JPH0438807A - Manufacture of strontium-ferrite magnet high in residual magnetic flux density and coercive force - Google Patents

Manufacture of strontium-ferrite magnet high in residual magnetic flux density and coercive force

Info

Publication number
JPH0438807A
JPH0438807A JP2145344A JP14534490A JPH0438807A JP H0438807 A JPH0438807 A JP H0438807A JP 2145344 A JP2145344 A JP 2145344A JP 14534490 A JP14534490 A JP 14534490A JP H0438807 A JPH0438807 A JP H0438807A
Authority
JP
Japan
Prior art keywords
powder
ratio
sio2
mixture
calcined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2145344A
Other languages
Japanese (ja)
Inventor
Hiroto Nakamura
中村 広登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2145344A priority Critical patent/JPH0438807A/en
Publication of JPH0438807A publication Critical patent/JPH0438807A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

PURPOSE:To obtain a strontium-ferrite magnet which is high in Br and iHc suitable for car-motor magnets by mixing A powder prepared by mixing strontium carbonate, Fe2O3, and SiO2 at a specific composition ratio, calcining the mixture at a specific temperature, and pulverizing it, and B powder prepared by calcining and pulverizing the raw material of the same composition except SiO2, and sintering the mixture of A powder and B powder formed in a magnetic field after SiO2 and CaO are added to it by specific wt.%. CONSTITUTION:Fine powder (A powder) is obtained by mixing 1 mole of strontium carbonate, 5.3-5.9 moles of Fe2O3, and (x) moles of SiO2, with the mole number of Fe2O3 being 6 times as large as that of (1-x), calcining the mixture at 1,000-1,250 deg.C and then pulverizing the calcined mixture. Then another fine powder (B powder) is obtained by calcining the of the same composition except the SiO2 at 1,200-1,300 deg.C and pulverizing the calcined mixture. Then A powder and B powder are mixed in the ratio of 50-75 pts.wt. of A powder to 100 pts.wt. of B powder, SiO2 and CaO and added to the mixture of A powder and B powder so that the final SiO2 and CaO contents may respectively be 0.40-0.70wt.% and 0.35-0.49wt.% and the CaO/SiO2 ratio may be 0.5-1.25, and the mixture is formed in a magnetic field. The formed body is then sintered.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はストロンチウムフェライト磁石の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to a method for manufacturing a strontium ferrite magnet.

〈従来の技術〉 従来モータ等の回転機器の励磁は巻線型の[1石で行っ
ていたが省エネルギーの立場から永久磁石を使用するこ
とが多くなってきた0回転機器の励磁用永久磁石として
は電機子に流れる過大な電流によって大きな反磁界が磁
石に作用するので保磁力(iHc)の高い材料が望まれ
、ストロンチウムフェライト磁石がよく用いられている
<Conventional technology> Conventionally, excitation of rotating equipment such as motors was performed using a single wire-wound magnet, but permanent magnets are increasingly being used from the standpoint of energy conservation. Since a large demagnetizing field acts on the magnet due to the excessive current flowing through the armature, a material with a high coercive force (iHc) is desired, and strontium ferrite magnets are often used.

しかしながらこの種のストロンチウムフェライト磁石の
磁気特性は残W[東密度(Br)が4000 G以上の
場合は保磁力(iHc)が40000e未満であり、逆
に1llcが4000 Oe以上の場合は[lrが40
000未満のものが多(、Brおよび1llc共に40
00を趙えるものを得ることは掻めで困難であった。
However, the magnetic properties of this type of strontium ferrite magnet are such that the coercive force (iHc) is less than 40,000e when the residual W density (Br) is 4000 G or more, and conversely, when the 1llc is 4000 Oe or more, the [lr] 40
Many are less than 000 (both Br and 1llc are 40
It was extremely difficult to find anything that could beat 00.

保磁力を改善するには単磁区結晶粒子の存在率を高くす
ればよく、そのため本焼成の前段階である仮焼組織で結
晶粒度のバラツキを小さく、かつ微細粒子を構成してお
くことが重要と考えられる。
To improve the coercive force, it is sufficient to increase the abundance of single-domain crystal grains, so it is important to minimize the variation in crystal grain size and form fine grains in the calcined structure, which is the stage before the main firing. it is conceivable that.

ところが従来、仮焼温度は1300℃程度としてできる
だけ結晶粒を粗大化し、単結晶に近いものを得るように
心がけられていたので、仮焼温度が高(、仮焼体の結晶
粒度のバラツキは異常に大きいものとなっていた。
However, in the past, the calcination temperature was set at around 1300°C to make the crystal grains as coarse as possible and to obtain something close to a single crystal. It had become a big thing.

一方ストロンチウムフェライト磁石を製造する場合にS
rOとFeオ0.のモル数の比nを、幾分SrO過剰に
する(n<6)方がよいことが経験的に知られており、
特開昭49−72695号公報にも開示されている。
On the other hand, when manufacturing strontium ferrite magnets, S
rO and FeO0. It is empirically known that it is better to make the ratio n of the number of moles of SrO somewhat excessive (n<6),
It is also disclosed in Japanese Unexamined Patent Publication No. 49-72695.

しかし過剰SrOは結晶粒の成長を促進させるため、単
磁区結晶粒子の存在率を高めることができず、磁気特性
は満足いくものではなかった。
However, excess SrO promotes the growth of crystal grains, making it impossible to increase the abundance of single-domain crystal grains, resulting in unsatisfactory magnetic properties.

また、ストロンチウムフェライト磁石は焼成温度を高め
るにつれて焼成密度の向上と結晶粒の成長により残留磁
束密度は向上するが保磁力は著しく低下する。そこで粒
成長抑制添加物を多く含有させれば保磁力は4000 
Oe以上に高めることはできるが、この場合には非磁性
組成の増加、結晶配向度の低下等により、残留磁束密度
が低下する。
In addition, as the firing temperature of strontium ferrite magnets increases, the residual magnetic flux density improves due to the improvement in the firing density and the growth of crystal grains, but the coercive force significantly decreases. Therefore, if a large amount of grain growth inhibiting additives is included, the coercive force will increase to 4000.
Although it is possible to increase the magnetic flux density to more than Oe, in this case, the residual magnetic flux density decreases due to an increase in the non-magnetic composition, a decrease in the degree of crystal orientation, etc.

また、ストロンチウムフェライト磁石の焼結体の磁気特
性は仮焼組織に概ね依存する。従って仮焼組織で結晶粒
度のバラツキが小さく、かつ微細粒子を構成することに
よって焼成後の結晶組織を微細化し単磁区粒子の存在率
を高め、保磁力を改善できる。一方、仮焼m繊で六角板
状の粗大結晶組織を発達させることによって、磁場成形
時の結晶配向性を高め、焼成後の残li!7磁束密度を
改善できる。しかしながら保磁力の改善と磁束密度の改
善の両者を同時に満足させることは従来技術では困難で
あった。
Further, the magnetic properties of a sintered body of a strontium ferrite magnet generally depend on the calcined structure. Therefore, by forming the calcined structure with small variations in crystal grain size and fine grains, the crystal structure after sintering can be made finer, the abundance of single-domain grains can be increased, and the coercive force can be improved. On the other hand, by developing a hexagonal plate-like coarse crystal structure in the calcined m-fiber, the crystal orientation during magnetic field forming is improved, and the remaining li after firing is improved. 7. Magnetic flux density can be improved. However, it has been difficult with conventional techniques to simultaneously satisfy both the improvement of coercive force and the improvement of magnetic flux density.

〈発明が解決しようとする!1131>また、本発明者
らは先に特願平1−315348号にて原料の酸化鉄と
炭酸ストロンチウムの組成比および仮焼前の5iOz添
加量の規制、および仮焼温度、焼成温度の規制等により
Br≧4000(G)、111c≧4000 (Oe)
の磁電特性が得られることを示したが、本発明の目的は
更に優れた磁気特性、即ちBr≧4100(C;)、I
Hc≧4000 (Oe)を有するストロンチウムフェ
ライト磁石の製造方法を提供することである。
<Invention tries to solve! 1131> In addition, the present inventors previously disclosed in Japanese Patent Application No. 1-315348 the composition ratio of iron oxide and strontium carbonate as raw materials, the amount of 5iOz added before calcination, and the regulation of calcination temperature and firing temperature. etc., Br≧4000 (G), 111c≧4000 (Oe)
However, the object of the present invention is to obtain even better magnetic properties, namely, Br≧4100(C;), I
An object of the present invention is to provide a method for manufacturing a strontium ferrite magnet having Hc≧4000 (Oe).

<31題を解決するための手段〉 即ち、本発明は、酸化鉄と炭酸ストロンチウムを混合し
、造粒・仮焼した後、該仮焼物を粉砕し、しかる後磁場
中成形して得られる成形体を焼成してストロンチウムフ
ェライト磁石を製造する方法において、炭酸ストロンチ
ウム1モルに対しFezesを5.3〜5.9モルおよ
び510.をXモ)I/、ただし、Pe、O,のモル数
と(1−x)モルの比が6となる組成比で混合し、10
00〜1250’Cの温度で仮焼した後、咳仮焼物を粉
砕して得る微粉末(以下A粉末と呼ぶ)と、5iOtを
含まない上記組成比の原料を1200〜1300℃の温
度で仮焼した後、該仮焼物をむ)砕して得る微粉末(以
下B粉末と叶ぶ)をB粉末に対するA粉末の混合比率(
重量比)が50〜75%の範囲で混合し、次いで該混合
粉に更に重量比で最終的にSingが0.40〜0.7
0%、CaOが0.35〜0.49%かつCab/5i
ft比が0.5〜1.25となるように添加した後、磁
場中成形し、しかる後焼成することを特徴とする残留磁
束密度および保磁力の高いストロンチウムフェライト磁
石の製造方法である。
<Means for Solving Problem 31> That is, the present invention provides a molded product obtained by mixing iron oxide and strontium carbonate, granulating and calcining, pulverizing the calcined product, and then molding in a magnetic field. In a method for manufacturing a strontium ferrite magnet by firing a body, 5.3 to 5.9 mol of Fezes and 510. Xmo)I/, where the ratio of the number of moles of Pe, O, and (1-x) mole is 6, and 10
After calcining at a temperature of 00 to 1250'C, a fine powder obtained by crushing the cough calcined material (hereinafter referred to as powder A) and a raw material with the above composition ratio that does not contain 5iOt are calcined at a temperature of 1200 to 1300'C. After firing, the calcined material is crushed to produce a fine powder (hereinafter referred to as B powder), which is mixed at a mixing ratio of A powder to B powder (
Then, the mixed powder is further mixed with a final weight ratio of 0.40 to 0.7.
0%, CaO 0.35-0.49% and Cab/5i
This is a method for producing a strontium ferrite magnet with high residual magnetic flux density and coercive force, which is characterized by adding strontium ferrite magnets such that the ft ratio becomes 0.5 to 1.25, forming the magnets in a magnetic field, and then firing them.

く作 用〉 本発明では、上記の微粉砕したA粉末とB粉末とを混合
することによって、成形前の粒度分布を平均粒径が比較
的小さい(d−0,2〜0.4n)部分と大きな部分(
d−0,9〜1.1m)の“2山タイプの粒度分布を構
成する。このような粒度構成は成形時の金型内へのスラ
リーの最密充填が可能となり、その結果、成形密度の高
い成形体が得られる。加えて磁場成形で粗大粒子の磁化
容5軸への配向性が改善される。これら成形体は以後の
焼成工程の結晶粒成長の段階で微粒子は周囲の粒子に蚕
食され、比較的均一な結晶&11織が得られ焼結密度の
向上と結晶配向度も高くなる。
Effect> In the present invention, by mixing the above-mentioned finely pulverized powder A and powder B, the particle size distribution before molding is divided into a portion where the average particle size is relatively small (d-0.2 to 0.4n). and a large portion (
d-0.9~1.1m) constitutes a two-peak type particle size distribution.Such a particle size structure enables the closest packing of the slurry into the mold during molding, and as a result, the molding density In addition, the magnetic field forming improves the orientation of the coarse particles to the five axes of magnetization.These compacts are produced by forming fine particles into the surrounding particles during the crystal grain growth stage of the subsequent firing process. It is eroded by silkworms, and a relatively uniform crystalline &11 weave is obtained, resulting in improved sintered density and a high degree of crystal orientation.

従って、当然A粉末のみを原料とした場合には[1rが
低く、一方B粉末のみを原料とした場合には1f−1c
が低い材料しか得られないが、本発明のようにAおよび
B粉末を混合することによって高8r、高iHcの材料
を得ることができる。
Therefore, naturally, when only powder A is used as a raw material, [1r is low, while when only powder B is used as a raw material, 1f-1c
However, by mixing A and B powders as in the present invention, a material with high 8r and high iHc can be obtained.

次に本発明の限定理由を個々に述べる。n値が5.3未
満ではSrOが過剰になりすぎるためA粉末としてはS
i島の仮焼前添加量が多くなり、仮焼組織が微細になり
すぎる。一方、Singを添加しないB粉末としては、
n値が5.3未満ではフェライト化反応が促進され仮焼
後の結晶粒が粗大化し、粒度のバラツキも大きくなりA
粉末との混合において幅広い粒度分布となり目標とする
磁気特性が得られないので好ましくない、n値が5.9
を超えるとA粉末においては、5iO1の仮焼前添加量
が少なくなるため仮焼組織が比較的大きくなりB粉末と
の混合において所期の粒度分布(2山タイプ)を達成し
得ないので好ましくない、BFA末としてはn(lが5
9を趙えるとA粉末と粒度分布がほとんど変わらないた
め、所期の粒度分布を構成し得ないので好ましくない、
従って本発明におけるΔ粉末およびB粉末としては、炭
酸ストロンチウム1モルに対してFezOxを5.3〜
5.9モルの組成比にし、かつA粉末としては5i0.
をXモル、ただしFe1O=のモル数と(1−x)モル
の比が6となる組成比に限定した。
Next, the reasons for the limitations of the present invention will be described individually. If the n value is less than 5.3, SrO is too excessive, so SrO is used as powder A.
The amount of i-island added before calcination increases, and the calcination structure becomes too fine. On the other hand, as powder B without adding Sing,
If the n value is less than 5.3, the ferritization reaction will be accelerated, the crystal grains will become coarse after calcination, and the variation in grain size will become large.A
When mixed with powder, the particle size distribution becomes wide and the target magnetic properties cannot be obtained, which is undesirable, and the n value is 5.9.
If it exceeds 5iO1, the amount of 5iO1 added before calcination in powder A becomes smaller, so the calcination structure becomes relatively large, making it impossible to achieve the desired particle size distribution (two-peak type) when mixed with powder B, which is preferable. No, the BFA powder is n (l is 5
9, the particle size distribution is almost the same as that of powder A, so it is not possible to form the desired particle size distribution, which is not preferable.
Therefore, the Δ powder and B powder in the present invention contain 5.3 to 5.3 to 1 mole of FezOx per mole of strontium carbonate.
The composition ratio is 5.9 mol, and the A powder is 5i0.
was limited to X moles, however, the composition ratio was such that the ratio of the number of moles of Fe1O= to (1-x) moles was 6.

仮焼温度に関しては、A粉末においては1000’C未
満ではストロンチウムフェライトの反応が十分でな(,
1250℃を超えると仮焼組織が比較的大きく粒度のバ
ラツキも大きくなり、5iJO前添加効果が小さくなる
ためA粉末の仮焼塩度は1000〜1250℃とした。
Regarding the calcination temperature, the reaction of strontium ferrite is not sufficient at less than 1000'C for A powder (,
If the temperature exceeds 1250°C, the calcined structure becomes relatively large and the variation in particle size becomes large, and the effect of adding 5iJO beforehand becomes small, so the calcined salinity of powder A was set at 1000 to 1250°C.

一方B粉末において1200”C未満では所期の粒度分
布(2山タイプ)を達成し得ないので好ましくない、 
1300℃を趙えると仮焼後の結晶粒の粗大化が起こり
、AおよびB粉末の混合により好ましい粒度分布が得ら
れない、従ってB粉末の仮焼塩度は1200〜1300
℃とした。
On the other hand, if the B powder is less than 1200"C, it is not preferable because the desired particle size distribution (two-peak type) cannot be achieved.
If the temperature is heated to 1300°C, the crystal grains will become coarse after calcination, and a preferable particle size distribution cannot be obtained by mixing A and B powders. Therefore, the calcination salinity of B powder is 1200 to 1300.
℃.

次に添加物に関して述べる。Next, let's talk about additives.

従来からSin、の添加効果としては結晶粒の粗大化を
抑制し、保磁力の高い磁石が得られることが知られてい
るが、本発明によると最終的添加量が0.40%未満で
は保磁力が低くなり、0.70%を趙えると残留磁束密
度が低くなり好ましくないので、0、40〜0.70%
とした。
It has been known that the effect of adding Sin is to suppress coarsening of crystal grains and obtain a magnet with high coercive force, but according to the present invention, if the final amount added is less than 0.40%, the coercive force The magnetic force becomes low, and if it exceeds 0.70%, the residual magnetic flux density will become low, which is not preferable, so 0.40 to 0.70%.
And so.

一方CaOはフェライト化反応を促進し、結晶粒の粗大
化および高密度化する作用のあることが知られているが
、本発明においては0.35%未満では保磁力は高くな
るが残留磁束密度は低い、一方、0.49%を趙えると
焼結性が促進され、結晶粒の粗大化が起こり保磁力が低
下するので好ましくない。
On the other hand, it is known that CaO promotes the ferrite reaction and has the effect of coarsening and increasing the density of crystal grains, but in the present invention, if it is less than 0.35%, the coercive force increases, but the residual magnetic flux density On the other hand, if it exceeds 0.49%, sinterability is promoted, crystal grains become coarser, and the coercive force decreases, which is not preferable.

従ってCaOは0.35〜0.49%とした。Therefore, CaO was set at 0.35 to 0.49%.

次にCab/5ift比は0.5未満では保磁力は高く
なるが残Vljm束密度が低くなり好ましくない。
Next, if the Cab/5ift ratio is less than 0.5, the coercive force becomes high, but the residual Vljm flux density becomes low, which is not preferable.

方、1.25を趙えると結晶粒の粗大化が起こり、保磁
力が著しく低下するので好ましくない、従ってCab/
 5ift比は0.5〜1.25とした。
On the other hand, if the value exceeds 1.25, the crystal grains will become coarser and the coercive force will drop significantly, which is undesirable.
The 5ift ratio was set to 0.5 to 1.25.

次に上記したB粉末と混合するA粉末の混合比率は重量
比で50%未満では保磁力(iHc)が4000 (O
e)未満となり75%を超えると残留磁束密度(Br)
が4100(G)未満となる。従ってB粉末と混合する
A粉末の比率を重量で50〜75%の範囲に限定した。
Next, if the mixing ratio of powder A and powder B is less than 50% by weight, the coercive force (iHc) will be 4000 (O
If it becomes less than e) and exceeds 75%, the residual magnetic flux density (Br)
becomes less than 4100 (G). Therefore, the ratio of powder A to be mixed with powder B was limited to a range of 50 to 75% by weight.

なお仮焼物の粉砕は粗粉砕、微粉砕と行われるが粗粉砕
はアトマイザ−などで1〜3n程虞に粉砕し、微粉砕で
はアトライター、振動ボールミルなどでd=0.7〜0
.91程度に粉砕することが望ましい。
The pulverization of the calcined product is carried out as coarse pulverization and fine pulverization. Coarse pulverization is performed by using an atomizer, etc., to about 1 to 3 nm, and fine pulverization is performed by using an attritor, vibrating ball mill, etc. to d = 0.7 to 0.
.. It is desirable to crush the powder to about 91%.

また磁場中成形は磁場が強い程良く、5kOe以上が好
適であり、成形圧力は500〜1500kg、/c4程
度が好適である。
In addition, the stronger the magnetic field is, the better the molding in a magnetic field is, preferably 5 kOe or more, and the molding pressure is preferably about 500 to 1500 kg, /c4.

焼成温度に関しては]240〜+260’cが好適であ
る。
Regarding the firing temperature, 240 to +260'C is suitable.

以下、実施例によって本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

〈実施例〉 実施例1 炭酸ストロンチウム1モルに対してPe2O3を565
モルの割合で秤量した暮木紹成の原t1にSiO2を0
.058モルの割合で添加後、ヘノノニルミキサーで混
合した。混合粉をペレント状にして1050℃の温度で
仮焼した。また、Singを含まない上記基本組成比の
原事]の混合粉をペレット状にして1220゛Cの温度
で仮焼した。これら仮焼ベレットをそれぞれアトマイザ
−を用いて粗、中粉砕した(この時前者をA粉末、後者
をB粉末と呼ぶことにするン、中粉砕したBFA末中に
混合するA粉末を重量比で0%(B粉末のみ)、25%
、33%、50%、67%、75%および100%(A
粉末のみ)の割合で混合し、次いでアトライターにて第
1表に示す添加物を添加し40%スラリー状で混合、微
粉砕を施した。微粉砕後の平均(d)を0.8nとした
後、スラリーを遠心分H機にかけ(40%→60%スラ
リー)7kOeの磁界中でIt/cdの圧力下で成形し
た。
<Example> Example 1 565% of Pe2O3 per mole of strontium carbonate
0 SiO2 was added to Kuraki Shonari's original t1 weighed in molar proportions.
.. After addition, the mixture was mixed using a henononyl mixer. The mixed powder was made into a pellet and calcined at a temperature of 1050°C. Further, the mixed powder of the above basic composition ratio containing no Sing was made into pellets and calcined at a temperature of 1220°C. These calcined pellets were coarsely and medium-pulverized using an atomizer (at this time, the former will be referred to as A powder and the latter as B powder). 0% (B powder only), 25%
, 33%, 50%, 67%, 75% and 100% (A
Then, the additives shown in Table 1 were added using an attritor, mixed in the form of a 40% slurry, and pulverized. After the average (d) after pulverization was set to 0.8 n, the slurry was subjected to a centrifugal H machine (40% → 60% slurry) and molded under a pressure of It/cd in a magnetic field of 7 kOe.

成形体は自然乾燥した後、1252℃11260’Cの
温度で1時間の焼成を施した。得られた焼結体の磁気特
性を第1表に示した。
After the molded body was air-dried, it was fired at a temperature of 1252°C (11260'C) for 1 hour. The magnetic properties of the obtained sintered body are shown in Table 1.

第1表からB粉末に混合するA粉末の割合と磁気特性(
Br、 1llc)の関係を求め第1図に示した。
From Table 1, the ratio of A powder mixed with B powder and the magnetic properties (
Br, 1llc) was determined and shown in Figure 1.

B「はAFIJ末の混合比率が増すにつれて僅かに減少
し、75%を超えると著しく減少する。一方t)lcは
A粉末の混合比率が25%を超えると著しく増加し、5
0%以上になると緩やかに増加する。第1図から明らか
なようにB粉末と混合するA粉末の比率を重曹比で50
〜75%の時B「≧4100(G)、 111C≧40
00 (Oe)を同時に満足する。
B' decreases slightly as the mixing ratio of AFIJ powder increases, and decreases significantly when the mixing ratio of AFIJ powder exceeds 75%.On the other hand, t)lc increases significantly when the mixing ratio of A powder exceeds 25%, and 5
When it reaches 0% or more, it increases gradually. As is clear from Figure 1, the ratio of powder A to be mixed with powder B is 50 in terms of baking soda ratio.
When ~75% B "≧4100 (G), 111C≧40
00 (Oe).

実施例2 実施例1で用いたA粉末とB粉末を重量比でそれぞれ5
0%ずつ混合し、次いでアトライターにて第2表に示す
添加物を添加し、微粉砕後は実施例1と同様に処理して
焼成後の磁気特性を調べた。
Example 2 The weight ratio of powder A and powder B used in Example 1 was 5 each.
Then, the additives shown in Table 2 were added using an attritor, and after pulverization, the mixture was treated in the same manner as in Example 1, and the magnetic properties after firing were examined.

その結果を第2表に示す。The results are shown in Table 2.

第2表から明らかなようにB粉末中に混合するA粉末の
割合が本発明の範囲においてもCab/5ift比が0
.5未満、或いは1.25を超えると目標特性は得られ
ない。
As is clear from Table 2, even when the proportion of A powder mixed in B powder is within the range of the present invention, the Cab/5ift ratio is 0.
.. If it is less than 5 or more than 1.25, the target characteristics cannot be obtained.

実施例3 炭酸ストロンチウム1モルに対しFernsを5.20
.5.30.5.40.5.50.5.65.5.80
.5.90および595モルの割合で秤量した基本組成
の原料に5iOzをXモル、ただしFezesのモル数
と(1−χ)モルの比が6となるようにSin、を添加
した。即ちn値の小さい順に5iftを0.133モル
、O,] 117モル0.100モル、0.083モル
、0.058モル、0.033モル、0.017モルお
よび0.008モル添加し、ヘンシェルミキサで混合し
た。
Example 3 5.20 Ferns per mole of strontium carbonate
.. 5.30.5.40.5.50.5.65.5.80
.. X moles of 5iOz were added to raw materials having a basic composition weighed at a ratio of 5.90 and 595 moles, but Sin was added so that the ratio of the number of moles of Fezes to (1-χ) moles was 6. That is, 0.133 mol of 5ift, 0.100 mol, 0.083 mol, 0.058 mol, 0.033 mol, 0.017 mol and 0.008 mol of 5ift were added in descending order of n value, Mixed in a Henschel mixer.

これらのr昆合粉をペレット状にして1050℃の温度
で仮焼した。この時SiJを添加しない基本組成の原#
−1混合む)をペレット状にして1220’Cの温度で
仮焼した。これらの仮焼ベレットをそれぞれアトライタ
ーを用いて粗、中粉砕した。この時5iO1添加材をA
粉末、5iOHを添加しない材料をBtjl末と呼ぶこ
とにする。
These r-kongo flours were made into pellets and calcined at a temperature of 1050°C. At this time, the basic composition without adding SiJ #
-1 mixture) was made into pellets and calcined at a temperature of 1220'C. These calcined pellets were respectively coarsely and medium-pulverized using an attritor. At this time, add 5iO1 additive to A
The powder and the material to which 5iOH is not added will be referred to as Btjl powder.

中粉砕した同し組成のB粉末中にA粉末を重量比でそれ
ぞれ50%の割合で混合し、次いでアトライターで第3
表に示す添加物を添加し、@粉砕後は実施例1と同様に
処理して焼成後の磁気特性を洲べた。その結果を第3表
に示す。
Powder A was mixed in a medium-pulverized powder B with the same composition at a weight ratio of 50%, and then mixed with a third powder using an attritor.
The additives shown in the table were added, and after pulverization, the material was treated in the same manner as in Example 1 to examine the magnetic properties after firing. The results are shown in Table 3.

第3表に示したようにn値が5.30未満でも、或いは
n値が5.9を趙えてもBr≧4100 ・(G )、
1)Ic≧4000 (Oe)を同時に満足する条件は
得られない。
As shown in Table 3, even if the n value is less than 5.30 or even if the n value exceeds 5.9, Br≧4100 (G),
1) A condition that simultaneously satisfies Ic≧4000 (Oe) cannot be obtained.

実施例4 炭酸ストロンチウム1モルに対してFe、01を5.7
0モルの割合で秤量した基本組成の原料にSin。
Example 4 5.7 Fe, 01 per mole of strontium carbonate
Sin to the raw materials of the basic composition weighed at a ratio of 0 moles.

40.050モルの割合で添加した後、ヘンシェルミキ
サーで混合した。混合粉をペレット状にして970℃1
1000°c、1150℃、1200℃および1253
℃の各々の温度で仮焼した。この時Singを含まない
上記組成比の原料の混合粉をペレット状にして1■70
’C,1200℃11250℃,,1300℃および1
320’Cの各々の温度で仮焼した。これら仮焼粉をア
トマイザ−を用いて粗、中粉砕した。この時S10.を
添加した仮焼粉の粉砕品をA粉末と吋び、S10!を含
まない仮焼粉の粉砕品をB粉末と呼ぶことにする。5m
類のA粉末と5fl類のB粉末を組み合わせ、それぞれ
重量比で50%ずつ混合し、次いでアトライターにて第
4表に示す添加物を添加し、微粉砕後は実施例1と同様
に処理して焼成後の磁気特性を洲べた。その結果を第4
表に示す、いずれも最終添加量のSin、は0.588
%、CBO/S:Oe比は0.7である−る− 第4表に示したように仮焼温度がtooo℃未満、或い
は1250℃を趙えるA粉末と1200℃未満、或いは
l300℃を趙えるB粉末を混合した混合粉では目標特
性を得ることができないことが判る。
After adding at a ratio of 40.050 mol, they were mixed in a Henschel mixer. Make the mixed powder into pellets and heat to 970℃1
1000°C, 1150°C, 1200°C and 1253
Calcining was performed at each temperature of ℃. At this time, the mixed powder of the raw materials with the above composition ratio that does not contain Sing is made into pellets and 1.70
'C, 1200℃11250℃, 1300℃ and 1
Each sample was calcined at a temperature of 320'C. These calcined powders were coarsely and medium-pulverized using an atomizer. At this time S10. The pulverized calcined powder added with S10 is referred to as A powder. The pulverized product of calcined powder that does not contain B powder will be referred to as B powder. 5m
A powder of type A and a powder of type B of 5fl were combined and mixed at a weight ratio of 50%, then the additives shown in Table 4 were added using an attritor, and after pulverization, the same treatment as in Example 1 was carried out. The magnetic properties after firing were investigated. The result is the fourth
The Sin of the final addition amount shown in the table is 0.588.
%, and the CBO/S:Oe ratio is 0.7. It can be seen that the target properties cannot be obtained with the mixed powder containing the B powder.

〈発明の効果〉 本発明によって、Brが4100(G)以上で、かつ1
1cが4000 (Oe)以上を兼ね備えた、特にカー
モーター用磁石として好適な高Br、高111cのスト
ロンチウムフェライト磁石を容品に得ることができ、省
エネルギー等の点でその及ぼす効果は大きい。
<Effects of the Invention> According to the present invention, Br is 4100 (G) or more and 1
A high Br, high 111c strontium ferrite magnet, which has 1c of 4000 (Oe) or more and is particularly suitable as a magnet for a car motor, can be obtained in a package, and has great effects in terms of energy saving and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は仮焼条件の異なる仮焼粉の混合比率と焼成後の
磁気特性(Br、 1Hc)の関係を示した図である
Figure 1 shows the relationship between the mixing ratio of calcined powder under different calcining conditions and the magnetic properties (Br, 1Hc) after firing.

Claims (1)

【特許請求の範囲】[Claims]  酸化鉄と炭酸ストロンチウムを混合し、造粒・仮焼し
た後、該仮焼物を粉砕し、しかる後磁場中成形して得ら
れる成形体を焼成してストロンチウムフェライト磁石を
製造する方法において、炭酸ストロンチウム1モルに対
しFe_2O_3を5.3〜5.9モルおよびSiO_
2をxモル、ただし、Fe_2O_3のモル数と(1−
x)モルの比が6となる組成比で混合し、1000〜1
250℃の温度で仮焼した後、該仮焼物を粉砕して得る
微粉末(以下A粉末と呼ぶ)と、SiO_2を含まない
上記組成比の原料を1200〜1300℃の温度で仮焼
した後、該仮焼物を粉砕して得る微粉末(以下B粉末と
呼ぶ)をB粉末に対するA粉末の混合比率(重量比)が
50〜75%の範囲で混合し、次いで該混合粉に更に重
量比で最終的にSiO_2が0.40〜0.70%、C
aOが0.35〜0.49%かつCaO/SiO_2比
が0.5〜1.25となるように添加した後、磁場中成
形し、しかる後焼成することを特徴とする残留磁束密度
および保磁力の高いストロンチウムフェライト磁石の製
造方法。
In the method of manufacturing a strontium ferrite magnet by mixing iron oxide and strontium carbonate, granulating and calcining the mixture, pulverizing the calcined product, and then firing the molded product obtained by molding in a magnetic field, the strontium carbonate 5.3 to 5.9 mol of Fe_2O_3 and SiO_
2 to x moles, where the number of moles of Fe_2O_3 and (1-
x) Mix at a composition ratio where the molar ratio is 6, 1000 to 1
After calcining at a temperature of 250°C, a fine powder obtained by crushing the calcined product (hereinafter referred to as A powder) and a raw material having the above composition ratio that does not contain SiO_2 are calcined at a temperature of 1200 to 1300°C. , a fine powder obtained by pulverizing the calcined product (hereinafter referred to as B powder) is mixed at a mixing ratio (weight ratio) of A powder to B powder in the range of 50 to 75%, and then the mixed powder is further mixed with a weight ratio of A powder to B powder. Finally, SiO_2 is 0.40-0.70%, C
After adding so that aO is 0.35 to 0.49% and CaO/SiO_2 ratio is 0.5 to 1.25, it is molded in a magnetic field and then fired. A method for manufacturing strontium ferrite magnets with high magnetic force.
JP2145344A 1990-06-05 1990-06-05 Manufacture of strontium-ferrite magnet high in residual magnetic flux density and coercive force Pending JPH0438807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2145344A JPH0438807A (en) 1990-06-05 1990-06-05 Manufacture of strontium-ferrite magnet high in residual magnetic flux density and coercive force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2145344A JPH0438807A (en) 1990-06-05 1990-06-05 Manufacture of strontium-ferrite magnet high in residual magnetic flux density and coercive force

Publications (1)

Publication Number Publication Date
JPH0438807A true JPH0438807A (en) 1992-02-10

Family

ID=15383014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2145344A Pending JPH0438807A (en) 1990-06-05 1990-06-05 Manufacture of strontium-ferrite magnet high in residual magnetic flux density and coercive force

Country Status (1)

Country Link
JP (1) JPH0438807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249510A (en) * 1994-03-09 1995-09-26 Tdk Corp Oxide permanent magnet and its manufacture
KR20020016254A (en) * 2000-08-25 2002-03-04 신현준 A method for manufacturing ferrite permant magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249510A (en) * 1994-03-09 1995-09-26 Tdk Corp Oxide permanent magnet and its manufacture
KR20020016254A (en) * 2000-08-25 2002-03-04 신현준 A method for manufacturing ferrite permant magnet

Similar Documents

Publication Publication Date Title
JP2922864B2 (en) Ferrite magnet and manufacturing method thereof
WO1999038174A1 (en) Bonded magnet, magnet roll and ferrite powder to be used for their preparation, and method for producing the same
JP4046196B2 (en) Ferrite magnet, ferrite magnet powder and method for producing the same
JPH09106904A (en) Ferrite powder for bonded magnet and bonded magnet using thereof
EP1650772A1 (en) Ferrite magnetic material and method for producing hexagonal w type ferrite magnetic material
JP3506174B2 (en) Method for producing ferrite magnet and powder thereof
JP2001052912A (en) Ferrite magnet material, sintered magnet and bonded magnet
JPH0913151A (en) Rare earth-iron-nitrogen base magnetic material and its production
JPH0438807A (en) Manufacture of strontium-ferrite magnet high in residual magnetic flux density and coercive force
JPH0766027A (en) Manufacture of strontium ferrite magnet
JPH05258928A (en) Permanent magnet and powder thereof and manufacturing method thereof
JPH11307331A (en) Ferrite magnet
JPH03177002A (en) Manufacture of strontium ferrite magnet having high residual flux density and coercive force
JPH01112705A (en) Manufacture of oxide permanent magnet
JPH03242908A (en) Manufacture of raw material for ferrite magnet
JP2007031203A (en) Method for manufacturing w-type ferrite magnet
JPH0661029A (en) Manufacture of oxide permanent magnet
JPH03123004A (en) Manufacture of highly efficient sr ferrite magnet
JPS61166905A (en) Production of raw material powder for permanent magnet
JP2779935B2 (en) Magnetoplumbite-type ferrite particle powder for magnetic card and method for producing the same
JPH06333724A (en) Sintered ferrite with crystallite particle and manufacture thereof
JPS6050324B2 (en) Manufacturing method of oxide permanent magnet
JP3936507B2 (en) Ferrite magnet manufacturing method
JPH04106904A (en) Manufacture of strontium ferrite magnet
JPH05217729A (en) Production of magnetic powder for sr-ferrite magnet