JPH0891841A - Production of ferroelectric film - Google Patents

Production of ferroelectric film

Info

Publication number
JPH0891841A
JPH0891841A JP6231786A JP23178694A JPH0891841A JP H0891841 A JPH0891841 A JP H0891841A JP 6231786 A JP6231786 A JP 6231786A JP 23178694 A JP23178694 A JP 23178694A JP H0891841 A JPH0891841 A JP H0891841A
Authority
JP
Japan
Prior art keywords
ferroelectric
film
ferroelectric film
alkoxide
precursor solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6231786A
Other languages
Japanese (ja)
Inventor
Sakiko Sato
咲子 佐藤
Masayoshi Koba
正義 木場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP6231786A priority Critical patent/JPH0891841A/en
Publication of JPH0891841A publication Critical patent/JPH0891841A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To produce a dense ferroelectric film having satisfactory surface smoothness. CONSTITUTION: An org. soln. contg. an alkoxide of at least one of metallic elements constituting a multiple oxide ferroelectric is mixed with an org. soln. contg. an alkoxide or salt of the other or its hydrate, a prescribed amt. of water is added to the resultant mixture under heating to prepare a precursor soln. and the objective ferroelectric film is formed using this precursor soln.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は強誘電体膜の製造方法に
関し、より詳細には記憶素子、焦電素子、圧電素子又は
電気光学素子等に用いられる強誘電体膜をゾル−ゲル法
により製造する強誘電体膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ferroelectric film, and more specifically, a ferroelectric film used for a memory element, a pyroelectric element, a piezoelectric element, an electro-optical element or the like by a sol-gel method. The present invention relates to a method for manufacturing a ferroelectric film to be manufactured.

【0002】[0002]

【従来の技術】従来、コンピュータ等に利用される不揮
発性の半導体記憶素子としては、ROM、PROM(Programmab
le ROM)、EPROM 又はEEPROM等があり、特にEEPROMは電
気的に記憶内容を書き換えることができるので、有望視
されている。このEEPROMにおいては、MIS (metal insu
lator semiconductor)電界効果型トランジスタのゲート
絶縁膜中のトラップ領域あるいはフローティングゲート
をシリコン基板からの電荷注入によって帯電させ、その
静電誘導によって基板の表面伝導度を変調する方法が知
られている。しかし、電子のトンネル効果を利用した素
子においては、シリコン基板からの電荷注入の際に大き
な電界が必要であったり、SiO2 絶縁膜中にトラップ
が発生して書換え回数が制限されるという問題があっ
た。
2. Description of the Related Art Conventionally, ROM and PROM (Programma
le ROM), EPROM, EEPROM, etc., and EEPROM is particularly promising because its memory contents can be electrically rewritten. In this EEPROM, MIS (metal insu
There is known a method in which a trap region or a floating gate in a gate insulating film of a field effect transistor is charged by injecting electric charges from a silicon substrate and the surface conductivity of the substrate is modulated by the electrostatic induction. However, in the device utilizing the tunnel effect of electrons, there is a problem that a large electric field is required at the time of injecting charges from the silicon substrate or a trap is generated in the SiO 2 insulating film to limit the number of times of rewriting. there were.

【0003】一方、EEPROMとは全く異なった方法で記憶
内容を書き換える不揮発性メモリとして、強誘電体の自
発分極を利用した方法も考えられている。強誘電体とし
ては、例えば、PZT(チタン酸ジルコン酸鉛)、PL
ZT〔(Pb1-y Lay )(Zrx Ti1-x )O3 〕、
PEZT〔(Pb1-y Ery )(ZrX Ti1-X
3 〕、PbTiO3 (チタン酸鉛)、BaTiO
3 (チタン酸バリウム)、BTO(Bi4 Ti3 12
等が挙げられるが、現在、最も有望な不揮発性メモリ用
材料としてPZT及びBTOが精力的に研究されてい
る。
On the other hand, it is stored in a completely different way from EEPROM.
As a non-volatile memory that rewrites the contents,
A method utilizing the polarization is also considered. As a ferroelectric
For example, PZT (lead zirconate titanate), PL
ZT [(Pb1-yLay) (ZrxTi1-x) O3],
PEZT [(Pb1-yEry) (ZrXTi1-X)
O 3], PbTiO3(Lead titanate), BaTiO
3(Barium titanate), BTO (BiFourTi3O12)
Etc., but for the most promising non-volatile memory at present
PZT and BTO are being studied vigorously as materials
It

【0004】Bi4 Ti3 12は、層状ペロブスカイト
構造を持つ強誘電体であり、そのPr及びEcはa軸方
向で50μC/cm2 、50Kv/cm、c軸方向で4
μC/cm2 、4Kv/cmと優れた強誘電性を示し、
PZTに遜色がなく、各種デバイス開発への適用が検討
されている。特に最近では、DRAM等の半導体メモリ
と組み合わせることで、高密度かつ高速に動作する強誘
電メモリ(FRAM)の開発が行われている。
Bi 4 Ti 3 O 12 is a ferroelectric substance having a layered perovskite structure, and its Pr and Ec are 50 μC / cm 2 , 50 Kv / cm in the a-axis direction and 4 in the c-axis direction.
μC / cm 2 , 4Kv / cm and excellent ferroelectricity,
PZT is comparable to PZT, and its application to various device development is being considered. In particular, recently, a ferroelectric memory (FRAM) which operates at high density and at high speed has been developed by combining with a semiconductor memory such as DRAM.

【0005】これらの強誘電体膜の下地電極としては、
耐酸化性や格子の整合性等を考慮して白金電極が用いら
れることが多い。このような、強誘電体膜を利用した記
憶素子として、MFS(metal ferroelectric semiconducto
r )−FET 構造とキャパシタ構造とよばれるものがあ
る。MFS-FET 構造は、MIS-FET のゲート絶縁膜を強誘電
体膜としたもので、強誘電体の自発分極の向き及び大き
さ等に応じてその自発分極を補償するように半導体表面
に誘起される電荷によって半導体表面の伝導度が変調さ
れることを利用してメモリ内容の読み出しをするもので
ある。MFS-FET 構造では、読み出し時にメモリ内容を破
壊しない非破壊読み出しが可能であるが、シリコン半導
体に直接強誘電体膜を形成するため、界面準位密度が定
まりにくかったり、半導体表面に酸化膜等が形成される
などという問題もあり、安定な素子作製が困難であると
いう欠点があった。
As a base electrode for these ferroelectric films,
Platinum electrodes are often used in consideration of oxidation resistance and lattice matching. As a memory element using such a ferroelectric film, MFS (metal ferroelectric semiconducto
r) -There are what are called FET structures and capacitor structures. The MFS-FET structure uses a ferroelectric film as the gate insulating film of the MIS-FET, and induces it on the semiconductor surface to compensate the spontaneous polarization depending on the direction and size of the spontaneous polarization of the ferroelectric. The contents of the memory are read by utilizing the fact that the conductivity of the semiconductor surface is modulated by the generated charges. With the MFS-FET structure, nondestructive read is possible without destroying the memory contents at the time of read, but since the ferroelectric film is formed directly on the silicon semiconductor, the interface state density is difficult to determine and the oxide film, etc. on the semiconductor surface. However, there is a problem that it is difficult to manufacture a stable element.

【0006】また、キャパシタ構造は、強誘電体膜を電
極で挟んだ構造をしており、強誘電体の自発分極の分極
反転による反転電流の有無を検出してメモリ内容の読み
出しをするものである。キャパシタ構造では、読み出し
時に蓄積されたメモリ内容を破壊してしまうので読み出
し後にもう一度メモリ内容を書き直すという動作(リラ
イト動作)を行わなければならないという欠点がある
が、白金電極等の上に強誘電体膜を形成するため、比較
的良質の膜が得られやすく、現在製品化に向けて盛んに
開発が進められている。
Further, the capacitor structure has a structure in which a ferroelectric film is sandwiched between electrodes, and the presence or absence of a reversal current due to polarization reversal of the spontaneous polarization of the ferroelectric substance is detected to read the memory contents. is there. The capacitor structure has a drawback in that the memory content accumulated during reading is destroyed, so the operation of rewriting the memory content must be performed again after reading (rewrite operation). Since a film is formed, a relatively good quality film can be easily obtained, and development is currently being actively pursued toward commercialization.

【0007】[0007]

【発明が解決しようとする課題】現在このような不揮発
性メモリ素子に用いられる強誘電体膜は、グレインサイ
ズの大きな結晶粒からなり、表面凹凸が激しい。よって
Bi4 Ti3 12の薄膜化はゾル−ゲル法やMOCVD
法、スパッタ法により行われているが、膜厚の低減に伴
いリ−ク電流が大きくなり、充分な強誘電性が得られな
いという問題があった。更に、メモリ素子を作製するに
は、微細加工によるキャパシタ形成が必要であるが、将
来の高集積化を考えた時に、1μm2 程度のキャパシタ
サイズが想定されている。強誘電体膜のグレインサイズ
が大きい場合、上述の微小キャパシタ形成にあたり、均
一な微細加工が困難になるため、各メモリ素子の特性が
ばらつき、歩留りに大きな影響を与えるという問題が予
想される。
The ferroelectric film currently used in such a non-volatile memory device is composed of crystal grains having a large grain size, and the surface unevenness is severe. Therefore, the thin film of Bi 4 Ti 3 O 12 is formed by the sol-gel method or MOCVD.
However, there is a problem that the leak current becomes large as the film thickness is reduced, and sufficient ferroelectricity cannot be obtained. Further, in order to manufacture a memory element, it is necessary to form a capacitor by microfabrication, but in consideration of future high integration, a capacitor size of about 1 μm 2 is assumed. When the grain size of the ferroelectric film is large, it is difficult to perform uniform fine processing in forming the above-mentioned minute capacitor, and therefore it is expected that the characteristics of each memory element will vary and the yield will be greatly affected.

【0008】本発明は、上記問題に鑑みなされたもので
あり、微結晶粒子により、緻密で表面平滑性を有する強
誘電体膜の製造方法を提供することを目的としている。
The present invention has been made in view of the above problems, and it is an object of the present invention to provide a method for producing a ferroelectric film which is dense and has surface smoothness by using microcrystalline particles.

【0009】[0009]

【課題を解決するための手段】本発明の強誘電体膜の製
造方法によれば、複合酸化物強誘電体を構成する金属元
素の少なくとも1種のアルコキシドを含有する有機溶液
と、複合酸化物強誘電体を構成する他の金属元素のアル
コキシド又は塩もしくはその水和物を含有する有機溶液
とをそれぞれ調製し、これらの溶液を混合した後、加温
下に所定量の水を添加して前駆体溶液を調製し、該前駆
体溶液から強誘電体膜を形成させることからなる強誘電
体膜の製造方法が提供される。
According to the method for manufacturing a ferroelectric film of the present invention, an organic solution containing at least one alkoxide of a metal element constituting a composite oxide ferroelectric, and a composite oxide. An organic solution containing an alkoxide of another metal element or a salt or a hydrate thereof that constitutes the ferroelectric is prepared, and after mixing these solutions, a predetermined amount of water is added under heating. Provided is a method for producing a ferroelectric film, which comprises preparing a precursor solution and forming a ferroelectric film from the precursor solution.

【0010】本発明の強誘電体膜の製造方法における複
合酸化物強誘電体とは、2種の金属元素が共存する酸化
物を意味し、例えば、BTO(Bix Tiy Z )、P
bTiO3 (チタン酸鉛)、BaTiO3 (チタン酸バ
リウム)、SrTiO3 (チタン酸ストロンチウム)、
LiNbO3 (ニオブ酸リチウム)、KNbO3 (ニオ
ブ酸カリウム)及びLiTaO3 (タンタル酸リチウ
ム)等を挙げることができる。
[0010] The composite oxide ferroelectric in the manufacturing method of the ferroelectric film of the present invention means an oxide of two metal elements coexist, e.g., BTO (Bi x Ti y O Z), P
bTiO 3 (lead titanate), BaTiO 3 (barium titanate), SrTiO 3 (strontium titanate),
Examples thereof include LiNbO 3 (lithium niobate), KNbO 3 (potassium niobate), and LiTaO 3 (lithium tantalate).

【0011】本発明において溶液を調製する際、複合酸
化物強誘電体を構成する複数金属元素の少なくとも1種
をアルコキシドとして用いられる。この金属元素アルコ
キシドは、有機溶剤に溶解して用いられる。アルコキシ
ドとしては、メトキシド、エトキシド、プロポキシド、
ブトキシド等の低級アルコキシドが好ましい。具体的に
は、Pb(OCH3 2 、Zr(OCH3 2 、Ti
(OCH3 2 、Mg(OCH3 2 、Bi(OC
3 3 、Nb(OCH3 5 、LiOCH3 、Ta
(OCH3 5 、Sr(OCH3 5 、Pb(OC2
5 2 、Zr(OC2 5 2 、Ti(OC
2 5 2 、Mg(OC2 5 2 Bi(OC2
5 3 、Nb(OC2 5 5 、LiOC2 5 、Ta
(OC2 5 5 、Sr(OC2 5 5 、Pb(OC
3 7 2 、Zr(OC3 7 2 、Ti(OC
3 7 2 、Mg(OC3 7 2 、Bi(OC
3 7 3 、Nb(OC3 7 5、LiOC3 7
Ta(OC3 7 5 、Sr(OC3 7 5 等が挙げ
られる。
In preparing the solution in the present invention, the complex acid
At least one of a plurality of metal elements constituting a ferroelectric compound
Is used as the alkoxide. This metal element Arco
Xide is used by dissolving it in an organic solvent. Alkoxy
Examples of the methoxide, ethoxide, propoxide,
Lower alkoxides such as butoxide are preferred. Specifically
Is Pb (OCH3)2, Zr (OCH3)2, Ti
(OCH3)2, Mg (OCH3)2, Bi (OC
H3)3, Nb (OCH3)Five, LiOCH3, Ta
(OCH3)Five, Sr (OCH3)Five, Pb (OC2H
Five)2, Zr (OC2H Five)2, Ti (OC
2HFive)2, Mg (OC2HFive)2, Bi (OC2H
Five) 3, Nb (OC2HFive)Five, LiOC2HFive, Ta
(OC2HFive)Five, Sr (OC2HFive)Five, Pb (OC
3H7)2, Zr (OC3H7)2, Ti (OC
3H 7)2, Mg (OC3H7)2, Bi (OC
3H7)3, Nb (OC3H7)Five, LiOC3H7,
Ta (OC3H7)Five, Sr (OC3H7)FiveEtc.
To be

【0012】また、複合酸化物強誘電体を構成する他の
金属元素はアルコキシド、又は塩もしくは塩の水和物と
して用いられる。これらは、上記と同様に有機溶剤に溶
解して用いられる。アルコキシドとしては、上記に挙げ
たものと同様のものを使用することができる。塩又はそ
の水和物としては、有機酸塩(例:酢酸塩等)、無機酸
塩(例:硝酸塩等)及びこれらの塩の水和物が挙げられ
る。具体的には、Pb(CH3 COO)2 、Zr(CH
3 COO)2 、Ti(CH3 COO)2 、Mg(CH3
COO)2 、Bi(CH3 COO)3 、Nb(CH3
OO)5 Li(CH3 COO)、Ta(CH3 COO)
5 、Sr(CH3 COO)5 、Pb(NO3 2 、Zr
(NO3 2 、Ti(NO3 2 、Mg(NO3 2
Bi(NO3 3 、Nb(NO3 5 、LiNO3 、T
a(NO3 5 、Sr(NO3 5 等又はそれら存在し
うる水和物が挙げられる。
[0012] In addition, other constituents of the composite oxide ferroelectric
The metal element is an alkoxide, or a salt or a hydrate of a salt.
Used. These are dissolved in organic solvent as above.
It is used by understanding. Examples of the alkoxide are listed above.
The same as the one used can be used. Salt or so
The hydrates include organic acid salts (eg acetate, etc.), inorganic acids
Examples include salts (eg nitrates) and hydrates of these salts.
It Specifically, Pb (CH3COO)2, Zr (CH
3COO)2, Ti (CH3COO)2, Mg (CH3
COO)2, Bi (CH3COO)3, Nb (CH3C
OO)FiveLi (CH3COO), Ta (CH3COO)
Five, Sr (CH3COO)Five, Pb (NO3)2, Zr
(NO3)2, Ti (NO3)2, Mg (NO3)2,
Bi (NO3)3, Nb (NO3)Five, LiNO3, T
a (NO3)Five, Sr (NO3) FiveEtc. or they exist
Hydrate.

【0013】有機溶剤としては、上記金属アルコキシド
等を溶解することができる有機溶剤であれば特に限定さ
れるものではないが、例えば、低級アルコール類(例:
メタノール、エタノール、プロパノール)、多価アルコ
ール類(例:エチレングリール、ジエチレングリコー
ル、トリエチレングリコール、グリセリン等)、ケトン
類(例:メチルエチルケトン、アセチルケトン、アセト
ン等)、エステル類(例:酢酸メチル、酢酸エチル
等)、エーテル類(例:ジメチルエーテル、ジエチルエ
ーテル等)、シクロアルカン類(例:シクロヘキサン、
シクロヘキサノール等)、アミド類(例:ホルムアミ
ド)、芳香族炭化水素(例:トルエン、キシレン等)が
挙げられる。なかでも、使用する金属アルコキシドのア
ルコキシド成分と同じ炭素数を有するアルコールであっ
て、80℃以上の沸点を有するものが好ましい。
The organic solvent is not particularly limited as long as it is an organic solvent capable of dissolving the above metal alkoxide and the like. For example, lower alcohols (eg:
Methanol, ethanol, propanol), polyhydric alcohols (eg: ethylene glycol, diethylene glycol, triethylene glycol, glycerin, etc.), ketones (eg: methyl ethyl ketone, acetyl ketone, acetone, etc.), esters (eg: methyl acetate, Ethyl acetate etc.), ethers (eg dimethyl ether, diethyl ether etc.), cycloalkanes (eg cyclohexane,
Cyclohexanol etc.), amides (eg formamide), aromatic hydrocarbons (eg toluene, xylene etc.). Among them, alcohols having the same carbon number as the alkoxide component of the metal alkoxide used and having a boiling point of 80 ° C. or higher are preferable.

【0014】本発明の製造方法においては、ゾル−ゲル
法を利用する。例えば、上記の金属アルコキシド、塩等
を含有する有機溶液をそれぞれ調製したのち、一方の溶
液を他方の溶液に加える。この際、複合酸化物強誘電体
を構成する一方の金属元素のアルコキシドを含有する有
機溶液と、他方の金属元素のアルコキシドを含有する有
機溶液とを混合した場合には、適宜酸等を添加すること
が必要である。また、一方の金属元素のアルコキシドを
含有する有機溶液と、他方の金属元素の塩等を含有する
有機溶液とを混合した場合には、さらに酸等を添加しな
くてもよい。酸としては、例えば、酢酸、蟻酸、プロピ
オン酸等の飽和脂肪族モノカルボン酸や、しゅう酸、マ
ロン酸、コハク酸等の飽和脂肪族ジカルボン酸、硝酸等
を挙げることができる。
In the manufacturing method of the present invention, a sol-gel method is used. For example, an organic solution containing the above metal alkoxide, salt, etc. is prepared, and then one solution is added to the other solution. At this time, when an organic solution containing an alkoxide of one metal element constituting the composite oxide ferroelectric and an organic solution containing an alkoxide of the other metal element are mixed, an acid or the like is appropriately added. It is necessary. Further, when the organic solution containing the alkoxide of one metal element and the organic solution containing the salt of the other metal element are mixed, it is not necessary to add an acid or the like. Examples of the acid include saturated aliphatic monocarboxylic acids such as acetic acid, formic acid, and propionic acid; saturated aliphatic dicarboxylic acids such as oxalic acid, malonic acid and succinic acid; and nitric acid.

【0015】上記のように、金属アルコキシド等を含む
溶液を混合したのち、加温下に所定量の水を添加して前
駆体溶液を調製する。これにより、縮重合が行われ、所
望の前駆体溶液を得ることができる。つまり、一定の温
度に加温しながら所定量の水を加えるか、一定の温度に
加温し、その温度で一定の時間保持した後、その温度を
保持しながら所定量の水を加える。その際の加温の温度
は35〜100℃が好ましく、40℃〜80℃が特に好
ましい。また、溶液は、上記一定の温度に10〜120
分間、好ましくは30〜40分間保持することが好まし
い。溶液に添加する水の量は、強誘電体膜の組成に合わ
せて適宜調製されるが、その添加量は、複合酸化物強誘
電体の前駆体溶液のモル数の0.01〜5当量、好まし
くは0.5〜2当量であることが好ましい。なお、水を
添加する前に、溶液における各元素の濃度を調製するた
めに、上記有機溶剤を加えてもよい。
As described above, a solution containing a metal alkoxide or the like is mixed, and then a predetermined amount of water is added under heating to prepare a precursor solution. Thereby, polycondensation is performed and a desired precursor solution can be obtained. That is, a predetermined amount of water is added while being heated to a constant temperature, or it is heated to a constant temperature and held at that temperature for a certain time, and then a predetermined amount of water is added while maintaining that temperature. The heating temperature at that time is preferably 35 to 100 ° C, particularly preferably 40 to 80 ° C. In addition, the solution is 10 to 120 at the above constant temperature.
It is preferable to hold it for a minute, preferably 30 to 40 minutes. The amount of water added to the solution is appropriately adjusted according to the composition of the ferroelectric film, but the addition amount is 0.01 to 5 equivalents of the number of moles of the precursor solution of the complex oxide ferroelectric, It is preferably 0.5 to 2 equivalents. Before adding water, the above organic solvent may be added to adjust the concentration of each element in the solution.

【0016】前駆体溶液を調製する際の複合酸化物強誘
電体を構成する金属元素のアルコキシド、塩又はその塩
の水和物、これらを溶解するための有機溶剤等の使用量
は特に限定されるものではなく、最終的に形成される強
誘電体膜の組成により、適宜調製することができ、通常
ゾル−ゲル法による前駆体溶液を調製する際に使用する
混合量を使用することができる。
When preparing the precursor solution, the amount of the alkoxide of the metal element constituting the complex oxide ferroelectric, the salt or the hydrate of the salt, and the amount of the organic solvent or the like for dissolving them is not particularly limited. It can be appropriately prepared depending on the composition of the ferroelectric film to be finally formed, and the mixing amount usually used when preparing the precursor solution by the sol-gel method can be used. .

【0017】上記のようにして前駆体溶液を調製した
後、この前駆体溶液を、基板上あるいは電極上に塗布
し、公知の工程を経て強誘電体膜を形成することができ
る。例えば、基板上又は電極上等に、上記前駆体溶液
を、スピンコート法により塗布することができる。その
際の条件は、特に限定されるものではなく、所望の回転
数等を適宜設定することができる。塗布する場合の膜厚
は特に限定されるものではないが、100〜200nm程
度が好ましい。また、この塗布膜を酸素雰囲気下、30
0〜450℃程度の温度範囲で、30〜90分間程度仮
焼成を行ってもよい。上記の操作を複数回繰り返した
後、酸素雰囲気中で500〜800℃程度の温度範囲
で、5〜20秒間程度高速熱処理(RTA)により結晶
化を行い、所望の膜厚、所望の配向を有する強誘電体膜
を形成することができる。
After preparing the precursor solution as described above, the precursor solution can be applied onto the substrate or the electrode, and the ferroelectric film can be formed through known steps. For example, the above precursor solution can be applied onto a substrate or an electrode by a spin coating method. The conditions at that time are not particularly limited, and a desired rotation speed and the like can be set appropriately. The thickness of the applied film is not particularly limited, but is preferably about 100 to 200 nm. In addition, this coating film was subjected to an oxygen atmosphere at 30
Temporary firing may be performed in the temperature range of 0 to 450 ° C. for 30 to 90 minutes. After repeating the above operation a plurality of times, crystallization is performed by rapid thermal processing (RTA) in an oxygen atmosphere at a temperature range of about 500 to 800 ° C. for about 5 to 20 seconds to obtain a desired film thickness and a desired orientation. A ferroelectric film can be formed.

【0018】このように強誘電体膜を形成することによ
り、所望の素子、例えばキャパシタ等を形成するとがで
きる。用いる基板は特に限定されるものではなく、シリ
コン基板、化合物半導体基板、ポリカーボネート等の絶
縁性基板等を使用することができる。また、キャパシタ
を構成する場合には、例えば、シリコン基板上に所望の
絶縁膜、酸化膜等及び電極を形成した上に強誘電体膜を
形成し、さらにその上に、上部電極を形成することがで
きる。上部及び下部電極としては、公知の方法、例えば
スパッタリング法、蒸着法等により形成することができ
る。また、電極材料としては公知の材料を用いることが
でき、特に限定されるものではないが、Ti、Ta、P
t、Pt/Ti、Pt/Ta等を用いることができる。
その際の電極の膜厚も特に限定されるものではない。
By forming the ferroelectric film in this way, a desired element such as a capacitor can be formed. The substrate used is not particularly limited, and a silicon substrate, a compound semiconductor substrate, an insulating substrate such as polycarbonate, or the like can be used. In the case of forming a capacitor, for example, a ferroelectric film is formed on a desired insulating film, an oxide film, etc. and an electrode formed on a silicon substrate, and an upper electrode is formed on the ferroelectric film. You can The upper and lower electrodes can be formed by a known method such as a sputtering method or a vapor deposition method. A known material can be used as the electrode material, and although not particularly limited, Ti, Ta, P
t, Pt / Ti, Pt / Ta or the like can be used.
The film thickness of the electrode at that time is not particularly limited.

【0019】強誘電体膜が微小なグレインサイズを有す
る場合には、微細加工が容易となり、均一なキャパシタ
を得ることができる。つまり、グレインサイズがキャパ
シタサイズに比較して大きい場合には、グレイン形状が
加工形状に大きく影響するため、直線状にエッチングを
行ってもエッチング端部がギザギザとなって均一な微細
加工ができない。従ってグレインサイズが微細であれ
ば、均一な微細加工ができ、キャパシタ形状が均一とな
り、キャパシタ特性の高信頼性が保証されることとな
る。
When the ferroelectric film has a fine grain size, fine processing becomes easy and a uniform capacitor can be obtained. That is, when the grain size is larger than the capacitor size, the grain shape has a large effect on the processed shape, and even if etching is performed linearly, the etching end portion becomes jagged and uniform fine processing cannot be performed. Therefore, if the grain size is fine, uniform fine processing can be performed, the capacitor shape becomes uniform, and high reliability of the capacitor characteristics is guaranteed.

【0020】[0020]

【作用】本発明の強誘電体膜の製造方法によれば、ゾル
−ゲル法で強誘電体膜を作製する際、複合酸化物強誘電
体を構成するアルコキシドを含有する有機溶液等をそれ
ぞれ調製した後、それら溶液を混合し、加熱下に所定量
の水を添加することにより、溶液の縮重合反応の進行度
が変わる。それにより、後工程における前駆体溶液の塗
布膜の仮焼成による有機成分の除去されやすさに違いが
生じ、作製された強誘電体薄膜の緻密さに影響を及ぼす
こととなる。また、溶液に水を添加する際、40℃〜8
0℃に加熱することにより、溶液における縮合反応が促
進されることとなる。
According to the method for producing a ferroelectric film of the present invention, when a ferroelectric film is produced by the sol-gel method, an organic solution containing an alkoxide constituting a complex oxide ferroelectric is prepared. After that, the solutions are mixed, and a predetermined amount of water is added with heating to change the degree of progress of the polycondensation reaction of the solution. This causes a difference in the ease with which the organic components are removed by pre-baking the coating film of the precursor solution in the subsequent step, which affects the denseness of the manufactured ferroelectric thin film. In addition, when water is added to the solution, 40 ° C to 8 ° C.
By heating to 0 ° C., the condensation reaction in the solution will be promoted.

【0021】[0021]

【実施例】本発明に係る強誘電体膜の製造方法として、
Bi4 Ti3 12膜の製造方法の実施例を以下に詳述す
る。 実施例1 本実施例においては、図1に示したように、N型シリコ
ン基板1を用い、シリコン基板1表面に膜厚200nm
の熱酸化膜2を形成し、さらにこの熱酸化膜2上に膜厚
30nmのTi膜3をスパッタ法で形成した。このTi
膜3上に膜厚200nmの白金膜4を下部電極として同
様にスパッタ法で形成した。
EXAMPLES As a method for manufacturing a ferroelectric film according to the present invention,
An example of the method for manufacturing the Bi 4 Ti 3 O 12 film will be described in detail below. Example 1 In this example, as shown in FIG. 1, an N-type silicon substrate 1 was used, and a film thickness of 200 nm was formed on the surface of the silicon substrate 1.
Was formed on the thermal oxide film 2, and a Ti film 3 having a film thickness of 30 nm was formed on the thermal oxide film 2 by the sputtering method. This Ti
A platinum film 4 having a thickness of 200 nm was similarly formed on the film 3 as a lower electrode by the sputtering method.

【0022】次いで、Bi4 Ti3 12膜を製造するた
めに用いるBi4 Ti3 12前駆体溶液を合成した。ま
ず、硝酸ビスマス5水和塩(Bi(NO3 3 5H
2 O)3.88g(0.88モル)を氷酢酸10mlに
溶解した。その後、Bi:Ti=4:3の組成になるよ
うに、1モル/リットルのチタンイソプロポキサイド
(Ti(i−OC3 7 4 )の2−メトキシエタノー
ル溶液6mlを添加し、1時間室温で攪拌した。
[0022] was then synthesized a Bi 4 Ti 3 O 12 precursor solution used to produce the Bi 4 Ti 3 O 12 film. First, bismuth nitrate pentahydrate (Bi (NO 3 ) 3 5H
2 O) (3.88 g, 0.88 mol) was dissolved in 10 ml of glacial acetic acid. Then, 6 ml of a 2-methoxyethanol solution of 1 mol / liter of titanium isopropoxide (Ti (i-OC 3 H 7 ) 4 ) was added so that the composition was Bi: Ti = 4: 3, and the mixture was added for 1 hour. Stir at room temperature.

【0023】次いで、この溶液を加熱し、40℃×30
分間に保ちながらBi4 Ti3 12のモル数に対して2
当量(288μl)のH2 Oを添加し、2−メトキシエ
タノ−ルをさらに添加することにより粘度調製し、前駆
体溶液を合成した。なお、ゾル安定化剤としてはジエタ
ノ−ルアミン(DEA)を用いた。続いて、Ti膜3及
び白金膜4等が形成された基板1上に、上記Bi4 Ti
312前駆体溶液を滴下し、スピンコーティングを50
00rpm×20秒で行い、乾燥ゲルを大気中115℃
×15分間の熱処理で作製し、最後に有機物の熱分解を
400℃×60分間の熱処理で行った。これらの工程で
得られる膜厚は、50nmである。この一連の操作を4
回繰り返すことにより、強誘電体膜として、膜厚200
nmのBi4 Ti3 12膜5をゾル−ゲル法によって形
成した。
Then, this solution is heated to 40 ° C. × 30
2 minutes to the number of moles of Bi 4 Ti 3 O 12
An equivalent amount (288 μl) of H 2 O was added, and the viscosity was adjusted by further adding 2-methoxyethanol to synthesize a precursor solution. Diethanolamine (DEA) was used as the sol stabilizer. Then, on the substrate 1 on which the Ti film 3 and the platinum film 4 etc. are formed, the Bi 4 Ti
Add 3 O 12 precursor solution dropwise and spin coat to 50
00 rpm × 20 seconds, dry gel in air at 115 ° C.
It was produced by heat treatment for 15 minutes, and finally, thermal decomposition of organic matter was performed by heat treatment at 400 ° C. for 60 minutes. The film thickness obtained in these steps is 50 nm. This series of operations 4
By repeating the process twice, a ferroelectric film having a film thickness of 200 can be obtained.
The Bi 4 Ti 3 O 12 film 5 having a thickness of 5 nm was formed by the sol-gel method.

【0024】その後、Bi4 Ti3 12膜5に、赤外線
ランプが装備されたアニーリング装置を用いて熱処理を
施して結晶化を行った。熱処理条件は、大気圧、100
%酸素雰囲気中で、アニーリング温度は650℃、アニ
ーリング時間は15秒間であった。得られたBi4 Ti
3 12膜5のX線回折パターンを図2に示す。これによ
るとBi4 Ti3 12の回折ピ−クのみが認められ、ラ
ンダム配向の結晶膜であることが分かった。
Thereafter, the Bi 4 Ti 3 O 12 film 5 was crystallized by heat treatment using an annealing device equipped with an infrared lamp. The heat treatment conditions are atmospheric pressure and 100
In a% oxygen atmosphere, the annealing temperature was 650 ° C. and the annealing time was 15 seconds. Obtained Bi 4 Ti
The X-ray diffraction pattern of the 3 O 12 film 5 is shown in FIG. According to this, only the diffraction peak of Bi 4 Ti 3 O 12 was observed, and it was found that the film was a randomly oriented crystal film.

【0025】また、得られたBi4 Ti3 12膜5の表
面構造の走査型電子顕微鏡(SEM)により観察したと
ころ、水の添加により、結晶粒の微小化とBi4 Ti3
12膜の緻密化が実現していることが分かった。このB
4 Ti3 12膜5のグレインサイズは0.1μm であ
った。さらに、得られたBi4 Ti3 12膜5表面の平
均粗さ(Ra)を原子間力顕微鏡により触針法で測定を
行った。その結果を表1に示す。
The surface structure of the obtained Bi 4 Ti 3 O 12 film 5 was observed by a scanning electron microscope (SEM). As a result, the addition of water reduced the size of crystal grains and Bi 4 Ti 3 film.
It was found that the O 12 film was densified. This B
The grain size of the i 4 Ti 3 O 12 film 5 was 0.1 μm. Further, the average roughness (Ra) of the surface of the obtained Bi 4 Ti 3 O 12 film 5 was measured by a stylus method with an atomic force microscope. The results are shown in Table 1.

【0026】これによると水の添加により表面平滑性の
向上が確認できた。
According to this, it was confirmed that the addition of water improved the surface smoothness.

【0027】[0027]

【表1】 [Table 1]

【0028】また、得られたBi4 Ti3 12膜5上
に、膜厚100nmの白金膜6を上部電極としてスパッ
タ法で形成し、強誘電体不揮発性メモリを形成した。こ
の強誘電体不揮発性メモリの電流−電圧(I−V)特性
を、水を添加せずに形成した強誘電体膜による強誘電体
不揮発性メモリの比較とともに図3に示す。この強誘電
体不揮発性メモリのリ−ク電流は2V印加時に10-7
/cm2 台であり、水添加無し(10-3A/cm2 台)
のものより低減することができた。
Further, a platinum film 6 having a film thickness of 100 nm was formed as an upper electrode on the obtained Bi 4 Ti 3 O 12 film 5 by the sputtering method to form a ferroelectric non-volatile memory. The current-voltage (IV) characteristic of this ferroelectric non-volatile memory is shown in FIG. 3 together with a comparison of the ferroelectric non-volatile memory with the ferroelectric film formed without adding water. The leak current of this ferroelectric nonvolatile memory is 10 −7 A when 2 V is applied.
/ Cm 2 unit, no water addition (10 -3 A / cm 2 unit)
It was possible to reduce it.

【0029】さらに、得られた強誘電体不揮発性メモリ
の9V印加時のヒステリシスを測定した結果を図4に示
す。この強誘電体不揮発性メモリの残留分極の値は約1
2μC/cm2 であり、従来報告されている(P.C.Josh
i and S.B.Krupanidhi:J.Appl.Phys.72(1992)5827)よ
りも非常に大きい値が得られた。表1に水の添加量と5
V印加時の残留分極の関係を示す。これにより水の添加
量が多くなるにつれ、残留分極の値が大きくなっている
ことが分かる。 実施例2 実施例1と同様の方法で調製した2つの溶液に、Bi4
Ti3 12のモル数に対して0.5、1当量(72μ
l,144μl)のH2 Oを添加してBi4 Ti 3 12
前駆体溶液をそれぞれ調製した。これらの前駆体溶液を
用いて、実施例1と同様方法で、同様の基板に強誘電体
膜であるBi4 Ti3 12膜を形成し、次いで強誘電体
不揮発性メモリを作製した。
Further, the obtained ferroelectric non-volatile memory
Fig.4 shows the result of measurement of hysteresis when applying 9V of
You The value of remanent polarization of this ferroelectric nonvolatile memory is about 1.
2 μC / cm2And has been reported previously (P.C.Josh
i and S.B.Krupanidhi: J.Appl.Phys.72 (1992) 5827)
A very large value was obtained. Table 1 shows the amount of water added and 5
The relationship of remanent polarization when V is applied is shown. This will add water
The value of remanent polarization increases as the amount increases.
I understand. Example 2 Two solutions prepared in the same manner as in Example 1 were mixed with BiFour
Ti3O120.5, 1 equivalent (72μ
1, 144 μl) H2Bi with O addedFourTi 3O12
Each precursor solution was prepared. These precursor solutions
In the same manner as in Example 1, using the same substrate on the ferroelectric
Bi is a filmFourTi3O12Form a film, then ferroelectric
A non-volatile memory was produced.

【0030】また、これらの水の各添加量に対するBi
4 Ti3 12膜の表面の平均粗さ(Ra)と5V印加時
の残留分極を表1に示す。また、0.5当量又は1当量
の水を添加した前駆体溶液を用いて得られた強誘電体不
揮発性メモリの電流−電圧(I−V)特性をそれぞれ図
5及び図6に示す。 比較例1 実施例1と同様の方法で調製した溶液に、水を添加せ
ず、Bi4 Ti3 12前駆体溶液を調製した。この前駆
体溶液を用いて、実施例1と同様方法で、同様の基板に
強誘電体膜であるBi4 Ti3 12膜を形成し、強誘電
体不揮発性メモリを作製した。
Bi for each addition amount of these waters
Table 1 shows the average roughness (Ra) of the surface of the 4 Ti 3 O 12 film and the residual polarization when 5 V was applied. 5 and 6 show the current-voltage (IV) characteristics of the ferroelectric nonvolatile memory obtained by using the precursor solution to which 0.5 equivalent or 1 equivalent of water was added. Comparative Example 1 A Bi 4 Ti 3 O 12 precursor solution was prepared without adding water to the solution prepared in the same manner as in Example 1. Using this precursor solution, a Bi 4 Ti 3 O 12 film, which is a ferroelectric film, was formed on the same substrate in the same manner as in Example 1 to manufacture a ferroelectric nonvolatile memory.

【0031】また、このBi4 Ti3 12膜の表面構造
を走査型電子顕微鏡(SEM)で観察したところ、上記
実施例のものよりも粗く平滑性が好ましくないBi4
312膜であった。このBi4 Ti3 12膜のグレイ
ンサイズは0.3μmであった。また、このBi4 Ti
3 12膜の表面の平均粗さ(Ra)の測定結果を表1に
示す。
Further, the Bi 4 Ti 3 O 12 a surface structure of the film was observed by a scanning electron microscope (SEM), rough smoothness than that of Example unfavorable Bi 4 T
It was an i 3 O 12 film. The grain size of this Bi 4 Ti 3 O 12 film was 0.3 μm. In addition, this Bi 4 Ti
Table 1 shows the measurement results of the average roughness (Ra) of the surface of the 3 O 12 film.

【0032】この強誘電体不揮発性メモリのリ−ク電流
は2V印加時に大きすぎてヒステリシスの観測は不可能
であった。 実施例3 水を添加する際の溶液の加熱温度を25〜80℃まで種
々変化させる以外は実施例1と同様の方法で前駆体溶液
を調製し、各前駆体溶液の様子を観察した。その結果を
表2に示す。
The leak current of this ferroelectric non-volatile memory was too large when 2 V was applied, and it was impossible to observe hysteresis. Example 3 A precursor solution was prepared in the same manner as in Example 1 except that the heating temperature of the solution when water was added was changed to 25 to 80 ° C., and the appearance of each precursor solution was observed. The results are shown in Table 2.

【0033】[0033]

【表2】 [Table 2]

【0034】なお、水を添加しない場合の前駆体溶液
は、空気に接する状態で放置すると、2、3日で白色沈
殿が観察された。これは、空気中の水が溶液中に取り込
まれ、使用したチタンイソプロポキサイドが加水分解
し、Ti(OH)4 が形成されたためであると考えられ
る。一方、上記のように溶液を40℃以上で加熱した場
合には、空気に接する状態で保存しても、2、3ヵ月後
でも白色沈殿は観察されず、成膜に使用可能であること
が確認された。これは、加熱によりチタンイソプロポキ
サイドの加水分解が行なわれる前に硝酸ビスマスとチタ
ンイソプロポキサイドがすみやかに縮重合されたためと
考えられる。
When the precursor solution to which water was not added was left in contact with air, a white precipitate was observed in a few days. It is considered that this is because water in the air was taken into the solution and the used titanium isopropoxide was hydrolyzed to form Ti (OH) 4 . On the other hand, when the solution is heated at 40 ° C. or higher as described above, no white precipitate is observed even after 2 or 3 months even if it is stored in a state of being in contact with air, and it can be used for film formation. confirmed. This is presumably because bismuth nitrate and titanium isopropoxide were rapidly polycondensed before the hydrolysis of titanium isopropoxide by heating.

【0035】[0035]

【発明の効果】本発明の強誘電体膜の製造方法によれ
ば、グレインサイズの小さい結晶粒の強誘電体、即ち、
緻密かつ平滑な薄膜が再現性良く製造できることから、
当該材料が本来有する優れた強誘電性を薄膜状態でも有
効に得ることが可能となる。従って、強誘電体不揮発性
メモリ等への応用にも十分対応可能な強誘電体薄膜が提
供できる。
According to the method of manufacturing a ferroelectric film of the present invention, the ferroelectric substance of crystal grains having a small grain size, that is,
Since a dense and smooth thin film can be manufactured with good reproducibility,
It is possible to effectively obtain the excellent ferroelectricity inherent in the material even in a thin film state. Therefore, it is possible to provide a ferroelectric thin film that is sufficiently applicable to applications such as a ferroelectric nonvolatile memory.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の強誘電体膜の製造方法により形成され
た強誘電体膜を用いたキャパシタを示す要部の概略断面
図である。
FIG. 1 is a schematic cross-sectional view of a main part showing a capacitor using a ferroelectric film formed by a method for manufacturing a ferroelectric film of the present invention.

【図2】本発明の強誘電体膜の製造方法の実施例1によ
り形成した強誘電体膜のX線回折パターン図である。
FIG. 2 is an X-ray diffraction pattern diagram of a ferroelectric film formed according to Example 1 of the method for manufacturing a ferroelectric film of the present invention.

【図3】本発明の強誘電体膜の製造方法の実施例1及び
比較例1により形成した強誘電体膜の電流−電圧(I−
V)特性を示すグラフである。
FIG. 3 shows the current-voltage (I- of the ferroelectric film formed in Example 1 and Comparative Example 1 of the method for manufacturing a ferroelectric film of the present invention.
V) is a graph showing characteristics.

【図4】本発明の強誘電体膜の製造方法の実施例1によ
り形成した強誘電体膜のヒステリシスル−プを示す図で
ある。
FIG. 4 is a diagram showing a hysteresis loop of a ferroelectric film formed according to Example 1 of the method for manufacturing a ferroelectric film of the present invention.

【図5】本発明の強誘電体膜の製造方法により水を0.
5当量添加して形成した強誘電体膜の電流−電圧(I−
V)特性を示すグラフである。
FIG. 5 is a drawing showing that the method for producing a ferroelectric film according to the present invention can reduce the amount of water to 0.
Current-voltage (I- of the ferroelectric film formed by adding 5 equivalents
V) is a graph showing characteristics.

【図6】本発明の強誘電体膜の製造方法により水を1当
量添加して形成した強誘電体膜の電流−電圧(I−V)
特性を示すグラフである。
FIG. 6 shows current-voltage (IV) of a ferroelectric film formed by adding 1 equivalent of water by the method for manufacturing a ferroelectric film of the present invention.
It is a graph which shows a characteristic.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 シリコン熱酸化膜 3 Ti膜 4 Pt下部電極 5 強誘電体層 6 Pt上部電極 1 Silicon Substrate 2 Silicon Thermal Oxide Film 3 Ti Film 4 Pt Lower Electrode 5 Ferroelectric Layer 6 Pt Upper Electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複合酸化物強誘電体を構成する金属元素
の少なくとも1種のアルコキシドを含有する有機溶液
と、複合酸化物強誘電体を構成する他の金属元素のアル
コキシド又は塩もしくはその水和物を含有する有機溶液
とをそれぞれ調製し、これらの溶液を混合した後、加温
下に所定量の水を添加して前駆体溶液を調製し、該前駆
体溶液から強誘電体膜を形成させることからなる強誘電
体膜の製造方法。
1. An organic solution containing at least one alkoxide of a metal element constituting a complex oxide ferroelectric, and an alkoxide or salt of another metal element constituting a complex oxide ferroelectric or a hydrate thereof. After preparing each of the organic solutions containing the substances, mixing these solutions, and adding a predetermined amount of water under heating to prepare a precursor solution, and forming a ferroelectric film from the precursor solution. A method of manufacturing a ferroelectric film comprising:
【請求項2】 複合酸化物強誘電体がBi4 Ti3 12
である請求項1記載の強誘電体膜の製造方法。
2. A composite oxide ferroelectric material comprising Bi 4 Ti 3 O 12
The method for manufacturing a ferroelectric film according to claim 1, wherein
【請求項3】 水の添加量が複合酸化物強誘電体の前駆
体溶液のモル数の0.01当量以上5当量以下であり、
溶液の加温温度が40℃以上80℃以下である請求項1
又は2のいずれか1つに記載の強誘電体膜の製造方法。
3. The amount of water added is 0.01 equivalent or more and 5 equivalents or less of the number of moles of the precursor solution of the complex oxide ferroelectric,
The heating temperature of the solution is 40 ° C. or higher and 80 ° C. or lower.
Or the method for manufacturing a ferroelectric film according to any one of 2 above.
JP6231786A 1994-09-27 1994-09-27 Production of ferroelectric film Pending JPH0891841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6231786A JPH0891841A (en) 1994-09-27 1994-09-27 Production of ferroelectric film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6231786A JPH0891841A (en) 1994-09-27 1994-09-27 Production of ferroelectric film

Publications (1)

Publication Number Publication Date
JPH0891841A true JPH0891841A (en) 1996-04-09

Family

ID=16929010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6231786A Pending JPH0891841A (en) 1994-09-27 1994-09-27 Production of ferroelectric film

Country Status (1)

Country Link
JP (1) JPH0891841A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972096A (en) * 1997-01-18 1999-10-26 Tokyo Ohka Kogyo Co., Ltd. Coating solutions for use in forming bismuth-based ferroelectric thin films
US6197102B1 (en) 1997-01-18 2001-03-06 Tokyo Ohka Kogyo Co., Ltd. Coating solutions for use in forming bismuth-based ferroelectric thin films, and ferroelectric thin films, ferroelectric capacitors and ferroelectric memories formed with said coating solutions, as well as processes for production thereof
JP2001233604A (en) * 2000-02-24 2001-08-28 Kansai Research Institute Application solution for forming thin oxide film, method for producing the same and method for producing thin oxide film
JP2002275390A (en) * 2001-03-15 2002-09-25 Fukuoka Prefecture Crystalline gel dispersing coating solution, and method for forming thin film using crystalline gel dispersing coating solution
JP2004277200A (en) * 2003-03-13 2004-10-07 Seiko Epson Corp Ferroelectric thin film and method for manufacturing the same
US7419579B2 (en) 2004-03-22 2008-09-02 Seiko Epson Corporation Method for manufacturing a ferroelectric film
JP2009094526A (en) * 2008-11-13 2009-04-30 Seiko Epson Corp Solgel solution for forming ferroelectric film, method of manufacturing solgel solution for forming ferroelectric film, ferroelectric film, ferroelectric memory, piezoelectric element, and pyroelectric element
US9969651B2 (en) 2014-04-23 2018-05-15 Ricoh Company, Ltd. Precursor sol-gel solution, electromechanical transducer element, liquid droplet discharge head, and inkjet recording apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5972096A (en) * 1997-01-18 1999-10-26 Tokyo Ohka Kogyo Co., Ltd. Coating solutions for use in forming bismuth-based ferroelectric thin films
US6120912A (en) * 1997-01-18 2000-09-19 Tokyo Ohka Kogyo Co., Ltd. Coating solutions for use in forming bismuth-based ferroelectric thin films, and ferroelectric thin films, ferroelectric capacitors and ferroelectric memories formed with said coating solutions, as well as processes for production thereof
US6197102B1 (en) 1997-01-18 2001-03-06 Tokyo Ohka Kogyo Co., Ltd. Coating solutions for use in forming bismuth-based ferroelectric thin films, and ferroelectric thin films, ferroelectric capacitors and ferroelectric memories formed with said coating solutions, as well as processes for production thereof
US6303231B1 (en) 1997-01-18 2001-10-16 Tokyo Ohka Kogyo Co., Ltd. Coating solutions for use in forming bismuth-based ferroelectric thin films, and ferroelectric memories formed with said coating solutions, as well as processes for production thereof
US6528172B2 (en) 1997-01-18 2003-03-04 Tokyo Ohka Kogyo Co., Ltd. Coating solutions for use in forming bismuth-based ferroelectric thin films, and ferroelectric thin films, ferroelectric capacitors and ferroelectric memories formed with said coating solutions, as well as processes for production thereof
JP2001233604A (en) * 2000-02-24 2001-08-28 Kansai Research Institute Application solution for forming thin oxide film, method for producing the same and method for producing thin oxide film
JP2002275390A (en) * 2001-03-15 2002-09-25 Fukuoka Prefecture Crystalline gel dispersing coating solution, and method for forming thin film using crystalline gel dispersing coating solution
JP2004277200A (en) * 2003-03-13 2004-10-07 Seiko Epson Corp Ferroelectric thin film and method for manufacturing the same
US7419579B2 (en) 2004-03-22 2008-09-02 Seiko Epson Corporation Method for manufacturing a ferroelectric film
JP2009094526A (en) * 2008-11-13 2009-04-30 Seiko Epson Corp Solgel solution for forming ferroelectric film, method of manufacturing solgel solution for forming ferroelectric film, ferroelectric film, ferroelectric memory, piezoelectric element, and pyroelectric element
US9969651B2 (en) 2014-04-23 2018-05-15 Ricoh Company, Ltd. Precursor sol-gel solution, electromechanical transducer element, liquid droplet discharge head, and inkjet recording apparatus

Similar Documents

Publication Publication Date Title
JP3113141B2 (en) Ferroelectric crystal thin film coated substrate, method of manufacturing the same, and ferroelectric thin film device using ferroelectric crystal thin film coated substrate
JP3162717B2 (en) Manufacturing method of integrated circuit
KR100453416B1 (en) Ferroelectric thin films and solutions: compositions and processing
JP3476932B2 (en) Ferroelectric thin film, substrate coated with ferroelectric thin film, and method of manufacturing ferroelectric thin film
TW201314774A (en) Method for producing ferroelectric thin film
JPH09153597A (en) Ferroelectric thin film element, fabrication thereof, and ferroelectric memory element
JP3182909B2 (en) Method of manufacturing ferroelectric capacitor and method of manufacturing ferroelectric memory device
KR100513724B1 (en) Ferroelectric thin film and preparing method thereof
JPH0891841A (en) Production of ferroelectric film
JPH07267731A (en) Production of ferroelectric film
JP2995290B2 (en) Method of forming PZT-based ferroelectric thin film
JP4324796B2 (en) Ferroelectric film, ferroelectric film manufacturing method, ferroelectric capacitor, and ferroelectric memory
JP2002047011A (en) Method of forming compact perovskite metallic oxide thin film and compact perovskite metallic oxide thin film
JP3105081B2 (en) Manufacturing method of ferroelectric thin film
JP2006186041A (en) Ferroelectric film and its manufacturing method
JP3105080B2 (en) Manufacturing method of ferroelectric thin film
JP4042276B2 (en) Method for forming Pb-based perovskite metal oxide thin film
JP3026310B2 (en) Method for producing precursor solution for forming ferroelectric thin film and method for producing ferroelectric thin film
JPH08340084A (en) Manufacture of dielectric thin film and dielectric thin film manufactured by it
JPH08157260A (en) Production of thin ferroelectric film
JP2000031411A (en) Manufacture of ferroelectric thin film
JP2000119022A (en) Ferroelectric thin film, raw material solution for forming the same film and formation of film
JPH0695443B2 (en) Method of manufacturing ferroelectric thin film
US5908658A (en) Process for forming thin film metal oxide materials having improved electrical properties
JP2001298164A (en) Bismuth ferroelectric element improved in hysteresis characteristics and producing method therefor