JPH04119605A - Manufacture of sintered permanent magnet, sintered permanent magnet power and bonded magnet made of the power - Google Patents

Manufacture of sintered permanent magnet, sintered permanent magnet power and bonded magnet made of the power

Info

Publication number
JPH04119605A
JPH04119605A JP2238989A JP23898990A JPH04119605A JP H04119605 A JPH04119605 A JP H04119605A JP 2238989 A JP2238989 A JP 2238989A JP 23898990 A JP23898990 A JP 23898990A JP H04119605 A JPH04119605 A JP H04119605A
Authority
JP
Japan
Prior art keywords
permanent magnet
sintered
magnet
powder
sintered permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2238989A
Other languages
Japanese (ja)
Inventor
Tomoyuki Hayashi
智幸 林
Yoshio Matsuo
良夫 松尾
Takaaki Yasumura
隆明 安村
Teruo Kiyomiya
照夫 清宮
Hirofumi Nakano
廣文 中野
Kazuo Matsui
一雄 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2238989A priority Critical patent/JPH04119605A/en
Publication of JPH04119605A publication Critical patent/JPH04119605A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To make it possible to retain the coercive force of the same degree as the sintered permanent magnet before pulverization, and also to obtain the bonded magnet having high magnetic characteristics by a method wherein a kind of a boride, a carbide and a nitride of specific weight percent is added to the alloy powder containing rare-earth element, iron and boron as fundamental components. CONSTITUTION:A sintered type permanent magnet is formed by adding one or more kinds selected from a boride, a carbide and a nitride of the amount of 0.001 to 4.0wt.% in total against alloy powder is added to the alloy powder having a rare-earth element, iron and boron as fundamental components. Also, in the sintered type permanent magnet, a boride, a carbide and a nitride themselves or their compound react with the rare-earth element, Fe and B, a compound 10 is newly generated and present in a crystal grain interface, the growth of crystal grains by sintering is suppressed, and a sintered magnet, in which fine crystal grains of average crystal grains of the main phase 1, is formed. A bonded magnet is manufactured in such a manner that synthetic resin, as a binder, is mixed into the above- mentioned permanent magnet powder, the mixture is kneaded and injection-molded at the ordinary molding temperature using the prescribed mold. In the case of a compression-molded body, a cure treatment is conducted.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、希土類元素(R)、Fe、Bを主成分とする
焼結型永久磁石、特に粉砕による磁気特性の劣化を抑え
た希土類焼結型永久磁石と、この粉砕粉体、及びこれを
樹脂で結合したボンド磁石の製造方法方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a sintered permanent magnet containing rare earth elements (R), Fe, and B as main components, and particularly a rare earth sintered magnet that suppresses deterioration of magnetic properties due to pulverization. The present invention relates to a method for manufacturing a compacted permanent magnet, its pulverized powder, and a bonded magnet in which the magnet is bonded with a resin.

(従来の技術) 従来、希土類磁石として、R−Fe−B系の磁石が開発
されている。
(Prior Art) Conventionally, R-Fe-B magnets have been developed as rare earth magnets.

このR−Fe−B系磁石には、焼結型と高速急冷型とが
あり、現在のところ、焼結型が、低コストで高い磁気特
性を有するものとして最も優れているとされている。
There are two types of R-Fe-B magnets: a sintered type and a high-speed quenched type.Currently, the sintered type is considered to be the best as it is low cost and has high magnetic properties.

一方、ボンド磁石は、従来、上記の高速急冷型の磁石を
原料とするものが主流であり、例えば、次のような方法
で製造されていた。
On the other hand, bonded magnets have conventionally been mainly made from the above-mentioned high-speed quenched magnets, and have been manufactured, for example, by the following method.

先ず、所望の組成に調整した合金の溶融液を液体急冷し
、この急冷粉をグラファイト等の容器に入れ真空又は不
活性雰囲気中で1軸方向の圧力を加えながら熱処理する
ホットプレス法で高密度に成形した後、再度加熱しなか
ら1軸性の塑性加工を加えるダイアップセット法を行っ
てバルク体の異方性磁石を製造する。
First, the melted alloy adjusted to the desired composition is quenched into liquid, and the quenched powder is placed in a graphite container and heat-treated while applying uniaxial pressure in a vacuum or inert atmosphere to create a high density. After molding, a die-up setting method is performed in which uniaxial plastic working is performed without heating again to produce a bulk anisotropic magnet.

次いで、上記のバルク体を粉砕し、粒径毎に分級する。Next, the above-mentioned bulk body is crushed and classified according to particle size.

分級された粉体に、この粉体(Ndタイプ異方性合金粉
体)の接着剤である合成樹脂(例えば、エポキシ樹脂等
)を混合し、均一に混練する。混練物を磁場中で所定の
形状に成形した後、成形体をキュアーする。
A synthetic resin (for example, epoxy resin), which is an adhesive for this powder (Nd type anisotropic alloy powder), is mixed with the classified powder and kneaded uniformly. After the kneaded material is molded into a predetermined shape in a magnetic field, the molded product is cured.

このように従来のボンド磁石は高速急冷型のR−Fe−
B系永久磁石バルク体を原料とするものが主流であり、
焼結型のR−Fe−B系永久磁石バルク体を原料とした
ボンド磁石は開発が試みられているに過ぎない。
In this way, conventional bonded magnets are made of high-speed quenched R-Fe-
The mainstream is those made from bulk B permanent magnets,
Bonded magnets made from sintered R-Fe-B permanent magnet bulk bodies have only been attempted to be developed.

(発明が解決しようとする課題) ところで、前述のように、焼結型のR−Fe−B系永久
磁石バルク体は、コストが低く、高い磁気特性を有する
ことから、これを原料とした実用的なボンド磁石の開発
が急務とされている。
(Problems to be Solved by the Invention) By the way, as mentioned above, the sintered R-Fe-B permanent magnet bulk body is low in cost and has high magnetic properties, so it is not practical to use it as a raw material. There is an urgent need to develop bonded magnets with a unique bonded structure.

しかし、焼結型のものの平均結晶粒径は10〜50μ■
と大きく、これを粉砕すると、主相が割れて露出し、こ
の露出面が酸化し、また粉砕による機械的な歪みが発生
し、これら酸化や歪みの影響により、粒子の磁気特性(
保磁力1Hc)が激減する。
However, the average grain size of the sintered type is 10~50μ■
When these particles are crushed, the main phase is cracked and exposed, and this exposed surface is oxidized. Also, mechanical distortion occurs due to the pulverization, and the magnetic properties of the particles (
The coercive force (1Hc) decreases drastically.

このように磁気特性の激減した粉体を使用して得られる
ボンド磁石は、当然に磁気特性が充分てなく、本発明者
等の実験によれば、iHcが2koe程度、最大エネル
ギ積(B H)   が3 MGOeflaX 程度でしかなく、工業上の実用性に欠ける。
Bonded magnets obtained using powder with drastically reduced magnetic properties naturally do not have sufficient magnetic properties, and according to experiments conducted by the present inventors, the iHc is about 2 koe and the maximum energy product (B H ) is only about 3 MGOeflaX, which lacks industrial practicality.

本発明は、以上の諸点に鑑みてなされたものであって、
その目的とするところは、粉砕による磁気特性の劣化の
小さい焼結型R−Fe−B系永久磁石反永久磁石砕粉体
、更にほこの粉砕粉体を原料として高い磁気特性を有す
るボンド磁石を製造する方法を提案するにある。
The present invention has been made in view of the above points, and
The aim is to create sintered R-Fe-B permanent magnet anti-permanent magnet powder with minimal deterioration of magnetic properties due to pulverization, and bonded magnets with high magnetic properties using Hoko's pulverized powder as raw material. We propose a manufacturing method.

(課題を解決するための手段) 上記目的を達成するために、本発明の焼結型永久磁石は
、希土類元素、鉄及び硼素を基本成分とする合金粉末に
、硼化物、炭化物、窒化物のいずれか1種以上を、その
総量が上記合金粉体に対し0.001〜4,0重量%と
なるように添加してなることを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the sintered permanent magnet of the present invention includes an alloy powder containing rare earth elements, iron, and boron as basic components, and borides, carbides, and nitrides. It is characterized in that one or more of them is added in a total amount of 0.001 to 4.0% by weight based on the above alloy powder.

また、本発明の焼結型永久磁石粉体は、請求項1記載の
焼結型永久磁石が結晶粒界面で粉砕されていることを特
徴とする。
Further, the sintered permanent magnet powder of the present invention is characterized in that the sintered permanent magnet according to claim 1 is pulverized at the grain interface.

更に、本発明のボンド磁石の製造方法は、請求項2記載
の焼結型永久磁石粉体に、合成樹脂を混合し、所望形状
に圧縮成形又は射出成形することを特徴とする。
Furthermore, the method for manufacturing a bonded magnet of the present invention is characterized in that the sintered permanent magnet powder according to claim 2 is mixed with a synthetic resin and compression molded or injection molded into a desired shape.

本発明における焼結型永久磁石は、上記のR1Fe、B
を基本成分とする合金粉末に上記の割合で上記の化合物
を添加し、この混合粉体を磁場中で成形後、焼結し、さ
らに磁気特性を向上をさせるために、焼結温度より低い
温度で熱処理して製造される。
The sintered permanent magnet in the present invention has the above-mentioned R1Fe, B
The above compounds are added in the above proportions to an alloy powder whose basic components are Manufactured by heat treatment.

また、本発明におけるボンド磁石の製造方法は、上記の
本発明における焼結型永久磁石粉体に、バインダーとし
ての合成樹脂(例えばエポキシ樹脂などの熱可塑性樹脂
)を焼結型永久磁石粉体に混合し、混練し、一般に10
0℃〜300℃の成形温度で5〜20kOeの磁場中で
0.1〜2t/cシの射出圧力で所定の金型に射出成形
する。
In addition, the method for manufacturing a bonded magnet according to the present invention includes adding a synthetic resin (for example, a thermoplastic resin such as an epoxy resin) as a binder to the sintered permanent magnet powder according to the present invention. Mix and knead, generally 10
Injection molding is carried out into a predetermined mold at a molding temperature of 0° C. to 300° C. in a magnetic field of 5 to 20 kOe and an injection pressure of 0.1 to 2 t/c.

次いで圧縮成形体においてはキュアー処理する。Next, the compression molded product is cured.

なお、本発明における上記のR,Fe、Bを基本成分と
する合金粉体は、 R(RはNd、Pr、Dy、Ho、Tbのうち少なくと
も1種又は更にLa、Ce、Sm、GdEr  Eu、
Tm、Yb、Lu、Yのうち少なくとも1種からなる)
8〜30原子%、B2〜28原子%、Fe42〜92原
子%の組成からなるものが好ましく使用される。更に、
Feの一部をM(MはCo、Ru、Rh、Ir、Os、
Pd。
In addition, the alloy powder in the present invention whose basic components are R, Fe, and B is as follows. ,
Consists of at least one of Tm, Yb, Lu, and Y)
Those having a composition of 8 to 30 atom %, B2 to 28 atom %, and Fe 42 to 92 atom % are preferably used. Furthermore,
A part of Fe is M (M is Co, Ru, Rh, Ir, Os,
Pd.

Pt、Re、Ni、V、Nb、Ta、Cu、CrMn、
Mo、W、Ti、Aj)、Ga、I n、Z r。
Pt, Re, Ni, V, Nb, Ta, Cu, CrMn,
Mo, W, Ti, Aj), Ga, I n, Z r.

Hf、 Si、 Ge、 Sn、 Zn、 Sb、 B
i)の1種または2種以上の少量で置換してもよい。
Hf, Si, Ge, Sn, Zn, Sb, B
One or more of i) may be substituted in small amounts.

(作 用) 本発明に係る焼結型永久磁石は、硼化物、炭化物、窒化
物自体あるいはこれらの化合物が希土類元素、Fe、B
と反応し、生じた新たな化合物が結晶粒界面に存在し、
焼結による結晶粒の成長を抑制して、平均結晶粒が3μ
〜5μm程度の微細な結晶粒が集合した焼結磁石となっ
ている。
(Function) The sintered permanent magnet according to the present invention has a structure in which borides, carbides, nitrides themselves or their compounds contain rare earth elements, Fe, B, etc.
The resulting new compound exists at the grain interface,
By suppressing the growth of crystal grains due to sintering, the average crystal grain size is reduced to 3μ.
It is a sintered magnet in which fine crystal grains of about 5 μm are aggregated.

この焼結磁石体を粉砕すると、上記の化合物あるいは新
たな化合物が主相と主相との界面及び主相表面に存在す
ることと、この焼結磁石体を構成している結晶粒が微細
であることから、この化合物あるいは新たな化合物を核
に粉砕され主相を破壊しない。
When this sintered magnet is crushed, it is found that the above-mentioned compound or a new compound is present at the interface between the main phases and on the surface of the main phase, and that the crystal grains making up this sintered magnet are fine. For this reason, the main phase is not destroyed when this compound or a new compound is used as the core to crush the material.

すなわち言い換えれば、主相の割れ面が生じないため、
磁気特性の劣化の要因となる酸化や機械的歪みが生じて
いない粉体を得ることができる。
In other words, since no crack surface of the main phase occurs,
It is possible to obtain powder that is free from oxidation and mechanical distortion that cause deterioration of magnetic properties.

このため、粉体は保磁力の劣化が抑えられ、磁気特性の
優れたものとなる。
Therefore, the deterioration of the coercive force of the powder is suppressed and the powder has excellent magnetic properties.

以上の作用を、図面を参照して、より詳細に説明する。The above operation will be explained in more detail with reference to the drawings.

すなわち、従来の焼結型R−Fe−B系永久磁石バルク
体は、第2図(A)に示すように、例えば、Nd2Fe
14Bを主相1とし、これをNdリッチ相2やBリッチ
相3が取り囲んでいるニュークリエーション型磁石であ
る。また、二〇主相1の平均結晶粒径は10〜50μl
である。
That is, the conventional sintered R-Fe-B permanent magnet bulk body is made of, for example, Nd2Fe, as shown in FIG.
This is a nucleation type magnet in which 14B is a main phase 1, which is surrounded by an Nd-rich phase 2 and a B-rich phase 3. In addition, the average crystal grain size of 20 main phase 1 is 10 to 50 μl
It is.

ニュークリエーション型磁石は、上記の主相1を取り囲
むNdリッチ相2との界面が保磁力を発生させる重要な
働きをしており、さらに主相内に逆磁区の芽となる欠陥
(例えばクラック、転位)の少ないものか高保磁力を得
ることができる。
In nucleation magnets, the interface between the main phase 1 and the Nd-rich phase 2 that surrounds it plays an important role in generating coercive force, and the main phase also has defects (such as cracks, It is possible to obtain a high coercive force with few dislocations.

そのため主相1の周囲にNdリッチ相2が欠けていたり
、主相1内に欠陥があると、たちまち保磁力は激減して
しまう。
Therefore, if the Nd-rich phase 2 is missing around the main phase 1 or if there is a defect in the main phase 1, the coercive force will immediately decrease sharply.

このような構成の焼結型R−Fe−B系永久磁石バルク
体を粉砕すると、第2図(B)に示すように、主相1の
結晶粒が10〜50μ■と大きいため、主相1が割れ、
この割れた主相1′は割れ面がむき出しとなり、保磁力
発生に重要なNdリッチ相を失う。
When a sintered R-Fe-B permanent magnet bulk body with such a configuration is crushed, as shown in Fig. 2 (B), the crystal grains of the main phase 1 are as large as 10 to 50 μ■, so the main phase is 1 cracks,
This cracked main phase 1' has a cracked surface exposed and loses the Nd-rich phase which is important for generating coercive force.

また粉砕の際に粉体内部に機械的歪みが発生し、主相1
内にクラックを生じさせる。
In addition, mechanical strain occurs inside the powder during pulverization, and the main phase 1
causing cracks inside.

一方、上記の粉砕による主相1′の割れ面、及び上記の
機械的歪みにより発生するクラックや、粉砕粉体表面に
露出したNdリッチ相2部は、化学的に極めて活性であ
り、雰囲気中の酸素により容易に酸化される。
On the other hand, the fractured surface of the main phase 1' due to the above-mentioned pulverization, the cracks generated by the above-mentioned mechanical strain, and the 2nd part of the Nd-rich phase exposed on the surface of the pulverized powder are extremely active chemically and cannot be exposed to the atmosphere. It is easily oxidized by oxygen.

この酸化及び上記のNdリッチ相2の欠けや機械的歪み
が主相の磁気特性(特に保磁力)を失わせる。
This oxidation and the chipping and mechanical distortion of the Nd-rich phase 2 cause the main phase to lose its magnetic properties (especially coercive force).

これに対し、本発明に係る焼結型永久磁石は、第1図(
A)に示すように、主相1の平均結晶粒が3〜5μlと
微細であり、しかもこの主相1の結晶粒界面には硼化物
、炭化物、窒化物、あるいは新たな化合物10が存在し
ており、これを粉砕すると例えば割れ面11で割れる。
On the other hand, the sintered permanent magnet according to the present invention is shown in FIG.
As shown in A), the average crystal grain of main phase 1 is as fine as 3 to 5 μl, and in addition, borides, carbides, nitrides, or new compounds 10 are present at the grain interface of main phase 1. When it is crushed, it will break at the crack surface 11, for example.

この粉砕粉体は、第1図(B)に示すように、微細な主
相1は割れることなく、上記の硼化物、炭化物、窒化物
、あるいは新たな化合物1oに保護された状態を呈す。
In this pulverized powder, as shown in FIG. 1(B), the fine main phase 1 does not crack and is protected by the above-mentioned boride, carbide, nitride, or new compound 1o.

従って、保磁力を発生させる重要な働きをしている主相
1とNdリッチ相との界面は、粉砕前の状態を保ち、し
かも主相1内に逆磁区の芽となる欠陥は、粉砕により生
じることはない。
Therefore, the interface between the main phase 1 and the Nd-rich phase, which plays an important role in generating coercive force, remains in the state before pulverization, and defects that become the buds of reverse magnetic domains in the main phase 1 are removed by pulverization. It will never occur.

(実施例) Nd、、oDyl、4P r   F e   B  
 なる0、3    77.8  6.5 組成の合金をアーク溶解により作製し得られたインゴッ
トをショークラッシャー及びスタンプミルにて粗粉砕し
、この粗粉体をジェットミルで平均粒径3μ■に微粉砕
した。
(Example) Nd, oDyl, 4P r Fe B
An ingot obtained by producing an alloy with a composition of 0.3 77.8 6.5 by arc melting is coarsely crushed using a show crusher and a stamp mill, and this coarse powder is finely milled using a jet mill to an average particle size of 3μ■. Shattered.

この微粉体に平均粒径1〜2μmの硼化物、窒化物、炭
化物をそれぞれ第1表に示す量で添加し、混合して原料
粉体とした。
Borides, nitrides, and carbides having an average particle size of 1 to 2 μm were added to this fine powder in the amounts shown in Table 1, and mixed to obtain a raw material powder.

得られた原料粉末を、10 kOeの磁場中でlt。The obtained raw material powder was heated in a magnetic field of 10 kOe.

H/dの圧力で成形後、Ar雰囲気中1100℃X3h
rの焼結を行なった後、600℃X1hrの熱処理を行
ない作製した。このようにして得られた焼結磁石体の磁
気特性を測定し、その結果を第1表に焼結体磁気特性と
して示した。
After molding at a pressure of H/d, molded at 1100°C for 3 hours in an Ar atmosphere.
After performing sintering of r, heat treatment was performed at 600° C. for 1 hr. The magnetic properties of the sintered magnet body thus obtained were measured, and the results are shown in Table 1 as the magnetic properties of the sintered body.

上記焼結体をショークラッシャーにより粗粉砕し、分級
し、125〜300μmの粒径粉体を得た。この粉体に
バインダーである合成樹脂(ここでは、エポキシ樹脂等
)を混合し、均一に混練する。この混練物を15kOe
の磁場中で3ton/cdの圧力で圧縮成形後、成形体
をキュアーする。
The sintered body was coarsely crushed using a show crusher and classified to obtain a powder having a particle size of 125 to 300 μm. A synthetic resin (here, epoxy resin, etc.) as a binder is mixed with this powder and kneaded uniformly. 15kOe of this kneaded material
After compression molding in a magnetic field of 3 ton/cd, the molded body is cured.

このようにして、得られたボンド磁石体の磁気特性を測
定し、その結果を第1表にボンド磁石磁気持性として示
した。
The magnetic properties of the bonded magnets thus obtained were measured, and the results are shown in Table 1 as the magnetic properties of the bonded magnets.

また、比較例として硼化物、炭化物、窒化物の重量%を
本発明の範囲外とした焼結体及びボンド磁石の磁気特性
を第1表に併せて示した。
Furthermore, as comparative examples, Table 1 also shows the magnetic properties of sintered bodies and bonded magnets in which the weight percentages of borides, carbides, and nitrides were outside the range of the present invention.

なお、添加量の違いの他は、すべて実施例と同じ条件で
試料調整を行なった。
The samples were prepared under the same conditions as in the example except for the difference in the amount added.

第1表かられかるようにO,001wt%より少ない添
加量では効果が見られず、4wt%より多い量では粉砕
後の保磁力の劣化は小さいが、焼結体の磁気特性が劣化
してしまうため、ボンド磁石としての磁気特性が劣化す
る。
As can be seen from Table 1, no effect is observed when the addition amount is less than O,001wt%, and when the amount is more than 4wt%, the deterioration of the coercive force after pulverization is small, but the magnetic properties of the sintered body are deteriorated. As a result, the magnetic properties of the bonded magnet deteriorate.

好ましくは1〜2νt%付近がよい。Preferably it is around 1 to 2 νt%.

このような効果を示す硼化物、炭化物、窒化物は、実施
例のみに限定されず、S cN、UN。
Borides, carbides, and nitrides that exhibit such effects are not limited to the examples, but include S cN, UN.

ThN、AIIN、VN、S i C,T i C,V
C。
ThN, AIIN, VN, S i C, T i C, V
C.

WC,Mo2Cでも同様な効果が得られる。Similar effects can be obtained with WC and Mo2C.

(発明の効果) 以上詳述した本発明によれば、主相と主相との界面に、
硼化物、窒化物1炭化物を添加又は析出させることによ
り、主相の結晶成長を抑制することかできる。
(Effect of the invention) According to the present invention detailed above, at the interface between the main phases,
By adding or precipitating boride, nitride, or monocarbide, crystal growth of the main phase can be suppressed.

従って、本発明に係る焼結型永久磁石は、粉砕しても、
結晶粒径の小さい主相の破壊は生じず、主相と主相の界
面に存在する上記化合物が核となって粉砕される。
Therefore, even if the sintered permanent magnet according to the present invention is crushed,
The main phase with a small crystal grain size is not destroyed, and the above-mentioned compound existing at the interface between the main phases becomes a nucleus and is crushed.

この結果、本発明に係る焼結型永久磁石粉体は粉砕前の
焼結型永久磁石と同程度の保磁力を保持することができ
る。
As a result, the sintered permanent magnet powder according to the present invention can maintain a coercive force comparable to that of the sintered permanent magnet before pulverization.

そして、この高い保磁力を有する粉体を原料とする本発
明に係る方法で得られるボンド磁石は、高い磁気特性を
有することができる。
A bonded magnet obtained by the method according to the present invention using powder having high coercive force as a raw material can have high magnetic properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の作用を従来の焼結型永久磁
石バルク体との比較で説明するための図で、第1図(A
) 、 (B)が本発明の作用、第2図(A)。 (B)が従来の作用である。 第 図 (A) (B) 第 図 (A) (B)
1 and 2 are diagrams for explaining the effect of the present invention in comparison with a conventional sintered permanent magnet bulk body.
), (B) is the effect of the present invention, FIG. 2 (A). (B) is the conventional effect. Figure (A) (B) Figure (A) (B)

Claims (3)

【特許請求の範囲】[Claims] (1)希土類元素,鉄及び硼素を基本成分とする合金粉
体に、0.001〜4.0重量%の硼化物,炭化物,窒
化物のいずれか1種以上を添加してなることを特徴とす
る焼結型永久磁石。
(1) It is characterized by adding 0.001 to 4.0% by weight of one or more of borides, carbides, and nitrides to an alloy powder whose basic components are rare earth elements, iron, and boron. A sintered permanent magnet.
(2)請求項1記載の焼結型永久磁石が結晶粒界面で粉
砕されてなることを特徴とする焼結型永久磁石粉体。
(2) A sintered permanent magnet powder, characterized in that the sintered permanent magnet according to claim 1 is pulverized at the grain interface.
(3)請求項2記載の焼結型永久磁石粉体に、合成樹脂
を混合し、所望形状に圧縮成形又は射出成形することを
特徴とするボンド磁石の製造方法。
(3) A method for manufacturing a bonded magnet, which comprises mixing the sintered permanent magnet powder according to claim 2 with a synthetic resin and compression molding or injection molding the mixture into a desired shape.
JP2238989A 1990-09-11 1990-09-11 Manufacture of sintered permanent magnet, sintered permanent magnet power and bonded magnet made of the power Pending JPH04119605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2238989A JPH04119605A (en) 1990-09-11 1990-09-11 Manufacture of sintered permanent magnet, sintered permanent magnet power and bonded magnet made of the power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2238989A JPH04119605A (en) 1990-09-11 1990-09-11 Manufacture of sintered permanent magnet, sintered permanent magnet power and bonded magnet made of the power

Publications (1)

Publication Number Publication Date
JPH04119605A true JPH04119605A (en) 1992-04-21

Family

ID=17038268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2238989A Pending JPH04119605A (en) 1990-09-11 1990-09-11 Manufacture of sintered permanent magnet, sintered permanent magnet power and bonded magnet made of the power

Country Status (1)

Country Link
JP (1) JPH04119605A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052807C (en) * 1994-08-24 2000-05-24 中国科学院金属研究所 Preparation of rare-earth transition metal nitride
CN107275025A (en) * 2016-04-08 2017-10-20 沈阳中北通磁科技股份有限公司 A kind of Nd-Fe-B magnet steel containing cerium and manufacture method
CN107275024A (en) * 2016-04-08 2017-10-20 沈阳中北通磁科技股份有限公司 A kind of high-performance Ne-Fe-B permanent magnet containing Nitride Phase and manufacture method
JP2020100856A (en) * 2018-12-20 2020-07-02 国立大学法人東北大学 Method for producing nitride-containing sintered steel having excellent corrosion resistance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052807C (en) * 1994-08-24 2000-05-24 中国科学院金属研究所 Preparation of rare-earth transition metal nitride
CN107275025A (en) * 2016-04-08 2017-10-20 沈阳中北通磁科技股份有限公司 A kind of Nd-Fe-B magnet steel containing cerium and manufacture method
CN107275024A (en) * 2016-04-08 2017-10-20 沈阳中北通磁科技股份有限公司 A kind of high-performance Ne-Fe-B permanent magnet containing Nitride Phase and manufacture method
CN107275024B (en) * 2016-04-08 2018-11-23 沈阳中北通磁科技股份有限公司 A kind of high-performance Ne-Fe-B permanent magnet and manufacturing method containing Nitride Phase
CN107275025B (en) * 2016-04-08 2019-04-02 沈阳中北通磁科技股份有限公司 One kind Nd-Fe-B magnet steel containing cerium and manufacturing method
JP2020100856A (en) * 2018-12-20 2020-07-02 国立大学法人東北大学 Method for producing nitride-containing sintered steel having excellent corrosion resistance

Similar Documents

Publication Publication Date Title
JPS60254708A (en) Manufacture of permanent magnet
JPH0685369B2 (en) Permanent magnet manufacturing method
JPH04119605A (en) Manufacture of sintered permanent magnet, sintered permanent magnet power and bonded magnet made of the power
JPH04241402A (en) Permanent magnet
JPH0913151A (en) Rare earth-iron-nitrogen base magnetic material and its production
JPH05335120A (en) Anisotropic bonded manget manufacturing magnet powder coated with solid resin binder and manufacture thereof
JPH0831626A (en) Rare earth magnetic powder, permanent magnet thereof, and manufacture of them
JP2002015906A (en) Method for manufacturing magnet powder and bonded magnet, and the bonded magnet
JP2002015909A (en) Method for manufacturing magnet powder and bonded magnet, and the bonded magnet
JP3652751B2 (en) Anisotropic bonded magnet
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4687493B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4329595B2 (en) Rare earth magnet powder, compound using the same, and bonded magnet using the same
JPS62291903A (en) Permanent magnet and manufacture of the same
JPH10135020A (en) Radial anisotropic bond magnet
JPH09115711A (en) Anisotropic bond magnet
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JPH0845719A (en) Quenched thin band for bond magnet, particles for bond magnet, bond magnet and manufacture thereof
JPH01290205A (en) Manufacture of high-polymer composite type rare-earth magnet
JP4972919B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH04114409A (en) Manufacture of bonded magnet
JPS6271201A (en) Bond magnet
JP3623583B2 (en) Anisotropic bonded magnet
JP4645336B2 (en) Rare earth sintered magnet and manufacturing method thereof
KR100394992B1 (en) Fabricating Method of NdFeB Type Sintered Magnet