JPH0859375A - Metallized substrate - Google Patents

Metallized substrate

Info

Publication number
JPH0859375A
JPH0859375A JP20040794A JP20040794A JPH0859375A JP H0859375 A JPH0859375 A JP H0859375A JP 20040794 A JP20040794 A JP 20040794A JP 20040794 A JP20040794 A JP 20040794A JP H0859375 A JPH0859375 A JP H0859375A
Authority
JP
Japan
Prior art keywords
metallized
substrate
active metal
metallized layer
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20040794A
Other languages
Japanese (ja)
Other versions
JP3577109B2 (en
Inventor
Takayuki Naba
隆之 那波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20040794A priority Critical patent/JP3577109B2/en
Publication of JPH0859375A publication Critical patent/JPH0859375A/en
Application granted granted Critical
Publication of JP3577109B2 publication Critical patent/JP3577109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5127Cu, e.g. Cu-CuO eutectic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE: To obtain a metallized substrate having satisfactory bonding strength, excellent in heat cycle characteristics, also having fine appearance and excellent in wettability with solder. CONSTITUTION: This metallized substrate consists of a ceramic substrate such as a nitride ceramic substrate made of an aluminum nitride sintered compact or a silicon nitride sintered compact and a metallizing layer formed on the ceramic substrate. The metallizing layer is made of an active metal-contg. In-Ag-Cu type metallic material and it is, e.g. formed using paste for metallizing contg. a metallizing layer-forming material obtd. by adding an active metal and In to an Ag-Cu brazing filler metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックス基板上に
メタライズ層を形成したメタライズ基板に係り、特に高
接着強度、高熱サイクル特性を有すると共に、ハンダ濡
れ性等に優れるメタライズ基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metallized substrate in which a metallized layer is formed on a ceramic substrate, and more particularly to a metallized substrate which has high adhesive strength and high thermal cycle characteristics and is excellent in solder wettability.

【0002】[0002]

【従来の技術】セラミックス材料は、一般に、軽量でか
つ高硬度を有する、耐熱性や耐食性に優れる、電気絶縁
性に優れる等という特徴を有しており、これらの特徴を
生かして構造用材料や電気・電子部品用材料等として利
用されている。
2. Description of the Related Art Ceramic materials are generally characterized by being lightweight and having high hardness, excellent heat resistance and corrosion resistance, and excellent electrical insulation. It is used as a material for electrical and electronic parts.

【0003】例えば、高電気絶縁性等の特性を利用し
て、セラミックス基板は電子部品の搭載用基板等として
使用されている。このような場合、回路の形成や電子部
品の搭載部の形成等を目的として、セラミックス基板の
表面に導電性を有する金属化層(メタライズ層)を形成
することが不可欠とされている。
For example, the ceramics substrate is used as a substrate for mounting electronic parts, etc. by utilizing the characteristics such as high electric insulation. In such a case, it is indispensable to form a metallized layer (metallized layer) having conductivity on the surface of the ceramic substrate for the purpose of forming a circuit, forming a mounting portion for electronic components, and the like.

【0004】セラミックス基板上にメタライズ層を形成
する方法としては、Moや W等の高融点金属を用いたメタ
ライズ法、Ti等の活性金属を含む Ag-Cu系ペーストを用
いた厚膜メタライズ法等が使用されている。また、高融
点金属を用いたメタライズ法においても、セラミックス
基板に対する濡れ性を改善し、セラミックス基板とメタ
ライズ層との接合強度を高めるために、Moや W等の高融
点金属を主とするメタライズ層形成材料に、Ti、Zr、Nb
のような活性金属の窒化物等を添加することが行われて
いる。
As a method for forming a metallization layer on a ceramic substrate, a metallization method using a refractory metal such as Mo or W, a thick film metallization method using an Ag-Cu paste containing an active metal such as Ti, etc. Is used. Even in the metallizing method using a refractory metal, in order to improve the wettability with respect to the ceramic substrate and enhance the bonding strength between the ceramic substrate and the metallized layer, a metallized layer mainly composed of a refractory metal such as Mo or W is used. Ti, Zr, Nb as the forming material
Such active metal nitrides and the like have been added.

【0005】[0005]

【発明が解決しようとする課題】ところで、上述したよ
うなメタライズ基板には、メタライズ層とセラミックス
基板との高接合強度が求められる一方、セラミックス基
板の熱膨張率は金属材料のそれに比べて小さいため、こ
の熱膨張差に起因する欠点の発生を抑制することが強く
求められている。すなわち、熱膨張率が大きく異なるメ
タライズ層形成材料によりセラミックス基板の表面にメ
タライズ層を形成すると、接合後の冷却過程で熱膨張差
に起因する残留応力が生じ、外部応力との相乗等によっ
て接合強度が大幅に低下したり、接合後の冷却過程ある
いは冷熱サイクルの付加によって応力の最大点からクラ
ックが発生したり、またメタライズ層が剥離してしまう
等の問題を招いてしまう。
By the way, the metallized substrate as described above is required to have high bonding strength between the metallized layer and the ceramics substrate, while the coefficient of thermal expansion of the ceramics substrate is smaller than that of the metal material. There is a strong demand for suppressing the occurrence of defects due to this difference in thermal expansion. That is, when a metallized layer forming material having a large difference in coefficient of thermal expansion is used to form a metallized layer on the surface of a ceramic substrate, residual stress due to the difference in thermal expansion occurs during the cooling process after bonding, and due to synergism with external stress, the bonding strength is increased. Of the metallized layer is significantly reduced, cracks are generated from the maximum stress point due to the cooling process after joining or the addition of a cooling / heating cycle, and the metallized layer is peeled off.

【0006】このような点に対して、従来のメタライズ
法では、高接合強度は得られても、冷熱サイクル等の付
加に対して十分な信頼性を再現性よく得るまでには至っ
ていない。例えば、メタライズ層を形成したセラミック
ス基板は、半導体素子等の搭載部品として用いられてい
るが、近年の半導体素子の高集積化や大電力化等によっ
て、半導体素子からの放熱量は飛躍的に増大しているこ
とから、冷熱サイクルの付加等に対する信頼性を向上さ
せることが強く望まれている。
On the other hand, in the conventional metallizing method, although high bonding strength can be obtained, sufficient reliability with respect to the addition of a heat cycle or the like has not been reproducibly obtained. For example, a ceramics substrate with a metallized layer is used as a mounting component for semiconductor elements, etc., but due to the recent higher integration of semiconductor elements and higher power consumption, the amount of heat radiation from semiconductor elements dramatically increases. Therefore, it is strongly desired to improve the reliability with respect to the addition of a cooling / heating cycle.

【0007】上述した熱サイクル特性以外にも、従来の
メタライズ基板は様々な問題点を有している。例えば、
Moに TiN等を添加したメタライズ層形成材料は、窒化ア
ルミニウム等の窒化物系セラミックス基板に対して高接
合強度のメタライズ層を形成し得るものの、メタライズ
温度が高いために、セラミックス基板側の粒界構成相等
の液相がメタライズ層内に拡散してメタライズ層表面に
染み出し、外観不良等を招いていた。また、Ag-Cu-Ti系
のメタライズ層は、材質的に半田濡れ性が悪く、半導体
素子の実装信頼性を低下させるというような問題を有し
ていた。
In addition to the above thermal cycle characteristics, the conventional metallized substrate has various problems. For example,
The metallized layer forming material in which TiN is added to Mo can form a metallized layer with high bonding strength on a nitride ceramic substrate such as aluminum nitride.However, since the metallization temperature is high, the grain boundary on the ceramic substrate side is high. A liquid phase such as a constituent phase diffuses into the metallized layer and oozes out on the surface of the metallized layer, resulting in poor appearance. In addition, the Ag-Cu-Ti metallized layer has a problem that the solder wettability is poor in terms of material and the mounting reliability of the semiconductor element is deteriorated.

【0008】本発明は、このような課題を解決するため
になされたもので、良好な接合強度を有すると共に熱サ
イクル特性に優れ、さらに外観が良好で半田濡れ性に優
れるメタライズ基板を提供することを目的とするもので
ある。
The present invention has been made in order to solve the above problems, and provides a metallized substrate having good bonding strength, excellent thermal cycle characteristics, good appearance, and excellent solder wettability. The purpose is.

【0009】[0009]

【課題を解決するための手段と作用】本発明のメタライ
ズ基板は、セラミックス基板と、このセラミックス基板
上に設けられたメタライズ層とを具備するメタライズ基
板において、前記メタライズ層は、活性金属を含むIn-A
g-Cu系金属材料により構成されていることを特徴として
いる。
A metallized substrate of the present invention is a metallized substrate comprising a ceramic substrate and a metallized layer provided on the ceramic substrate, wherein the metallized layer contains an active metal. -A
It is characterized by being composed of a g-Cu based metal material.

【0010】本発明に用いられるセラミックス基板は、
特に限定されるものではなく、酸化アルミニウム焼結
体、ムライト焼結体(3Al2 O 3 −2SiO2 )等の酸化物系
焼結体から、窒化アルミニウム焼結体、窒化ケイ素焼結
体、炭化ケイ素焼結体等の非酸化物系焼結体まで、各種
のセラミックス材料を適用することができ、用途や要求
特性に応じて適宜選択して使用することが可能である。
ただし、特に窒化アルミニウム焼結体や窒化ケイ素焼結
体等からなる窒化物系セラミックス基板に対して有効で
ある。
The ceramic substrate used in the present invention is
It is not particularly limited, but includes oxide-based sintered bodies such as aluminum oxide sintered bodies and mullite sintered bodies (3Al 2 O 3 −2SiO 2 ), aluminum nitride sintered bodies, silicon nitride sintered bodies, and carbonized carbides. Various ceramic materials can be applied up to a non-oxide type sintered body such as a silicon sintered body, and can be appropriately selected and used according to the application and required characteristics.
However, it is particularly effective for a nitride ceramic substrate made of an aluminum nitride sintered body, a silicon nitride sintered body, or the like.

【0011】また、本発明におけるメタライズ層は、例
えばTi、Zr、HfおよびNbから選ばれる少なくとも 1種の
活性金属を含むIn-Ag-Cu系金属材料により構成されたも
のである。ここで、メタライズ層の主成分としては、例
えば Ag-Cuの共晶組成(72%Ag-28%Cu)もしくはその近傍
組成の Ag-Cu系ろう材が例示される。そして、本発明の
メタライズ層は、このような Ag-Cu系ろう材に上記活性
金属とInとを添加した活性金属含有In-Ag-Cu系メタライ
ズ層形成材料、具体的にはこれらを含むメタライズ用ペ
ーストを用いて形成したものである。
The metallized layer in the present invention is made of an In-Ag-Cu based metal material containing at least one active metal selected from Ti, Zr, Hf and Nb. Here, as the main component of the metallized layer, for example, an Ag-Cu brazing material having a eutectic composition of Ag-Cu (72% Ag-28% Cu) or a composition in the vicinity thereof is exemplified. The metallized layer of the present invention is an active metal-containing In-Ag-Cu metallized layer forming material obtained by adding the above-mentioned active metal and In to such an Ag-Cu brazing material, specifically a metallized layer containing these. It is formed by using a paste for use.

【0012】上記したような Ag-Cu系ろう材に添加する
活性金属量は、メタライズ層形成材料の全量に対して 2
〜 6重量% の範囲とすることが好ましく、またInの添加
量はメタライズ層形成材料の全量に対して12〜20重量%
の範囲とすることが好ましい。活性金属量が 2重量% 未
満であると、セラミックス基板特に窒化物系セラミック
ス基板への十分な接合がなされず、 6重量% を超える
と、逆に耐熱サイクル特性の低下を招くおそれがある。
また、インジウム量が12重量% 未満であると、融点の低
下効果や残留応力の低減効果を十分に得ることができ
ず、また20重量% を超えると、脆弱な金属間化合物を生
成しやすくなり、メタライズ層自体の強度低下を招く。
The amount of active metal added to the Ag-Cu brazing material as described above is 2 with respect to the total amount of metallized layer forming material.
The amount of In added is preferably 12 to 20% by weight based on the total amount of the metallized layer forming material.
It is preferable to set it as the range. When the amount of the active metal is less than 2% by weight, the ceramic substrate, particularly the nitride-based ceramic substrate is not sufficiently bonded, and when it exceeds 6% by weight, the heat cycle characteristics may be deteriorated.
Further, if the amount of indium is less than 12% by weight, the melting point lowering effect and the residual stress reducing effect cannot be sufficiently obtained, and if it exceeds 20% by weight, a brittle intermetallic compound is easily formed. However, the strength of the metallized layer itself is reduced.

【0013】上記活性金属含有In-Ag-Cu系メタライズ層
形成材料は、Inにより融点が低下して、通常の1053K か
ら953K程度まで融点が下がる。これにより、例えば実際
のメタライズ層形成のための熱処理を、従来の1073〜 1
173K程度の温度から 973〜1073K程度の温度に低下させ
ることができる。このように、比較的低温での熱処理が
可能となることにより、まずセラミックス基板内の液相
成分の染み出しによる外観不良等を防止することができ
る。
In the active metal-containing In-Ag-Cu-based metallized layer forming material, the melting point is lowered by In, and the melting point is lowered from the usual 1053K to about 953K. As a result, for example, the heat treatment for forming the actual metallization layer is
The temperature can be reduced from about 173K to about 973-1073K. As described above, since the heat treatment can be performed at a relatively low temperature, it is possible to prevent appearance defects and the like due to seepage of liquid phase components in the ceramic substrate.

【0014】また、そもそもInは降伏応力が極めて小さ
く、柔らかい金属であるため、上記熱処理温度の低下と
メタライズ層形成材料自体の降伏応力の低下とによっ
て、メタライズ後の残留応力が低減される。従って、メ
タライズ基板の熱サイクル特性を向上させることが可能
となる。具体的には、熱サイクル試験に対して高サイク
ルまで高接合強度を維持することが可能となる。
Further, since In has a very small yield stress in the first place and is a soft metal, the residual stress after metallization is reduced by the decrease in the heat treatment temperature and the decrease in the yield stress of the metallization layer forming material itself. Therefore, it becomes possible to improve the thermal cycle characteristics of the metallized substrate. Specifically, it becomes possible to maintain high bonding strength up to high cycles in the heat cycle test.

【0015】さらに、In自体は半田合金等の他の金属と
の濡れ性が良好であるため、Inを含むメタライズ層は半
田濡れ性やめっき付着力が優れたものとなる。
Furthermore, since In itself has good wettability with other metals such as solder alloys, the metallized layer containing In has excellent solder wettability and plating adhesion.

【0016】本発明のメタライズ基板は、例えば以下の
ようにして作製することができる。まず、活性金属を添
加したIn-Ag-Cu系メタライズ層形成材料を用意し、これ
に樹脂結合剤および必要に応じて分散媒を添加して、均
一に分散させて所望の粘度のメタライズ用ペーストを作
製する。
The metallized substrate of the present invention can be manufactured, for example, as follows. First, prepare an In-Ag-Cu-based metallization layer forming material to which an active metal has been added, add a resin binder and a dispersion medium as necessary to this, and disperse evenly to obtain a metallizing paste having a desired viscosity. To make.

【0017】次に、上記メタライズ用ペーストをセラミ
ックス基板上に、例えばスクリ―ン印刷法によって所要
の形状に塗布する。メタライズ用ペーストの印刷層を乾
燥させた後に、用いたセラミックス基板に応じた雰囲気
中にて熱処理し、メタライズ層を形成する。熱処理温度
は、前述したように 973〜 1073K程度とすることができ
る。
Next, the above-mentioned metallizing paste is applied to the ceramic substrate in a desired shape by, for example, a screen printing method. After the printed layer of the metallizing paste is dried, it is heat-treated in an atmosphere according to the ceramic substrate used to form a metallized layer. The heat treatment temperature can be about 973 to 1073K as described above.

【0018】ここで、活性金属と例えば窒化物系セラミ
ックス基板中の窒素との反応は、773〜873K程度から進
行し始める。従って、活性金属含有In-Ag-Cu系メタライ
ズ層形成材料を用いた場合には、窒素雰囲気中でメタラ
イズ処理を行っても、上記反応開始温度とメタライズ層
形成材料の液相形成温度との差が小さいことから、メタ
ライズ温度に到達した後においても、活性金属と窒化物
系セラミックス基板中の窒素との反応が十分に進行す
る。
Here, the reaction between the active metal and, for example, nitrogen in the nitride ceramics substrate starts to proceed from about 773 to 873K. Therefore, when the active metal-containing In-Ag-Cu-based metallization layer forming material is used, even if the metallizing treatment is performed in a nitrogen atmosphere, the difference between the reaction initiation temperature and the liquid phase forming temperature of the metallizing layer forming material is different. Is small, the reaction between the active metal and nitrogen in the nitride-based ceramic substrate sufficiently progresses even after the metallization temperature is reached.

【0019】言い換えれば、上記活性金属含有In-Ag-Cu
系メタライズ層形成材料は、973K程度の温度から液相を
形成し、活性金属と窒化物系セラミックス基板との反応
が促進される。この活性金属と窒化物系セラミックス基
板との反応は、活性金属と窒素との反応開始温度とあま
り差のない温度から液相により促進されつつ進行するた
め、結果として雰囲気中の窒素と活性金属との反応は抑
制される。従って、窒素雰囲気中においても十分な接着
強度を得ることが可能となる。このように窒素雰囲気中
でのメタライズ処理が可能となることによって、量産性
に優れた連続炉が使用可能となる。
In other words, the active metal-containing In-Ag-Cu
The material for forming a metallized layer forms a liquid phase from a temperature of about 973 K, and the reaction between the active metal and the nitride ceramics substrate is promoted. The reaction between the active metal and the nitride-based ceramics substrate proceeds while being promoted by the liquid phase from a temperature that is not much different from the reaction initiation temperature between the active metal and nitrogen, and as a result, nitrogen and active metal in the atmosphere Reaction is suppressed. Therefore, it is possible to obtain sufficient adhesive strength even in a nitrogen atmosphere. By enabling the metallizing treatment in the nitrogen atmosphere in this manner, it is possible to use a continuous furnace excellent in mass productivity.

【0020】[0020]

【実施例】次に、本発明の実施例について説明する。EXAMPLES Next, examples of the present invention will be described.

【0021】実施例1 まず、セラミックス基板として、12× 8×1.52mmの窒化
アルミニウム基板(熱伝導率=170W/m K )を用意した。
一方、メタライズ層形成材料として、質量比で14.0%In-
59.0%Ag-23.0%Cu-4.0%Tiの活性金属含有In-Ag-Cu系ろう
材を用意した。この活性金属含有In-Ag-Cu系ろう材粉末
に、適量の結合剤樹脂および分散媒を混合してメタライ
ズ用ペーストを作製した。
Example 1 First, a 12 × 8 × 1.52 mm aluminum nitride substrate (heat conductivity = 170 W / m K) was prepared as a ceramic substrate.
On the other hand, as a material for forming the metallized layer, the mass ratio is 14.0% In-
An In-Ag-Cu based brazing material containing 59.0% Ag-23.0% Cu-4.0% Ti was prepared. The active metal-containing In-Ag-Cu brazing filler metal powder was mixed with an appropriate amount of a binder resin and a dispersion medium to prepare a metallizing paste.

【0022】次に、上記窒化アルミニウム基板の表面
に、メタライズ用ペ―ストをスクリーン印刷し、乾燥さ
せた。この後、メタライズ用ペ―ストを塗布した窒化ア
ルミニウム基板を、 (1)1.33×10-2Pa以下の真空中、
(2)Ar雰囲気中、 (3) N2 雰囲気中で、それぞれ973K×1
0分間の条件で熱処理し、それぞれメタライズ層を形成
した。このようにして 3種類のメタライズ基板を得た。
Next, a metallizing paste was screen-printed on the surface of the aluminum nitride substrate and dried. After that, the aluminum nitride substrate coated with the metallizing paste is (1) in a vacuum of 1.33 × 10 -2 Pa or less,
(2) Ar atmosphere, (3) N 2 atmosphere, 973K × 1 each
Heat treatment was performed for 0 minutes to form a metallized layer. In this way, three types of metallized substrates were obtained.

【0023】また、本発明との比較例として、Mo-TiN系
メタライズ用ペーストを用い、窒化アルミニウム基板に
N2 雰囲気中でメタライズ処理を行って、メタライズ基
板を作製した。
As a comparative example with the present invention, a Mo-TiN metallizing paste was used to form an aluminum nitride substrate.
A metallized substrate was produced by performing a metallization process in an N 2 atmosphere.

【0024】このようにして得た実施例および比較例の
メタライズ基板の特性等を評価した。まず、各メタライ
ズ基板のメタライズ面にNiめっきをそれぞれ施し、外観
を目視検査したところ、上述した実施例による 3種類の
メタライズ基板は汚れもなく、まったく問題はなかっ
た。一方、Mo-TiN系メタライズペーストを用いた比較例
のメタライズ基板は外観不良が発生していた。
The characteristics and the like of the metallized substrates of Examples and Comparative Examples thus obtained were evaluated. First, the metallized surface of each metallized substrate was plated with Ni, and the appearance was visually inspected. As a result, the three types of metallized substrates according to the above-described examples were free from stains and had no problem. On the other hand, the metallized substrate of the comparative example using the Mo-TiN metallized paste had a defective appearance.

【0025】次に、各メタライズ基板の熱サイクル特性
を測定、評価した。まず、熱サイクル試験(TCT) を施す
前に各メタライズ層の密着強度を測定した後、233K×
分+ R.T×10分+398K×30分+ R.T×10分を 1サイク
ルとして TCTを行い、 TCT後のメタライズ層の密着強度
を測定した。その結果として、 TCTサイクル数と密着強
度との関係を図1に示す。
Next, the thermal cycle characteristics of each metallized substrate were measured and evaluated. First, measure the adhesion strength of each metallized layer before performing the thermal cycle test (TCT), then
Min + RT x 10 min + 398K x 30 min + RT x 10 min as one cycle, TCT was performed and the adhesion strength of the metallized layer after TCT was measured. As a result, Fig. 1 shows the relationship between the number of TCT cycles and the adhesion strength.

【0026】図1から明らかなように、実施例によるメ
タライズ基板は、メタライズ処理時の雰囲気にかかわら
ずいずれも優れた TCT特性を有していることが分かる。
一方、比較例によるメタライズ基板は、 TCTサイクル数
の増加と共に密着強度が低下しており、 TCT特性に劣る
ことが分かる。なお、上記実施例のメタライズ基板にお
いて、窒素雰囲気中におけるメタライズ処理によっても
優れた TCT特性が得られているということは、量産性に
優れた連続炉の使用が可能となることを意味する。この
ことはメタライズ基板の製造コストの大幅な低減に繋が
る。
As is clear from FIG. 1, the metallized substrates according to the examples all have excellent TCT characteristics regardless of the atmosphere during the metallizing process.
On the other hand, it can be seen that the metallized substrate according to the comparative example has inferior TCT characteristics because the adhesion strength decreases as the number of TCT cycles increases. The fact that the metallized substrate of the above-mentioned example also exhibits excellent TCT characteristics by the metallization treatment in a nitrogen atmosphere means that it is possible to use a continuous furnace having excellent mass productivity. This leads to a significant reduction in the manufacturing cost of the metallized substrate.

【0027】また、実施例および比較例によるメタライ
ズ基板の半田濡れ性を評価したところ、実施例による各
メタライズ基板は比較例によるメタライズ基板と同様に
良好な半田濡れ性を示した。なお、Inを添加しない活性
金属含有 Ag-Cu系ろう材を用いて、窒化アルミニウム基
板上にメタライズ層を形成したところ、得られたメタラ
イズ層は半田濡れ性が悪く、半導体素子等の実装信頼性
に劣るものであった。 実施例2 表1に組成を示す活性金属含有In-Ag-Cu系メタライズ層
形成材料を用いて、実施例1と同様にメタライズ用ペー
ストを作製し、実施例1と同一の窒化アルミニウム基板
上にメタライズ層を形成した。メタライズ条件は、表1
に示す通りである。このようにして得た各メタライズ基
板の TCT特性を、1000サイクル後の密着強度により評価
した。その結果を併せて表1に示す。
Further, when the solder wettability of the metallized substrates according to the examples and comparative examples was evaluated, each metallized substrate according to the examples showed good solder wettability similarly to the metallized substrate according to the comparative example. When a metallized layer was formed on an aluminum nitride substrate using an active metal-containing Ag-Cu brazing material that does not contain In, the metallized layer obtained had poor solder wettability and mounting reliability of semiconductor elements, etc. Was inferior to Example 2 A metallizing paste was prepared in the same manner as in Example 1 using the active metal-containing In-Ag-Cu-based metallizing layer forming material whose composition is shown in Table 1, and was formed on the same aluminum nitride substrate as in Example 1. A metallized layer was formed. Table 1 shows the metallization conditions.
As shown in. The TCT characteristics of each metallized substrate thus obtained were evaluated by the adhesion strength after 1000 cycles. The results are also shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【発明の効果】以上説明したように、本発明のメタライ
ズ基板によれば、良好な接合強度を有すると共に、熱サ
イクルの印加後においても高接合強度を維持することが
でき、さらに外観不良の防止や半田濡れ性の向上を達成
することができる。よって、高接合強度を有し、かつ熱
サイクルの印加に対する信頼性に優れると共に、外観が
良好で半田濡れ性に優れるメタライズ基板を提供するこ
とが可能となる。
As described above, according to the metallized substrate of the present invention, it has a good bonding strength and can maintain a high bonding strength even after the application of a heat cycle, and further prevent a defective appearance. It is possible to achieve improvement of solder wettability. Therefore, it is possible to provide a metallized substrate having high bonding strength, excellent reliability with respect to application of heat cycles, good appearance, and excellent solder wettability.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例で作製したメタライズ基板の
TCTサイクル数とメタライズ層の密着強度との関係を従
来のメタライズ基板と比較して示す図である。
FIG. 1 shows a metallized substrate manufactured according to an embodiment of the present invention.
It is a figure which shows the relationship between the number of TCT cycles and the adhesion strength of a metallized layer compared with the conventional metallized substrate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス基板と、このセラミックス
基板上に設けられたメタライズ層とを具備するメタライ
ズ基板において、 前記メタライズ層は、活性金属を含むIn-Ag-Cu系金属材
料により構成されていることを特徴とするメタライズ基
板。
1. A metallized substrate comprising a ceramics substrate and a metallized layer provided on the ceramics substrate, wherein the metallized layer is made of an In-Ag-Cu based metal material containing an active metal. Metallized substrate characterized by.
【請求項2】 請求項1記載のメタライズ基板におい
て、 前記メタライズ層は、 2〜 6質量% の活性金属と、12〜
20質量% のInとを含み、残部が実質的に Ag-Cu系ろう材
からなることを特徴とするメタライズ基板。
2. The metallized substrate according to claim 1, wherein the metallized layer contains 2 to 6% by mass of an active metal, and 12 to 6% by mass.
A metallized substrate containing 20% by mass of In and the balance substantially consisting of an Ag-Cu based brazing material.
JP20040794A 1994-08-25 1994-08-25 Metallized substrate Expired - Lifetime JP3577109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20040794A JP3577109B2 (en) 1994-08-25 1994-08-25 Metallized substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20040794A JP3577109B2 (en) 1994-08-25 1994-08-25 Metallized substrate

Publications (2)

Publication Number Publication Date
JPH0859375A true JPH0859375A (en) 1996-03-05
JP3577109B2 JP3577109B2 (en) 2004-10-13

Family

ID=16423810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20040794A Expired - Lifetime JP3577109B2 (en) 1994-08-25 1994-08-25 Metallized substrate

Country Status (1)

Country Link
JP (1) JP3577109B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102151579A (en) * 2011-02-18 2011-08-17 李伟 Copper phosphide catalyst for synthesizing chloroethylene and preparation method thereof
JPWO2019044752A1 (en) * 2017-08-29 2019-11-07 京セラ株式会社 Circuit board and electronic device having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102151579A (en) * 2011-02-18 2011-08-17 李伟 Copper phosphide catalyst for synthesizing chloroethylene and preparation method thereof
JPWO2019044752A1 (en) * 2017-08-29 2019-11-07 京セラ株式会社 Circuit board and electronic device having the same

Also Published As

Publication number Publication date
JP3577109B2 (en) 2004-10-13

Similar Documents

Publication Publication Date Title
JP4077888B2 (en) Ceramic circuit board
EP0574956B1 (en) Metallized circuit substrate comprising nitride type ceramics
KR100241688B1 (en) Metallized ceramic substrate having smooth plating layer and method for producing the same
JP2001168482A (en) Ceramics circuit substrate
JPH09275166A (en) Semiconductor device member using aluminum nitride base material and its manufacturing method
JP3834351B2 (en) Ceramic circuit board
JP3887645B2 (en) Manufacturing method of ceramic circuit board
JPH0957487A (en) Brazing filler metal
JP4557398B2 (en) Electronic element
JP4081865B2 (en) Method for producing conductor composition
JPH08102570A (en) Ceramic circuit board
JP3577109B2 (en) Metallized substrate
JP2003192462A (en) Silicon nitride circuit board and method of producing the same
JPH0597533A (en) Composition for bonding ceramic-metal and bonded product of ceramic-metal
JP3370060B2 (en) Ceramic-metal joint
JPH05226515A (en) Aluminum nitride substrate having metallized layer and the metallizing method thereof
JPH05170552A (en) Aluminum nitride substrate having metallized layer and metallization of the substrate
JPH05201777A (en) Ceramic-metal joined body
JP3560357B2 (en) Manufacturing method of aluminum nitride sintered body
JPH06263554A (en) Jointed substrate of ceramics-metal
JP2003192463A (en) Nitride ceramic copper circuit board
JPH07187839A (en) Nitride ceramics-metal joined body and its production
JP4880830B2 (en) Aluminum nitride substrate with metallized layer
JPH05221759A (en) Aluminum nitride substrate with metallizing layer and metallizing method
JP2000349098A (en) Bonded body of ceramic substrate and semiconductor device, and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040706

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040709

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080716

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080716

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080716

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090716

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100716

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

EXPY Cancellation because of completion of term