JPH088989B2 - Method for producing noble metal carbon catalyst - Google Patents

Method for producing noble metal carbon catalyst

Info

Publication number
JPH088989B2
JPH088989B2 JP62154761A JP15476187A JPH088989B2 JP H088989 B2 JPH088989 B2 JP H088989B2 JP 62154761 A JP62154761 A JP 62154761A JP 15476187 A JP15476187 A JP 15476187A JP H088989 B2 JPH088989 B2 JP H088989B2
Authority
JP
Japan
Prior art keywords
noble metal
platinum
carbon
particles
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62154761A
Other languages
Japanese (ja)
Other versions
JPS63319050A (en
Inventor
俊秀 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP62154761A priority Critical patent/JPH088989B2/en
Publication of JPS63319050A publication Critical patent/JPS63319050A/en
Publication of JPH088989B2 publication Critical patent/JPH088989B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭素担体上に均一に分散した貴金属微粒子
から成る貴金属炭素触媒、特に燃料電池用炭素触媒の製
造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a noble metal carbon catalyst comprising noble metal fine particles uniformly dispersed on a carbon support, particularly a carbon catalyst for a fuel cell.

(従来技術とその問題点) 燃料電池用白金炭素触媒の開発においては、高活性な
触媒を得るために白金の粒径を小さくして表面積を増大
させることに主眼が置かれてきた。しかし同一重量の触
媒活性粒子において粒子の粒径を小さくすると得られる
粒子数は次の式で表される。
(Prior Art and its Problems) In the development of platinum-carbon catalysts for fuel cells, the focus has been on reducing the particle size of platinum and increasing the surface area in order to obtain highly active catalysts. However, the number of particles obtained by reducing the particle size of the same weight of catalytically active particles is expressed by the following formula.

a=a0×(r0/r) ここで、a0は元の粒子の個数、r0は元の粒径、aは小
さくなった粒子の個数そしてrは小さくなった粒径であ
る。
a = a 0 × (r 0 / r) 3 where a 0 is the original number of particles, r 0 is the original particle size, a is the number of smaller particles, and r is the smaller particle size. .

つまり粒径の減少率の逆数の3倍に比例して白金粒子
数が増加するため、白金粒子の個数が大きくなりすぎ
て、炭素担体上に白金粒子又は白金クラスタが吸着する
サイト数が不足する。そのため先に吸着サイトに吸着し
た白金粒子に重なるように白金粒子が存在したり、吸着
サイトでない炭素担体上に白金粒子が位置して、不安定
な状態で存在している。
In other words, the number of platinum particles increases in proportion to three times the reciprocal of the particle size reduction rate, so the number of platinum particles becomes too large and the number of sites where platinum particles or platinum clusters are adsorbed on the carbon support becomes insufficient. . Therefore, the platinum particles exist so as to overlap with the platinum particles adsorbed on the adsorption site first, or the platinum particles are located on the carbon carrier which is not the adsorption site and exist in an unstable state.

これらの白金粒子を含む貴金属炭素触媒を燃料電池の
電極として使用すると、吸着サイト上以外の不安定な白
金クラスタは炭素担体上を移動し吸着サイト上の白金ク
ラスタと結合(再結晶化)し、又重なり合った白金クラ
スタ同士も結合して表面積を減少させる。つまり従来の
白金微粒子を炭素担体上に担持させた白金触媒では、白
金粒子同士が結合して表面積を減少させ、従って必然的
に触媒活性も減少している。
When a noble metal carbon catalyst containing these platinum particles is used as an electrode of a fuel cell, unstable platinum clusters other than on the adsorption site move on the carbon support and bond (recrystallize) with the platinum cluster on the adsorption site, Also, the overlapping platinum clusters are bonded together to reduce the surface area. That is, in the conventional platinum catalyst in which the platinum fine particles are supported on the carbon support, the platinum particles are bonded to each other to reduce the surface area, and therefore the catalytic activity is inevitably reduced.

これらの欠点を解消するため、例えば吸着された白金
粒子の周囲に多孔質炭素を設けて前記粒子の移動を抑制
する方法(特開昭54−82394号公報)等が提案されてい
るが、いずれも操作が煩雑で効果も十分とは言い難い。
In order to solve these drawbacks, for example, a method has been proposed in which porous carbon is provided around the adsorbed platinum particles to suppress the movement of the particles (JP-A-54-82394). However, the operation is complicated and the effect is not sufficient.

(発明の目的) 本発明は、従来の白金触媒をはじめとする貴金属触媒
と異なり、貴金属微粒子の粒径を小さくしても、各貴金
属微粒子クラスタ同士が結合して表面積を減少させ触媒
活性が低下することのない貴金属炭素触媒を提供するこ
とを目的とする。
(Object of the Invention) Unlike the conventional platinum catalysts and other noble metal catalysts, the present invention reduces the catalyst activity even when the particle size of the noble metal fine particles is reduced, because the noble metal fine particle clusters bind to each other to reduce the surface area. The object is to provide a noble metal carbon catalyst that does not.

(問題点を解決するための手段) 本発明は、炭素担体上に貴金属微粒子を高分散させた
貴金属炭素触媒の製造方法において、炭素担体の三次元
構造を破壊し前記貴金属微粒子の吸着サイト数を増加さ
せた後、前記貴金属微粒子を吸着させることを特徴とす
る貴金属炭素触媒の製造方法である。
(Means for Solving Problems) The present invention is a method for producing a noble metal carbon catalyst in which noble metal fine particles are highly dispersed on a carbon support, and the three-dimensional structure of the carbon support is destroyed to determine the number of adsorption sites of the noble metal fine particles. The method for producing a noble metal carbon catalyst is characterized in that the noble metal fine particles are adsorbed after being increased.

以下本発明をより詳細に説明する。 The present invention will be described in more detail below.

本発明に使用される炭素担体は、通常の触媒の担体と
して使用されるカーボンブラックや活性炭を主とする炭
素系物質から成る担体の総称であり、該炭素担体はグラ
ファイト化されていてもよい。
The carbon carrier used in the present invention is a general term for a carrier composed of a carbonaceous substance mainly containing carbon black or activated carbon, which is used as a carrier for a usual catalyst, and the carbon carrier may be graphitized.

又本発明に使用される貴金属微粒子は、白金族金属の
微粒子、例えば白金、パラジウム、ルテニウム等の微粒
子であり、白金を使用することが最も好ましい。
The noble metal fine particles used in the present invention are fine particles of platinum group metals, for example, fine particles of platinum, palladium, ruthenium, etc., and it is most preferable to use platinum.

前記炭素担体は通常配列の規則性が高いほど吸着サイ
ト数は少なく、単位重量当たり吸着できる貴金属微粒子
数も少なくなる。本発明では該炭素担体の三次元構造の
少なくとも一部を破壊して配列の規則性を低くして吸着
サイト数を増加させることを意図している。
The higher the regularity of the arrangement of the carbon support, the smaller the number of adsorption sites and the smaller the number of noble metal particles that can be adsorbed per unit weight. In the present invention, it is intended to destroy at least a part of the three-dimensional structure of the carbon support to reduce the regularity of the array and increase the number of adsorption sites.

この破壊のための方法のうち最も好ましいのは、溶液
中に懸濁させた前記炭素担体を超音波を使用して撹拌す
ることである。該超音波撹拌の条件は使用する炭素担体
の種類等によりことなるが、一般には10〜50KHzまでの
超音波を発生することのできる超音波ホモジナイザを使
用して数時間撹拌すれば十分である。撹拌は水中で行う
ことが好ましく、該撹拌と同時に前記貴金属微粒子の前
記担体への吸着を行うようにしてもよい。
The most preferred method for this disruption is to sonicate the carbon support suspended in the solution. The conditions of the ultrasonic agitation vary depending on the type of carbon carrier used and the like, but generally, it is sufficient to agitate for several hours using an ultrasonic homogenizer capable of generating an ultrasonic wave of 10 to 50 KHz. The stirring is preferably performed in water, and the precious metal fine particles may be adsorbed to the carrier at the same time as the stirring.

前記以外の破壊方法としては例えば、カーボンブラッ
クを液相又は気相において、適当な酸化剤例えば分子状
酸素や過酸化水素等を使用して部分的に酸化し空洞部分
を形成する方法があり、これにより吸着サイト数を増加
させることができる。
As a destruction method other than the above, for example, there is a method of forming a cavity by partially oxidizing carbon black in a liquid phase or a gas phase using a suitable oxidizing agent such as molecular oxygen or hydrogen peroxide, This can increase the number of adsorption sites.

該貴金属微粒子の吸着には通常前記貴金属単体を吸着
させるのではなく、該貴金属の化合物を吸着させ、その
後該化合物を還元して貴金属単体とすることが好まし
い。
For the adsorption of the noble metal fine particles, it is usually preferable to adsorb the noble metal simple substance instead of adsorbing the noble metal simple substance and then reduce the compound to form the noble metal simple substance.

このようにして製造された貴金属炭素触媒は、吸着サ
イト数が格段に増加しているため、貴金属クラスタが重
なったり結合したりして該貴金属の表面積が減少するこ
とがなく、全貴金属微粒子の殆どが触媒反応に関与する
ことができ、従って触媒活性が大きく向上する。
Since the number of adsorption sites is remarkably increased in the noble metal carbon catalyst produced in this way, the surface area of the noble metal does not decrease due to overlapping and bonding of noble metal clusters, and almost all noble metal fine particles are contained. Can participate in the catalytic reaction, thus greatly improving the catalytic activity.

以下に本発明の実施例を記載するが、該実施例は本発
明を限定するものではない。
Examples of the present invention will be described below, but the examples do not limit the present invention.

(実施例) 炭素担体を水に分散し、塩化白金酸水溶液を加えた。
5分間撹拌した後、20KHzの超音波ホモジナイザを使用
して更に10分間撹拌した。
(Example) A carbon support was dispersed in water, and a chloroplatinic acid aqueous solution was added.
After stirring for 5 minutes, it was further stirred for 10 minutes using a 20 KHz ultrasonic homogenizer.

次にホモジナイザによる撹拌を続けながらギ酸ナトリ
ウムを加えて前記水溶液中の白金を還元して白金クラス
タを形成し、前記炭素担体上へ吸着させた。
Next, while continuing stirring with a homogenizer, sodium formate was added to reduce platinum in the aqueous solution to form platinum clusters, which were adsorbed onto the carbon carrier.

一方同じ操作を超音波ホモジナイザを使用せずに行っ
て白金クラスタを炭素担体上へ吸着させた。
On the other hand, the same operation was performed without using the ultrasonic homogenizer to adsorb the platinum clusters on the carbon support.

前記両触媒を電子顕微鏡で観察し、電子顕微鏡写真を
得た。第1図は前記実施例に従って超音波ホモジナイザ
を使用して製造した白金炭素触媒の210万倍の電子顕微
鏡観察に基づく拡大図であり、第2図は超音波ホモジナ
イザを使用せずに製造した白金炭素触媒の210万倍電子
顕微鏡観察に基づく拡大図である。
Both catalysts were observed with an electron microscope to obtain an electron micrograph. FIG. 1 is an enlarged view of a platinum-carbon catalyst manufactured by using an ultrasonic homogenizer according to the above-mentioned example based on an electron microscope observation at a magnification of 2.1 million times, and FIG. 2 is platinum manufactured without using the ultrasonic homogenizer. It is an enlarged view based on a 2.1 million times electron microscope observation of the carbon catalyst.

両写真中、濃く写っている部分が白金クラスタであ
り、容易に観察されるように、第2図の白金クラスタは
重なり合い分散度が低く、表面積も小さくなっていると
思われるのに対し、第1図の白金クラスタは高度に分散
に微小なクラスタが重なることなく担体上に均一に位置
している。
In both photographs, the dark areas are platinum clusters. As can be easily observed, the platinum clusters in Fig. 2 seem to have a low degree of overlap and a small surface area, whereas The platinum clusters in Fig. 1 are highly dispersed and evenly distributed on the carrier without overlapping of minute clusters.

(発明の効果) 本発明では、炭素担体上に貴金属微粒子を高分散させ
るに際し、炭素担体の三次元構造を破壊し前記貴金属微
粒子の吸着サイト数を増加させるようにしてある。従っ
て微小な触媒粒子は担体上に吸着してクラスタを形成す
るが、吸着サイト数が十分に存在するため該クラスタが
単独で吸着サイトに位置し、クラスタ同士が重なったり
結合したりしてその表面積を減少させることがない。こ
れにより触媒微粒子の殆どが触媒表面に露出し反応に使
用されることができるので、触媒全体の触媒活性が大き
く向上し、特に燃料電池用触媒としての有用性が非常に
大きなものとなる。
(Effect of the Invention) In the present invention, when highly dispersing noble metal fine particles on the carbon support, the three-dimensional structure of the carbon support is destroyed and the number of adsorption sites of the noble metal fine particles is increased. Therefore, the fine catalyst particles are adsorbed on the carrier to form clusters, but since there are enough adsorption sites, the clusters are located alone at the adsorption sites, and the clusters overlap or bond with each other Never decreases. As a result, most of the catalyst fine particles are exposed on the surface of the catalyst and can be used for the reaction, so that the catalytic activity of the entire catalyst is greatly improved, and the usefulness as a catalyst for a fuel cell becomes extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は、上記実施例に従って超音波ホモジナイザを使
用して製造した白金炭素触媒の210万倍の電子顕微鏡観
察に基づく拡大図であり、第2図は超音波ホモジナイザ
を使用せずに製造した白金炭素触媒の210万倍電子顕微
鏡観察に基づく拡大図である。
FIG. 1 is an enlarged view of a platinum-carbon catalyst manufactured by using an ultrasonic homogenizer according to the above-described example based on an electron microscope observation at a magnification of 2.1 million times, and FIG. 2 is manufactured without using an ultrasonic homogenizer. It is an enlarged view based on a 2.1 million times electron microscope observation of a platinum carbon catalyst.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】炭素担体上に貴金属微粒子を高分散させた
貴金属炭素触媒の製造方法において、炭素担体の三次元
構造を破壊し前記貴金属微粒子の吸着サイト数を増加さ
せた後、前記貴金属微粒子を吸着させることを特徴とす
る貴金属炭素触媒の製造方法。
1. A method for producing a noble metal carbon catalyst in which noble metal fine particles are highly dispersed on a carbon support, the three-dimensional structure of the carbon support is destroyed to increase the number of adsorption sites of the noble metal fine particles, and then the noble metal fine particles are removed. A method for producing a noble metal carbon catalyst, which comprises adsorbing.
【請求項2】貴金属微粒子が白金の微粒子である特許請
求の範囲第1項に記載の製造方法。
2. The manufacturing method according to claim 1, wherein the noble metal particles are platinum particles.
【請求項3】炭素担体の三次元構造の破壊を超音波ホモ
ジナイザにより行うようにした特許請求の範囲第1項又
は第2項に記載の製造方法。
3. The production method according to claim 1, wherein the three-dimensional structure of the carbon support is destroyed by an ultrasonic homogenizer.
JP62154761A 1987-06-22 1987-06-22 Method for producing noble metal carbon catalyst Expired - Lifetime JPH088989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62154761A JPH088989B2 (en) 1987-06-22 1987-06-22 Method for producing noble metal carbon catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62154761A JPH088989B2 (en) 1987-06-22 1987-06-22 Method for producing noble metal carbon catalyst

Publications (2)

Publication Number Publication Date
JPS63319050A JPS63319050A (en) 1988-12-27
JPH088989B2 true JPH088989B2 (en) 1996-01-31

Family

ID=15591317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62154761A Expired - Lifetime JPH088989B2 (en) 1987-06-22 1987-06-22 Method for producing noble metal carbon catalyst

Country Status (1)

Country Link
JP (1) JPH088989B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3981565B2 (en) * 2001-03-21 2007-09-26 守信 遠藤 Carbon fiber by vapor phase growth method supporting catalytic metal
JP3624196B1 (en) * 2004-02-20 2005-03-02 株式会社フルヤ金属 Particle dispersion composite and solid electrolyte sensor using the same
JP4599223B2 (en) * 2005-05-16 2010-12-15 行政院原子能委員會核能研究所 A method for producing a highly efficient catalyst of platinum and a platinum alloy having a nanonetwork structure.
JP2007313423A (en) * 2006-05-25 2007-12-06 Sumitomo Electric Ind Ltd Metal catalyst, its manufacturing method and fuel cell

Also Published As

Publication number Publication date
JPS63319050A (en) 1988-12-27

Similar Documents

Publication Publication Date Title
Kulesza et al. Electrocatalytic properties of bifunctional Pt/W (VI, V) oxide microstructures electrodeposited on carbon substrates
Tseung et al. Hydrogen spill-over effect on Pt/WO3 anode catalysts
US9099253B2 (en) Electrochemical synthesis of elongated noble metal nanoparticles, such as nanowires and nanorods, on high-surface area carbon supports
EP3027308B1 (en) Method for forming noble metal nanoparticles on a support
KR101132074B1 (en) Platinum Catalysts Obtained by Reducing In-situ Formed Platinum Dioxide
CA1221403A (en) Platinum-iron electrocatalyst and fuel cell electrode using the same
WO2014181873A1 (en) Fuel cell electrode catalyst and method for activating catalyst
US4513094A (en) Single-batch process to prepare noble metal vanadium alloy catalyst on a carbon based support
JP2006228450A (en) Platinum-carbon complex made by having sponge-like platinum nano sheet carried by carbon, and its manufacturing method
JP3407320B2 (en) Polymer electrolyte fuel cell
JPH04141236A (en) Platinoid catalyst and its manufacturing process
CN110586127A (en) Preparation method and application of platinum-cobalt bimetallic hollow nanospheres
JPH088989B2 (en) Method for producing noble metal carbon catalyst
JP2002248350A (en) Method for preparing alloy catalyst and method for manufacturing solid high polymer type fuel cell
CN110931804A (en) CeO carried by Pt-Ni-Cu ternary alloy2Preparation of composite material and research on formic acid catalytic performance of composite material
JP3978470B2 (en) Cathode catalyst for fuel cell and fuel cell using the same
JP2022158317A (en) Fuel cell catalyst and manufacturing method thereof
CN102064327A (en) Positive catalyst platinum/carbon (Pt/C) for direct methanol fuel cell and preparation method thereof
JPWO2006112368A1 (en) Fuel cell electrode catalyst and method for producing the same
JP2000342977A (en) Photochemical catalyst, method for photochemical decomposition, and fuel cell
JP4225306B2 (en) Electrocatalyst for solid polymer electrolyte fuel cell
CN108878902A (en) A kind of preparation and application with the black double effect oxygen electrode catalyst for carrier of iridium
JP2007029799A (en) Manufacturing method of electrode catalyst, and electrode catalyst
KR20180072650A (en) Oxygen-reduction electrocatalyst based on asymmetrical core-shell nanoparticle structure and preparing method of the same
JP2005270863A (en) Manufacturing method of electrode catalyst