のフエライト系ボンド磁石。
8. A ferrite having a (BH) max of 2.5 MGOe or more formed by molding 93% by weight or more of a powder of magnetoplumbite type ferrite having an average particle diameter of 0.9 to 1.5 μm using a resin binder. System bond magnet.
【請求項9】 平均粒子径が0.9〜1.5μmのマグネ
トプランバイト型フエライトの粉末93重量%以上を樹
脂系バインダーを用いて成形密度3.90g/cm3
上に成形してなる(BH)maxが2.5MGOe以上
のフエライト系ボンド磁石。
9. A 93% by weight or more powder of magnetoplumbite-type ferrite having an average particle diameter of 0.9 to 1.5 μm is molded using a resin binder to a molding density of 3.90 g / cm 3 or more ( BH) A ferrite-based bonded magnet with a max of 2.5 MGOe or more.
JP28816395A 1995-10-11 1995-10-11 Ferrite powder for bonded magnet and bonded magnet using the same Expired - Lifetime JP3257936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28816395A JP3257936B2 (en) 1995-10-11 1995-10-11 Ferrite powder for bonded magnet and bonded magnet using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28816395A JP3257936B2 (en) 1995-10-11 1995-10-11 Ferrite powder for bonded magnet and bonded magnet using the same

Publications (2)

Publication Number Publication Date
JPH09106904A true JPH09106904A (en) 1997-04-22
JP3257936B2 JP3257936B2 (en) 2002-02-18

Family

ID=17726628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28816395A Expired - Lifetime JP3257936B2 (en) 1995-10-11 1995-10-11 Ferrite powder for bonded magnet and bonded magnet using the same

Country Status (1)

Country Link
JP (1) JP3257936B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1475352A2 (en) 2003-04-24 2004-11-10 Dowa Mining Co., Ltd. Bond magnet and ferrite magnetic powder for bond magnet
JP2005268729A (en) * 2004-03-22 2005-09-29 Dowa Mining Co Ltd Ferrite magnetic powder for bond magnet
JP2007129168A (en) * 2005-11-07 2007-05-24 Kaneka Corp Resin magnet composition and method of manufacturing same
JP2008244322A (en) * 2007-03-28 2008-10-09 Tdk Corp Composite magnet, manufacturing apparatus thereof, and manufacturing method
JP2008277792A (en) * 2007-03-30 2008-11-13 Toda Kogyo Corp Ferrite particle powder for bonded magnets, resin composition for bonded magnets, and compact using them
JP2008281681A (en) * 2007-05-09 2008-11-20 Canon Chemicals Inc Magnet roller and developing device using the same
JP2008285761A (en) * 2002-11-12 2008-11-27 Dowa Electronics Materials Co Ltd Fine granular copper powder
WO2009041606A1 (en) * 2007-09-28 2009-04-02 Dowa Electronics Materials Co., Ltd. Ferrite powder for bonded magnets, process for the production of the powder, and bonded magnets made by using the same
JP2009238795A (en) * 2008-03-26 2009-10-15 Dowa Electronics Materials Co Ltd Ferrite powder for bond magnet, and method of manufacturing the same
WO2010117070A1 (en) * 2009-04-09 2010-10-14 Dowaエレクトロニクス株式会社 Ferrite powder for bonded magnet, method for producing same and bonded magnet using same
JP2014078757A (en) * 2009-04-09 2014-05-01 Dowa Electronics Materials Co Ltd Ferrite powder for bond magnet and bond magnet employing the same
WO2014163079A1 (en) * 2013-04-03 2014-10-09 戸田工業株式会社 Ferrite particle powder for bonded magnet, resin composition for bonded magnet, and molded body using same
WO2016052483A1 (en) * 2014-10-01 2016-04-07 戸田工業株式会社 Ferrite particle powder for bonded magnets, resin composition for bonded magnets, and molded article using same
CN106605276A (en) * 2014-09-30 2017-04-26 同和电子科技有限公司 Ferrite powder for bonded magnet, production method therefor, and ferrite bonded magnet
CN106688056A (en) * 2014-09-30 2017-05-17 同和电子科技有限公司 Ferrite powder for bonded magnet, production method therefor, and ferrite bonded magnet
US11823823B2 (en) 2013-10-02 2023-11-21 Toda Kogyo Corporation Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4820312B2 (en) 2006-03-31 2011-11-24 Dowaエレクトロニクス株式会社 Ferrite magnetic powder for bonded magnet, method for producing the same, and bonded magnet
KR101971382B1 (en) * 2014-09-30 2019-04-22 도와 일렉트로닉스 가부시키가이샤 Ferrite powder for bonded magnet, production method therefor, and ferrite bonded magnet

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285761A (en) * 2002-11-12 2008-11-27 Dowa Electronics Materials Co Ltd Fine granular copper powder
US7255807B2 (en) 2003-04-24 2007-08-14 Dowa Mining Co., Ltd. Bond magnet and ferrite magnetic powder for bond magnet
US7384571B2 (en) 2003-04-24 2008-06-10 Dowa Electronics Materials Co., Ltd. Ferrite magnet powder bond magnet
EP1475352A2 (en) 2003-04-24 2004-11-10 Dowa Mining Co., Ltd. Bond magnet and ferrite magnetic powder for bond magnet
JP2005268729A (en) * 2004-03-22 2005-09-29 Dowa Mining Co Ltd Ferrite magnetic powder for bond magnet
JP2007129168A (en) * 2005-11-07 2007-05-24 Kaneka Corp Resin magnet composition and method of manufacturing same
JP2008244322A (en) * 2007-03-28 2008-10-09 Tdk Corp Composite magnet, manufacturing apparatus thereof, and manufacturing method
JP2008277792A (en) * 2007-03-30 2008-11-13 Toda Kogyo Corp Ferrite particle powder for bonded magnets, resin composition for bonded magnets, and compact using them
JP2008281681A (en) * 2007-05-09 2008-11-20 Canon Chemicals Inc Magnet roller and developing device using the same
JP4538020B2 (en) * 2007-05-09 2010-09-08 キヤノン化成株式会社 Magnet roller and developing device using the magnet roller
WO2009041606A1 (en) * 2007-09-28 2009-04-02 Dowa Electronics Materials Co., Ltd. Ferrite powder for bonded magnets, process for the production of the powder, and bonded magnets made by using the same
JP2009099969A (en) * 2007-09-28 2009-05-07 Dowa Electronics Materials Co Ltd Ferrite powder for bond magnet and method for manufacturing the magnet, and bond magnet using the method
US8337714B2 (en) 2007-09-28 2012-12-25 Dowa Electronics Materials Co., Ltd. Ferrite powders for bonded magnet, process for the production of the powders, and bonded magnet made by using the same
JP2009238795A (en) * 2008-03-26 2009-10-15 Dowa Electronics Materials Co Ltd Ferrite powder for bond magnet, and method of manufacturing the same
CN102388423A (en) * 2009-04-09 2012-03-21 同和电子科技有限公司 Ferrite powder for bonded magnet, method for producing same and bonded magnet using same
US8951635B2 (en) 2009-04-09 2015-02-10 Dowa Electronics Materials Co., Ltd. Ferrite powder for bonded magnet, method for manufacturing ferrite powder, and bonded magnet using ferrite powder
JP2010263201A (en) * 2009-04-09 2010-11-18 Dowa Electronics Materials Co Ltd Ferrite powder for bonded magnet, method of manufacturing the same, and bonded magnet using the same
WO2010117070A1 (en) * 2009-04-09 2010-10-14 Dowaエレクトロニクス株式会社 Ferrite powder for bonded magnet, method for producing same and bonded magnet using same
JP2014078757A (en) * 2009-04-09 2014-05-01 Dowa Electronics Materials Co Ltd Ferrite powder for bond magnet and bond magnet employing the same
KR20120006500A (en) * 2009-04-09 2012-01-18 도와 일렉트로닉스 가부시키가이샤 Ferrite powder for bonded magnet, method for producing same and bonded magnet using same
JPWO2014163079A1 (en) * 2013-04-03 2017-02-16 戸田工業株式会社 Ferrite particle powder for bonded magnet, resin composition for bonded magnet, and molded body using them
CN105122389A (en) * 2013-04-03 2015-12-02 户田工业株式会社 Ferrite particle powder for bonded magnet, resin composition for bonded magnet, and molded body using same
WO2014163079A1 (en) * 2013-04-03 2014-10-09 戸田工業株式会社 Ferrite particle powder for bonded magnet, resin composition for bonded magnet, and molded body using same
US11820055B2 (en) 2013-04-03 2023-11-21 Toda Kogyo Corp. Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same
US11823823B2 (en) 2013-10-02 2023-11-21 Toda Kogyo Corporation Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same
CN106605276A (en) * 2014-09-30 2017-04-26 同和电子科技有限公司 Ferrite powder for bonded magnet, production method therefor, and ferrite bonded magnet
CN106688056A (en) * 2014-09-30 2017-05-17 同和电子科技有限公司 Ferrite powder for bonded magnet, production method therefor, and ferrite bonded magnet
CN106605276B (en) * 2014-09-30 2019-05-03 同和电子科技有限公司 Bonded permanent magnet ferrite powder and its manufacturing method and ferrite system bonded permanent magnet
CN106688056B (en) * 2014-09-30 2019-05-10 同和电子科技有限公司 Bonded permanent magnet ferrite powder and its manufacturing method and ferrite system bonded permanent magnet
WO2016052483A1 (en) * 2014-10-01 2016-04-07 戸田工業株式会社 Ferrite particle powder for bonded magnets, resin composition for bonded magnets, and molded article using same
CN106795006A (en) * 2014-10-01 2017-05-31 户田工业株式会社 Bonded permanent magnet ferrite powder, bonded permanent magnet resin combination and use their formed body
JPWO2016052483A1 (en) * 2014-10-01 2017-07-13 戸田工業株式会社 Ferrite particle powder for bonded magnet, resin composition for bonded magnet, and molded body using them
US10497498B2 (en) 2014-10-01 2019-12-03 Toda Kogyo Corp. Ferrite particles for bonded magnets, resin composition for bonded magnets, and molded product using the same

Also Published As

Publication number Publication date
JP3257936B2 (en) 2002-02-18

Similar Documents

Publication Publication Date Title
JP3257936B2 (en) Ferrite powder for bonded magnet and bonded magnet using the same
CN102945718B (en) Ferrite sintered magnet
JP4540076B2 (en) Bond magnet, compound, magnet roll, ferrite powder used therefor, and method for producing the same
TW201336207A (en) A method for fabricating a ferrite sintered magnet
JP2004327669A (en) Bonded magnet, and ferrite magnetic powder therefor
JP5974975B2 (en) Rare earth-transition metal-nitrogen based magnet fine powder and method for producing the same
KR20120135294A (en) Sintered magnet and method for manufacturing sintered magnet
KR102117580B1 (en) Ferrite powder for bonded magnet, production method therefor, and ferrite bonded magnet
JP4674370B2 (en) Ferrite magnetic powder for bonded magnets
CN106605276B (en) Bonded permanent magnet ferrite powder and its manufacturing method and ferrite system bonded permanent magnet
JP7082033B2 (en) Ferrite powder for bonded magnets and its manufacturing method
CN107077937B (en) Bonded permanent magnet ferrite powder and its manufacturing method and ferrite system bonded permanent magnet
JP4063005B2 (en) Rare earth-transition metal-nitrogen based magnet powder and method for producing the same
JP5005595B2 (en) Ferrite powder for bonded magnet and method for producing the same
JPS61166905A (en) Production of raw material powder for permanent magnet
WO2016052681A1 (en) Ferrite powder for bonded magnet, production method therefor, and ferrite bonded magnet
JP4400710B2 (en) Ferrite magnet manufacturing method
JPH04119605A (en) Manufacture of sintered permanent magnet, sintered permanent magnet power and bonded magnet made of the power
WO2016052677A1 (en) Ferrite powder for bonded magnet, production method therefor, and ferrite bonded magnet
JPH0438807A (en) Manufacture of strontium-ferrite magnet high in residual magnetic flux density and coercive force
RU1554656C (en) Process of production of ferrite powder for composite magnetically hard material
JPS61166901A (en) Production of raw material powder for permanent magnet
CN117383923A (en) Calcium barium strontium permanent magnetic ferrite and preparation method thereof
JP2002164204A (en) Anisotropic bonded magnet, rotating machine, and magnet roll
WO2016052678A1 (en) Ferrite powder for bonded magnet, production method therefor, and ferrite bonded magnet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011127

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term