JPS61166905A - Production of raw material powder for permanent magnet - Google Patents

Production of raw material powder for permanent magnet

Info

Publication number
JPS61166905A
JPS61166905A JP60006201A JP620185A JPS61166905A JP S61166905 A JPS61166905 A JP S61166905A JP 60006201 A JP60006201 A JP 60006201A JP 620185 A JP620185 A JP 620185A JP S61166905 A JPS61166905 A JP S61166905A
Authority
JP
Japan
Prior art keywords
powder
raw material
temp
gas
cyclone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60006201A
Other languages
Japanese (ja)
Inventor
Yutaka Matsuura
裕 松浦
Shiyuuji Anamoto
穴本 修司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60006201A priority Critical patent/JPS61166905A/en
Publication of JPS61166905A publication Critical patent/JPS61166905A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the titled powder from which extra fine powder is removed and which consists of single fine particles without flocculation by heating specified ferromagnetic coarsely ground powder to a specific temp., charging the powder into a gas feed pipe of an air flow pulverizer and pulverizing and classifying the powder by a supersonic inert gas. CONSTITUTION:The ferromagnetic coarsely ground powder for a permanent magnet having <=550 deg.C Curie temp. and <=500mu grain size is heated to a temp. range of the temp. lower by 50 deg.C than said Curie temp. and <=850 deg.C. The heated powder 2 is charged from a hopper 1 into the mid-way of the gas feed pipe 4 of a gas supply main pipe 3. The ultrasonic inert gas is then injected to pulver ize the powder. The extra fine powder out of the pulverized powder is suspended and swirled at the center of a cyclone 6 and is discharged to the outside through a discharge pipe 7 opened in the upper part. On the other hand, the other pulverous powder is taken out of the bottom of the cyclone 6 and is used as the product.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、微粉末の凝集がなく、かつ超微粉末を含ま
ない単一微細粒子からなる永久磁石成型用強磁性原料粉
末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for producing a ferromagnetic raw material powder for molding a permanent magnet, which is composed of single fine particles without agglomeration of fine powder and does not contain ultrafine powder.

従来の技術 一般に、キューリー温度550℃以下のFe−B−R系
磁石(RはY及び希土類金属)、及びMO−nFet0
3磁石(Mは’a * Sr + Pb + n= 5
.4〜6.2 )の製造工程において、Fe−B−R系
磁石成型用原料粉末は、例えば所要原料を高周波溶解し
鋳造して鋳塊としたのち、前記鋳塊を粉砕工程で粗粉砕
、微粉砕して粒径10μm以下の原料粉末が乍られる。
Conventional technology In general, Fe-B-R magnets (R is Y and rare earth metal) with a Curie temperature of 550°C or less, and MO-nFet0
3 magnets (M is 'a * Sr + Pb + n = 5
.. In the manufacturing process of 4 to 6.2), the raw material powder for Fe-B-R magnet molding is obtained by, for example, producing an ingot by high-frequency melting and casting the required raw materials, and then coarsely pulverizing the ingot in a pulverizing process. Finely pulverized raw material powder with a particle size of 10 μm or less is obtained.

又、MO・nFe2−03磁石成型用原料粉末は、原料
酸化物を所要量配合して混合し焼成したのち、機械粉砕
により粗粉砕し、さらに微粉砕して粒度10μm以下の
原料粉末としていた。
In addition, the raw material powder for MO/nFe2-03 magnet molding was prepared by blending the required amount of raw material oxides, mixing and firing, then coarsely pulverizing by mechanical pulverization, and further finely pulverizing to obtain a raw material powder with a particle size of 10 μm or less.

発明が解決しようとする問題点 しかし、上記Fe −B−R系磁石成型用原料粉末の場
合は粒径0.5μm以下、又MO−nFezOs磁石成
型用原料粉末の場合は0.3μm以下の超微粉末が単一
粒子の形で存在したり、あるいは粉末自身に磁性がある
丸め、単一粉末が複数個凝集した状態で存在することが
ある。
Problems to be Solved by the Invention However, in the case of the Fe-BR-based raw material powder for molding magnets, the particle size is 0.5 μm or less, and in the case of the MO-nFezOs raw material powder for molding magnets, the grain size is 0.3 μm or less. The fine powder may exist in the form of a single particle, or may exist in the form of a ball or agglomeration of a plurality of single powders, each of which has magnetic properties.

このようにして超微粉末が原料粉末中に多量台まれると
、酸化されやすく、又成型i生が劣化したり、配向度の
低下を招く恐れがあり、又gjt佃粒子粒子集した状態
で成型したのち焼結すると、結晶粒は不整となり、磁石
の磁気特性のばらつきを招く原因となっていた。
If a large amount of ultrafine powder is incorporated into the raw material powder in this way, it is likely to be oxidized, and there is a risk of deterioration of the molding quality and a decrease in the degree of orientation. When sintered after molding, the crystal grains become irregular, causing variations in the magnetic properties of the magnet.

この発明は、かかる現状にかんがみ、キューリー温度5
50℃以下を有する永久磁石成型用強磁性原料粉末の製
造において、微粉砕後の成型用原料粉末中に含有する超
微細粉末の除去、及び凝集粒子の分離により酸化防止と
共に成型性の改善、配向度の向上、さらに減磁曲線の角
型性の向上を図9、かつ焼結後の磁気特性のばらつきを
防止し得る製造方法を搗案するものである。
In view of the current situation, this invention has a Curie temperature of 5
In the production of ferromagnetic raw material powder for molding permanent magnets with a temperature of 50°C or less, it is possible to prevent oxidation, improve moldability, and improve orientation by removing ultrafine powder contained in the raw material powder for molding after pulverization and separating agglomerated particles. The purpose of this study is to develop a manufacturing method that can improve the magnetic properties and squareness of the demagnetization curve, as shown in FIG. 9, and prevent variations in magnetic properties after sintering.

問題点を解決するための手段 この発明は、550”C以下のキューリー温度を有し、
粒度500μm以ドの永久磁石用強磁性粗粉砕粉末をF
e  B  R系磁石用粉末の場合は真空中又は不活性
ガス中で、又MO・、F、、O,磁石用粉末の場合は空
気中で、前記キューリー温度より50°C低い温度以上
850”C以下の温度範囲に加熱したのち、気流粉砕機
のガス送入管内に装入し、該ガス送入管内の超音速不活
性ガスによシ粉砕室内に噴射して微粉末に粉砕すると共
に分級することを要旨とする。
Means for Solving the Problems This invention has a Curie temperature of 550"C or less,
F
e BR magnet powder in vacuum or inert gas, MO, F, O, magnet powder in air at a temperature of 50°C lower than the Curie temperature or more of 850" After heating to a temperature range below C, it is charged into the gas feed pipe of a gas flow mill, and the supersonic inert gas in the gas feed pipe is injected into the grinding chamber to grind it into fine powder and classify it. The gist is to do so.

この発明の対象となる永久磁石は550°C以下のキュ
ーリー温度を有するFe−B−R系磁石とMO・nFl
ol磁石であり、Fe−B−R系磁石は10〜30原子
%R(RはNb+ pr + D7* Hoe Tbの
少なくとも1種、あるいは更にLa + Ce HSm
 + Gd + ”r rEu+ Pm+ Tm* y
b、 Lu 、 Yの少なくとも1種からなる)、2〜
28原子%B、65〜82原千原子e を主成分とし、
磁石の温度特性向上の丸め、Feの1部を30%以下の
Goにて置換することができ、又磁石合金の製造性改善
、低価格化のため、Bの1部を数%以下のc、 p、 
s、 C,の少なくとも1踵で置換することができ、さ
らに添加物として微竜のA4. Ti、 V、 Cr、
 Mn、 Bi、 Nt)、 ’ra、 MO,W。
The permanent magnets to which this invention applies are Fe-B-R magnets having a Curie temperature of 550°C or less and MO/nFl magnets.
ol magnet, and the Fe-B-R magnet has 10 to 30 at.
+ Gd + “r rEu+ Pm+ Tm* y
consisting of at least one of b, Lu, Y), 2-
The main components are 28 atom% B, 65 to 82 atomic atoms e,
To improve the temperature characteristics of the magnet, part of Fe can be replaced with 30% or less Go, and to improve the manufacturability and lower the price of the magnet alloy, part of B can be replaced with several % or less C. , p,
S, C, can be replaced with at least one heel of A4. Ti, V, Cr,
Mn, Bi, Nt), 'ra, MO, W.

sb、 G6. s、、 Zr+ Hfの少なくとも1
種を含有することができる。又、MO・nFetOs磁
石(MはBanSr+ pbで、nは5.4〜6.2 
)は特性改善のため公 、知の添加物(Ca+ 51 
+ Ae+ Cry S + B+ Bi )を含有す
ることができる。
sb, G6. At least 1 of s,, Zr+Hf
Can contain seeds. Also, MO・nFetOs magnet (M is BanSr+ pb, n is 5.4 to 6.2
) contains a publicly known additive (Ca+ 51
+Ae+CryS+B+Bi).

この発明において、気流粉砕機のガス送入管に装入され
るffl粉砕粉末をキューリー温度より50℃低い温度
よ9850°C以下に加熱する理由は、キューリー温度
より50℃低い温度未満の加熱では単一微粉末同志の磁
気的凝集力が大きく°粉末凝集を分離する効果がなく、
又850℃を超えると粉末粒子同志間に局部的に溶融又
は原子の拡散が起り、焼結する恐れがあるため望ましく
ないためである。
In this invention, the reason why the ffl pulverized powder charged into the gas feed pipe of the air flow crusher is heated from 50 degrees Celsius below the Curie temperature to 9850 degrees Celsius or less is that heating below 50 degrees Celsius below the Curie temperature The magnetic cohesive force of a single fine powder is large ° There is no effect in separating powder agglomerates,
Moreover, if the temperature exceeds 850° C., local melting or atomic diffusion may occur between the powder particles, which may cause sintering, which is undesirable.

又、加熱した粗粉砕粉末を粉砕室内に噴射する超音速不
活性ガスは常温でもよいが、前記粉末のキューリー温度
より50℃低い温度より850°C以下に加熱した不活
性ガスの方が好ましい。
Further, the supersonic inert gas used to inject the heated coarsely ground powder into the grinding chamber may be at room temperature, but it is preferable to use an inert gas heated to 850° C. or lower, rather than 50° C. lower than the Curie temperature of the powder.

作  用 火に、第1図に示す気流粉砕機を使って、この発明を実
施する場合の作用について説明する。
The operation of the present invention will be explained using the air flow crusher shown in FIG. 1 as the working flame.

加熱された原料粉末(2)はIJX料ホッパー(1)か
らガス供給本管(3)より分岐したガス送入管(4)の
途中に装入される。すると該ガス送入管(4)を流れる
超音速不活性ガスによって、原料粉末は粉砕室(5)に
噴射される。この際原料粉末と超音速ガスとの衝撃、粉
末同志の衝突、粉末と粉砕室壁との衝突、摩砕により、
微粉砕される。
The heated raw material powder (2) is charged from the IJX material hopper (1) into a gas feed pipe (4) branched from the gas feed main pipe (3). Then, the raw material powder is injected into the grinding chamber (5) by the supersonic inert gas flowing through the gas feed pipe (4). At this time, due to the impact between the raw powder and the supersonic gas, the collision between the powders, the collision between the powder and the wall of the grinding chamber, and the grinding,
Finely ground.

そして、Wi微粉末はサイクロン(6)の中央で浮遊旋
回し、上方へ開口した排出管(7)を通って排出不活性
ガスと共に外部へ排出され分級される。一方極微粉末を
分離除去した微粉末(8)はサイクロン(6)の底部か
ら排出される。そして、不活性ガスの吹き込みを停止し
九状態で底開口部のストッパー(9)を開き製品として
微粉末(8)を回収する。
Then, the Wi fine powder floats and swirls in the center of the cyclone (6), passes through an upwardly opened discharge pipe (7), and is discharged to the outside together with discharged inert gas and classified. On the other hand, the fine powder (8) from which the extremely fine powder has been separated and removed is discharged from the bottom of the cyclone (6). Then, the blowing of the inert gas is stopped, and the stopper (9) at the bottom opening is opened to collect the fine powder (8) as a product.

実  施  例 実施例1 78%Fe−7%B−15%Nd合金の鋳塊(キューリ
ー温度311℃)をS械粉砕にて粗粉砕した粉末の粒度
分布を第1表に示す。
Examples Example 1 Table 1 shows the particle size distribution of powder obtained by coarsely pulverizing a 78% Fe-7% B-15% Nd alloy ingot (Curie temperature: 311°C) using an S machine.

第1表 上記粗粉砕粉末をAtガス雰囲気中で330”Cに1時
間加熱したのち、第1図に示す気流粉砕機の原料ホッパ
ーからガス送入管へ切出し、320”Cの超音速不活性
ガスに混入して粉砕室に噴射させ、ここで微粉砕しサイ
クロンへ落下させる。すると、微粉末はサイクロン底部
に落下し、極微粉末(粒度2.0μm以下)は排出不活
性ガスと共に排出管を通して上方へ排出される。そして
、サイクロン底部の微粉末は製品として回収した。この
製品粉末の粒度分布を第2表に示す。
Table 1 After heating the above coarsely pulverized powder to 330"C in an At gas atmosphere for 1 hour, it was cut out from the raw material hopper of the air flow mill shown in Fig. 1 to the gas feed pipe, and the supersonic inert powder was heated to 320"C. It is mixed with gas and injected into a grinding chamber, where it is pulverized and dropped into a cyclone. Then, the fine powder falls to the bottom of the cyclone, and the extremely fine powder (particle size of 2.0 μm or less) is discharged upward through the discharge pipe together with the discharged inert gas. The fine powder at the bottom of the cyclone was recovered as a product. The particle size distribution of this product powder is shown in Table 2.

第2表 上記により得た製品粉末(発明法という)及びこの発明
法を使用しないで従来のボールミルにて微粉砕し第2表
に粒度分布を示した従来粉末(比較例という)を、それ
ぞれ磁界の強さ10KOeの磁場中で配向し、加圧力2
.5T/−にて圧縮成型後、Atガス中で1100”C
X2時間の焼結を行ない、さらに600℃X1時間の時
効処理を施した。そして、磁気特性を測定した。その結
果を第3表に示す。
Table 2 The product powder obtained as described above (referred to as the invention method) and the conventional powder (referred to as comparative example) which was finely pulverized in a conventional ball mill without using the invention method and whose particle size distribution is shown in Table 2 were subjected to a magnetic field. Oriented in a magnetic field with a strength of 10 KOe, and with an applied force of 2
.. After compression molding at 5T/-, 1100"C in At gas
Sintering was performed for 2 hours, followed by aging treatment at 600° C. for 1 hour. Then, the magnetic properties were measured. The results are shown in Table 3.

第3表 ただし、H3(は4πIがBr値の90%になるHの値
を示す。
In Table 3, H3( indicates the value of H at which 4πI is 90% of the Br value.

上記結果より、この発明の実施により原料の粗粉砕粉末
を粉砕すると共に分級して櫃微細粉末を除去した微粉末
により製造した永久磁石は比較例の従来粉末により製造
されたものに比べ磁気特性  1 !が優れていること
がわかる。
From the above results, it can be seen that the permanent magnet manufactured using the fine powder obtained by pulverizing the raw material coarsely pulverized powder and classifying it to remove the fine powder according to the present invention has better magnetic properties than that manufactured using the conventional powder as a comparative example. ! It turns out that it is excellent.

実施例2 MO・nF6tOs (MはBa * Sr + Pb
で、nは5.4〜6.2、キューリー温度450℃であ
る)を機械粉砕にて平均粒度3〜4μmの原料粉末とじ
九。
Example 2 MO・nF6tOs (M is Ba*Sr + Pb
(where n is 5.4 to 6.2 and the Curie temperature is 450°C) is mechanically pulverized to obtain a raw material powder with an average particle size of 3 to 4 μm.

この原料粉末を大気中で500℃に1時間加熱したのち
、第1図に示す気流粉砕機の原料ホッパーに貯留し、送
入管へ切出し480℃の超音速高温気流にて粉砕室に噴
射させ微粉砕を行ない、サイクロンへ送カ出す。粉砕さ
れた微粉末は、製品粉末とじてサイクロン下部より回収
されるとともに、過剰に粉砕された極微粉末(0,3μ
m以下)は、サイクロン上部より排出される。こうして
得られた製品粉末の平均粒度は、0.70μmであった
。この製品粉末(発明法という)及び当該方法によらず
、ボールミpにて粉砕後乾燥して得られた原料粉末(比
較例という)をそれぞれ磁界中で配向し、加圧力0.5
T/dKで圧縮成型後、大気中で1250℃に1時間の
焼結を行ない、磁石特性を測定した結果を第4表に示す
After heating this raw material powder at 500°C in the atmosphere for 1 hour, it is stored in the raw material hopper of the airflow crusher shown in Figure 1, cut into the feed pipe, and injected into the crushing chamber with a supersonic high-temperature air stream of 480°C. It is finely pulverized and sent to a cyclone. The crushed fine powder is collected together with the product powder from the bottom of the cyclone, and the excessively crushed ultrafine powder (0.3μ
m or less) are discharged from the upper part of the cyclone. The average particle size of the product powder thus obtained was 0.70 μm. This product powder (referred to as the invention method) and the raw material powder (referred to as a comparative example) obtained by crushing and drying with a ball mill P regardless of the method were oriented in a magnetic field, and a pressing force of 0.5
After compression molding at T/dK, sintering was performed at 1250° C. for 1 hour in the air, and the magnetic properties were measured. Table 4 shows the results.

(以下余白) 第  4  表 又、発明法及び比較例の曜料粉末をボールミルで湿式解
砕を行なって得られたスラリー状原料を上記と同様の工
程にて磁界中成型し、焼結したものの磁石特性の測定逼
を第5表に示す。
(Margins below) Table 4 Also, slurry raw materials obtained by wet crushing the daylily powders of the invention method and comparative example in a ball mill were molded in a magnetic field in the same process as above and sintered. Table 5 shows the measurements of magnetic properties.

第5表 これらの結果から、この発明により原料粉末を粉砕しな
がら分級して、極微細粉末を除去した微粉末により製造
した永久磁石は、従来法の原料粉末より!@l!遺した
ものに比べて磁気特性が優れていることがわかる。
Table 5 From these results, it can be seen that the permanent magnet manufactured using the fine powder obtained by crushing and classifying the raw material powder according to the present invention and removing ultrafine powder is better than the raw material powder produced by the conventional method. @l! It can be seen that the magnetic properties are superior to those left behind.

発明の効果 この発明は、上記のごとく、原料の粗粉砕粉末を粉砕す
ると共に分級して極微細粉末を除去した単一微細粒子か
らなる微粉末を永久磁石成型用原料とするものであり、
この微粉末により優れた磁気特性を有する永久磁石を製
造することができる。
Effects of the Invention As described above, the present invention uses a fine powder consisting of a single fine particle obtained by crushing and classifying a coarsely pulverized raw material powder to remove ultrafine powder as a raw material for forming a permanent magnet.
A permanent magnet with excellent magnetic properties can be manufactured using this fine powder.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明を実施するための気流粉砕機の一例を
示す説明図である。 1・・・原料ホッパー、2・・・原料粉末、3・・・ガ
ス供給本管、4・・・ガス送入管、5・・・粉砕室、6
・・・サイクロン、7・・・排出管、8・・・微粉末、
9・・・ストッパ+ O
FIG. 1 is an explanatory diagram showing an example of a pneumatic crusher for carrying out the present invention. 1... Raw material hopper, 2... Raw material powder, 3... Gas supply main pipe, 4... Gas feed pipe, 5... Grinding chamber, 6
...Cyclone, 7...Discharge pipe, 8...Fine powder,
9...Stopper + O

Claims (1)

【特許請求の範囲】[Claims] 550℃以下のキューリー温度を有し、粒度500μm
以下の永久磁石用強磁性粗粉砕粉末を前記キューリー温
度より50℃低い温度以上850℃以下の温度範囲に加
熱したのち、気流粉砕機のガス送入管内に装入し、該ガ
ス送入管内の超音速不活性ガスにより粉砕室内に噴射し
て微粉末に粉砕すると共に分級することを特徴とする永
久磁石用原料粉末の製造方法。
Curie temperature below 550℃, particle size 500μm
After heating the following ferromagnetic coarsely ground powder for permanent magnets to a temperature range of 50°C lower than the Curie temperature to 850°C or lower, it is charged into the gas feed pipe of the air flow mill, and the A method for producing raw material powder for permanent magnets, which comprises injecting supersonic inert gas into a grinding chamber to grind it into fine powder and classify it.
JP60006201A 1985-01-16 1985-01-16 Production of raw material powder for permanent magnet Pending JPS61166905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60006201A JPS61166905A (en) 1985-01-16 1985-01-16 Production of raw material powder for permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60006201A JPS61166905A (en) 1985-01-16 1985-01-16 Production of raw material powder for permanent magnet

Publications (1)

Publication Number Publication Date
JPS61166905A true JPS61166905A (en) 1986-07-28

Family

ID=11631925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60006201A Pending JPS61166905A (en) 1985-01-16 1985-01-16 Production of raw material powder for permanent magnet

Country Status (1)

Country Link
JP (1) JPS61166905A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990005367A1 (en) * 1988-11-08 1990-05-17 Tdk Corporation Magnetic powder, its production method, magnetic recording medium and magnetic recording method
JPH03124003A (en) * 1989-10-06 1991-05-27 Tdk Corp Magnetic powder, manufacture thereof, magnetic recording medium and magnetic recording method
JPH06340903A (en) * 1993-02-24 1994-12-13 Hitachi Metals Ltd Production of rare-earth permanent magnet raw powder
WO2010139615A1 (en) * 2009-06-06 2010-12-09 Arno Friedrichs Method for processing metal powder
JP2012529560A (en) * 2009-06-06 2012-11-22 フリードリヒス アルノ Method for processing metal powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527612A (en) * 1978-08-19 1980-02-27 Chiyou Lsi Gijutsu Kenkyu Kumiai Silicon base

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527612A (en) * 1978-08-19 1980-02-27 Chiyou Lsi Gijutsu Kenkyu Kumiai Silicon base

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990005367A1 (en) * 1988-11-08 1990-05-17 Tdk Corporation Magnetic powder, its production method, magnetic recording medium and magnetic recording method
JPH03124003A (en) * 1989-10-06 1991-05-27 Tdk Corp Magnetic powder, manufacture thereof, magnetic recording medium and magnetic recording method
JPH06340903A (en) * 1993-02-24 1994-12-13 Hitachi Metals Ltd Production of rare-earth permanent magnet raw powder
WO2010139615A1 (en) * 2009-06-06 2010-12-09 Arno Friedrichs Method for processing metal powder
JP2012529560A (en) * 2009-06-06 2012-11-22 フリードリヒス アルノ Method for processing metal powder
US9132481B2 (en) 2009-06-06 2015-09-15 Arno Friedrichs Method of processing metal powder

Similar Documents

Publication Publication Date Title
JP3231034B1 (en) Rare earth magnet and manufacturing method thereof
JP3257936B2 (en) Ferrite powder for bonded magnet and bonded magnet using the same
WO1999038174A1 (en) Bonded magnet, magnet roll and ferrite powder to be used for their preparation, and method for producing the same
JPH066728B2 (en) Method for producing raw material powder for permanent magnet material
JPS61166905A (en) Production of raw material powder for permanent magnet
JPH07106172A (en) Manufacture of ferrite magnet
JPH0913151A (en) Rare earth-iron-nitrogen base magnetic material and its production
JPS6227506A (en) Production of alloy powder for rare earth-boron-ferrous permanent magnet
JP2626820B2 (en) Manufacturing method of high fine powder blast furnace cement
JPH05258928A (en) Permanent magnet and powder thereof and manufacturing method thereof
JPS61166901A (en) Production of raw material powder for permanent magnet
JPH05175022A (en) Manufacture of magnet and bonded magnet
JPH0439205B2 (en)
JP4063005B2 (en) Rare earth-transition metal-nitrogen based magnet powder and method for producing the same
JPH01294802A (en) Production of flat fine fe-ni-al alloy powder
JPH0438807A (en) Manufacture of strontium-ferrite magnet high in residual magnetic flux density and coercive force
CN108405141A (en) The method for manufacturing manganese bismuth alloy
JP2002332507A (en) Rare earth magnet and production method therefor
JPS6227505A (en) Production of rare earth alloy powder
JP2002033207A (en) Rare-earth magnet and manufacturing method thereof
JPH06290923A (en) Manufacture of ferrite magnet
JP3569500B2 (en) Method for producing cadmium oxide powder for nickel cadmium storage battery
JP2002175931A (en) Rare earth magnet and its manufacturing method
JPH05135930A (en) Rare-earth permanent magnet
JP2000294417A (en) Method of producing magnetic powder for bonded magnet and bonded magnet