JPH10162811A - Electrode material for battery and secondary battery - Google Patents

Electrode material for battery and secondary battery

Info

Publication number
JPH10162811A
JPH10162811A JP32042296A JP32042296A JPH10162811A JP H10162811 A JPH10162811 A JP H10162811A JP 32042296 A JP32042296 A JP 32042296A JP 32042296 A JP32042296 A JP 32042296A JP H10162811 A JPH10162811 A JP H10162811A
Authority
JP
Japan
Prior art keywords
electrode
electrode material
battery
active material
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32042296A
Other languages
Japanese (ja)
Other versions
JP3618492B2 (en
Inventor
Kunio Nishimura
邦夫 西村
Akitaka Sudo
彰孝 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP32042296A priority Critical patent/JP3618492B2/en
Publication of JPH10162811A publication Critical patent/JPH10162811A/en
Application granted granted Critical
Publication of JP3618492B2 publication Critical patent/JP3618492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To increase a battery capacity, restrain expansion at charging-discharging, and lengthen the service life by using a complex by taking an electrode active material in cavities inside an agglomerate formed by intertwining gaseous phase growth carbon fibers with each other, as an electrode material. SOLUTION: In a block-shaped structure body that a part of mutual gaseous phase method carbon fibers having a fiber diameter of 0.01 to 5μm is chemically joind and fixed to carbide and has the size of 5 to 500μm, an agglomerate inside which micro cavities are formed in large numbers is mixed with graphite powder in the mixing ratio of 3 to 20wt.%, and is formed in a paste shape, and is applied to a current collecting body such as copper foil, and an electrode material is formed. When this electrode material is used as a negative electrode or a positive electrode, electric contact of particles of an electrode active material and the carbon fibers increases, and internal resistance is reduced, and electrolytic reaction is effectively caused, and the battery capacity is increased. Expansion of a graphite particle at charging- discharging is also restrained, and deformation of the electrode material is prevented, and the number of chargeable dischargeable times can be increased, and the service life can be lengthened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、二次電池、特に
リチウム二次電池、鉛二次電池などに好適な炭素繊維、
特に気相成長炭素繊維(VGCF)を使用した電池用電
極材(以下、電極材と略記することがある。)に関す
る。
The present invention relates to a carbon fiber suitable for a secondary battery, particularly a lithium secondary battery, a lead secondary battery, and the like.
In particular, the present invention relates to an electrode material for a battery using a vapor-grown carbon fiber (VGCF) (hereinafter sometimes abbreviated as an electrode material).

【0002】[0002]

【従来の技術】従来、この種の気相成長炭素繊維を用い
た電極材として、特開平4−155776号公報に開示
されたものがある。この先行発明の電極材は、コークス
を高温熱処理して得られた黒鉛粉末と気相成長炭素繊維
を混合したものであり、これをリチウムイオン二次電池
の負極として使用するものである。
2. Description of the Related Art Conventionally, as an electrode material using this kind of vapor grown carbon fiber, there is one disclosed in Japanese Patent Application Laid-Open No. 4-155776. The electrode material of the prior invention is a mixture of graphite powder obtained by subjecting coke to high-temperature heat treatment and vapor-grown carbon fibers, and is used as a negative electrode of a lithium ion secondary battery.

【0003】また、特開平4−237971号公報に記
載の電極材は、メソカーボンマイクロビースと気相成長
炭素繊維を混合したもので、これをやはりリチウムイオ
ン二次電池の負極として使用するものである。これらの
先行発明にあっては、二次電池の充放電を繰り返すこと
によって生じる電極活物質である黒鉛粉末等の膨張を防
止でき、電極材の変形、破損を抑えることができ、これ
によって容量低下を防ぐことができるとされている。
The electrode material described in JP-A-4-237971 is a mixture of mesocarbon microbeads and vapor grown carbon fiber, which is also used as a negative electrode of a lithium ion secondary battery. is there. In these prior arts, it is possible to prevent the expansion of the graphite powder, which is an electrode active material, which is caused by repeating charge and discharge of the secondary battery, and to suppress deformation and breakage of the electrode material, thereby reducing the capacity. It is said that can be prevented.

【0004】しかしながら、これらの従来の電極材にあ
っては、黒鉛粉末等と気相成長炭素繊維とが単に混合さ
れた状態にあるだけであるため、黒鉛粉末等の膨潤を気
相成長炭素繊維で十分抑えることができず、容量低下を
防止する効果は十分とは言えない不都合がある。
However, in these conventional electrode materials, the graphite powder and the like and the vapor-grown carbon fiber are merely in a mixed state. Therefore, there is a disadvantage that the effect of preventing the capacity from decreasing is not sufficient.

【0005】[0005]

【発明が解決しようとする課題】よって、本発明におけ
る課題は、充放電の繰り返しによる黒鉛粉末等の電極活
物質の膨張、変形等をより完全に抑えることができ、電
池容量の低下を高度に防止することができる電池用電極
材を得ることにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to completely suppress expansion and deformation of an electrode active material such as graphite powder due to repetition of charge and discharge, and to reduce the battery capacity to a high degree. An object of the present invention is to obtain a battery electrode material that can be prevented.

【0006】[0006]

【課題を解決するための手段】かかる課題は、気相成長
炭素繊維が絡み合って形成された凝集体を用い、この凝
集体の内部の空洞に電極活物質を取り込んだ複合体を電
極材とすることによって解決できる。
An object of the present invention is to use an aggregate formed by entanglement of vapor-grown carbon fibers, and to use, as an electrode material, a composite obtained by incorporating an electrode active material into a cavity inside the aggregate. Can be solved by

【0007】また、本発明では、電極活物質として、黒
鉛粉末以外にLiCoO2などのリチウム含有複合酸化
物の粉末も用いられ、この場合には導電性付与物質とし
てのカーボンブラック、グラファイト粉末などを同時
に、上記凝集体の空洞に取り込むことが好ましい。ま
た、その他の電極活物質として、二酸化鉛、金属鉛の粉
末も使用でき、この場合には得られる電極材は密閉形鉛
二次電池に利用される。
In the present invention, a lithium-containing composite oxide powder such as LiCoO 2 is used as the electrode active material in addition to the graphite powder. In this case, carbon black, graphite powder or the like as a conductivity-imparting substance is used. At the same time, it is preferable to take in the cavities of the aggregate. Further, as other electrode active materials, powders of lead dioxide and metallic lead can be used, and in this case, the obtained electrode material is used for a sealed lead secondary battery.

【0008】上記凝集体には、特定の気相成長法によっ
て得られた樹枝状炭素繊維を圧縮し、高温加熱し、さら
に解砕したものが好ましい。本発明の電極材は、リチウ
ムイオン二次電池や密閉形鉛二次電池の陽極用あるいは
陰極用電極材として好適である。
The above-mentioned aggregate is preferably obtained by compressing dendritic carbon fibers obtained by a specific vapor phase growth method, heating them at a high temperature, and further crushing them. The electrode material of the present invention is suitable as an electrode material for an anode or a cathode of a lithium ion secondary battery or a sealed lead secondary battery.

【0009】[0009]

【作用】電極活物質が凝集体の微細空洞内に取り込まれ
るために、電極活物質の充放電による膨張が制限され、
電極体自体の変形、破壊が防止できる。または凝集体
は、炭素繊維相互の接触が単なる機械的接触ではなく、
炭素繊維が部分的に化学的に結合して繊維が絡みあって
いるので、凝集体の電気抵抗が低く、得られる電極材の
内部抵抗も低くなる。
[Action] Since the electrode active material is taken into the fine cavities of the aggregate, expansion due to charge and discharge of the electrode active material is limited,
Deformation and destruction of the electrode body itself can be prevented. Or aggregates, the contact between carbon fibers is not just mechanical contact,
Since the carbon fibers are partially chemically bonded and entangled, the electrical resistance of the aggregate is low, and the internal resistance of the obtained electrode material is also low.

【0010】[0010]

【発明の実施の形態】以下、本発明を詳しく説明する。
本発明で使用される凝集体は、繊維径が0.01〜5μ
mの気相法炭素繊維が凝集し、その繊維相互の接点の一
部がタール、ピッチなどの炭素物質の炭化物によって化
学的に結合して固着された大きさが5〜500μmのフ
ロック状または糸鞠状の構造体であり、その内部には種
々の大きさの微細空洞が形成されているものである。こ
のような凝集体は、繊維径0.05〜5μmの気相成長
炭素繊維を圧縮成形し、嵩密度0.02g/cm3以上
の成形体とし、これを600℃、好ましくは800℃以
上で加熱し、さらに機械的に解砕する方法や、該気相成
長炭素繊維を0.1kg/cm2以上で圧縮しながら6
00℃以上好ましくは800℃以上で加熱し、さらに解
砕する方法などによって製造できる(特願平7−308
406号、平成7年11月1日出願、参照)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The aggregate used in the present invention has a fiber diameter of 0.01 to 5 μm.
m-vapour-grown carbon fibers are agglomerated, and a part of the contact points between the fibers is chemically bonded and fixed by a carbide of a carbon substance such as tar or pitch to form a floc or yarn having a size of 5 to 500 μm. It is a ball-shaped structure in which fine cavities of various sizes are formed. Such an agglomerate is compression molded from vapor-grown carbon fiber having a fiber diameter of 0.05 to 5 μm to form a molded body having a bulk density of 0.02 g / cm 3 or more, which is formed at 600 ° C., preferably 800 ° C. or more. Heating and further mechanically pulverizing, or compressing the vapor grown carbon fiber at 0.1 kg / cm 2 or more
It can be manufactured by a method of heating at a temperature of 00 ° C. or higher, preferably 800 ° C. or higher, and further crushing (Japanese Patent Application No. 7-308)
No. 406, filed on November 1, 1995).

【0011】また、上記凝集体に使われる気相成長炭素
繊維としては、特に限定されず、分岐を有しない単繊維
でも、また分岐を有する繊維でもよく、これらを混合し
たものでもよい。また、生成したままの熱処理されてい
ない粗製の繊維が好ましい。粗製の炭素繊維には、約5
〜20重量%のタール、ピッチ等が吸着されており、こ
れが圧縮成形時の繊維間を結合するバインダーとして機
能し、さらに熱処理すると容易に炭化して繊維同士を接
着する炭化物となる。もし、熱処理後の気相成長炭素繊
維を使用するのであれば、ピッチ等を添加して成形する
ことが望ましい。
The vapor-grown carbon fiber used for the aggregate is not particularly limited, and may be a single fiber having no branch, a fiber having a branch, or a mixture thereof. Further, a crude fiber that has not been heat-treated as produced is preferable. Approximately 5
Up to 20% by weight of tar, pitch, and the like are adsorbed, which functions as a binder for bonding the fibers during compression molding, and further heat-treats to a carbonized material that easily bonds to the fibers. If a vapor-grown carbon fiber after heat treatment is used, it is desirable to add pitch and the like to form the fiber.

【0012】また、本発明で用いられる電極活物質とし
ては、本発明の電極材をリチウムイオン二次電池の負極
とする場合には、黒鉛粉末が用いられる。ここでの黒鉛
粉末としては、リチウムイオンをインターカレーション
できる層状結晶構造を有するものが用いられ、002面
の面間隔(d002)が0.34mm以下のものが好ま
しい。黒鉛粉末の粒径は平均粒径1〜30μm、好まし
くは2〜10μmである。
In the case where the electrode material of the present invention is used as a negative electrode of a lithium ion secondary battery, graphite powder is used as the electrode active material used in the present invention. As the graphite powder here, one having a layered crystal structure capable of intercalating lithium ions is used, and one having a 002 plane spacing (d002) of 0.34 mm or less is preferable. The average particle size of the graphite powder is 1 to 30 μm, preferably 2 to 10 μm.

【0013】上記凝集体と黒鉛粉末との混合比は、凝集
体が混合物の全量の3〜20重量%となるようにされ
る。3重量%未満では、凝集体を使用した効果が得られ
ず、20重量%を越えると黒鉛粉末の量が減少し、電池
容量が低下する。黒鉛粉末と凝集体とは、十分に混合す
ることが重要であり、混合後の状態において黒鉛粒子が
凝集体の炭素繊維に絡み付いた状態、凝集体の内部の空
洞に黒鉛粒子が取り込まれた状態あるいはこれがさらに
絡み合った状態となっていることが必要である。このた
めの混合には、混合物に十分な剪断力を作用させうるヘ
ンシェルミキサーやスパルタンリューザなどが用いられ
る。
The mixing ratio between the aggregate and the graphite powder is such that the aggregate is 3 to 20% by weight of the total amount of the mixture. If the amount is less than 3% by weight, the effect of using the aggregates cannot be obtained. If the amount exceeds 20% by weight, the amount of graphite powder decreases, and the battery capacity decreases. It is important that the graphite powder and the agglomerate are sufficiently mixed, and the graphite particles are entangled with the carbon fibers of the agglomerate after mixing, and the graphite particles are entrapped in the cavities inside the agglomerate Alternatively, it is necessary that this is further intertwined. For the mixing for this purpose, a Henschel mixer or a Spartan Luzer that can exert a sufficient shearing force on the mixture is used.

【0014】この例での電極材を用いた合剤の具体的構
造としては、凝集体と黒鉛粉末とを混合し、これに必要
に応じて導電性付与剤としてのカーボンブラック等を添
加し、これに結着剤としてのフッ素樹脂などを加えてよ
く混合してペースト状となし、このものを集電体となる
銅箔、ステンレス鋼ネットなどの金属材に塗布、乾燥し
たシート状のものや集電体となる金属材上に塗布、成形
したブロック状のものなどがある。
The specific structure of the mixture using the electrode material in this example is as follows: agglomerate and graphite powder are mixed, and if necessary, carbon black or the like as a conductivity imparting agent is added thereto. Fluorine resin as a binder is added to this and mixed well to form a paste, which is then applied to a metal material such as a copper foil or a stainless steel net as a current collector, and a dried sheet or There is a block-like material that is applied and formed on a metal material serving as a current collector.

【0015】この例の電極活物質として黒鉛粉末を用い
電極材では、負極に限らず、正極に用いることもでき
る。この場合には、負極には金属リチウムが用いられ
る。
The electrode material using graphite powder as the electrode active material in this example can be used not only for the negative electrode but also for the positive electrode. In this case, metallic lithium is used for the negative electrode.

【0016】また、リチウムイオン二次電池の正極とす
る場合には、電極活物質として、LiCoO2、LiM
nO2あるいはこれらのCo、Mnの一部をCo、M
n、Fe、Ni等で置換したリチウム複合酸化物の粉末
が用いられる。これらのリチウム複合酸化物は、Li、
Co、Mn、Fe、Niなどの炭酸塩や酸化物を混合
し、焼成することによって得られ、焼成物を粉砕して粉
末とする。
When a positive electrode of a lithium ion secondary battery is used, LiCoO 2 , LiM
nO 2 or a part of these Co and Mn is Co, M
A lithium composite oxide powder substituted with n, Fe, Ni, or the like is used. These lithium composite oxides include Li,
It is obtained by mixing and firing carbonates and oxides such as Co, Mn, Fe, and Ni. The fired product is pulverized into powder.

【0017】リチウム複合酸化物粉末を活物質とした場
合には、導電性付与剤として、カーボンブラック、黒鉛
粉末が添加され、これに上記凝集体を加えて混合するこ
とにより、電極材となる。ここでの混合も先の例と同様
でリチウム酸化物粉末と凝集体を十分に剪断力を作用さ
せて混合することが必要となる。凝集体の混合割合は、
リチウム複合酸化物と凝集体との混合物全量の5〜20
重量%とされ、5重量%未満では凝集体添加効果が発現
せず、20重量%を越えると活物質が減少し、電池容量
が低下する。この例での電極材を用いた合剤の具体的な
構造は、先の例と同様である。
When the lithium composite oxide powder is used as the active material, carbon black and graphite powder are added as a conductivity-imparting agent, and the above-mentioned aggregates are added thereto and mixed to form an electrode material. The mixing here also requires the lithium oxide powder and the aggregate to be sufficiently mixed with each other by applying a shearing force in the same manner as in the previous example. The mixing ratio of the aggregates is
5 to 20 of the total amount of the mixture of the lithium composite oxide and the aggregate
When the content is less than 5% by weight, the effect of adding the aggregate is not exhibited. When the content exceeds 20% by weight, the active material is reduced, and the battery capacity is reduced. The specific structure of the mixture using the electrode material in this example is the same as the previous example.

【0018】また、本発明の電極材は、密閉形の鉛二次
電池(鉛蓄電池)の電極材として使用できる。この場合
の正極用電極材を用いた合剤の具体的構造は、例えば活
物質としての二酸化鉛粉末と上記凝集体とを混合し、こ
れに硫酸水溶液を加えてペースト状とし、このペースト
を鉛合金などからなる格子状の集電体に塗布、充填し、
乾燥したものなどがある。
Further, the electrode material of the present invention can be used as an electrode material for a sealed lead secondary battery (lead storage battery). In this case, the specific structure of the mixture using the positive electrode material is, for example, a mixture of lead dioxide powder as an active material and the above-described aggregate, and then adding an aqueous sulfuric acid solution to form a paste. Apply and fill a grid-like current collector made of alloy, etc.
There are dried ones.

【0019】また、負極用電極材を用いた合剤の具体的
構造としては、例えば活物質としての金属鉛粉末と上記
凝集体とを混合し、これに硫酸水溶液を添加してペース
トとし、このペーストを鉛又は鉛合金からなる格子状の
集電体に塗布、充填し、乾燥したものなどが挙げられ
る。
As a specific structure of the mixture using the negative electrode material, for example, a metal lead powder as an active material and the above-mentioned aggregate are mixed, and a sulfuric acid aqueous solution is added thereto to form a paste. A paste is applied to a grid-like current collector made of lead or a lead alloy, filled, dried, and the like.

【0020】このような構造の電極材にあっては、電極
活物質の粒子が凝集体の微細空洞内に取り込まれ、ある
いは粒子が凝集体の炭素繊維に絡み付くので、個々の粒
子と炭素繊維との接触確率が増加し、電気的接触点が大
幅に増大する。このため、電流が極めて流れ易くなり、
内部抵抗が低下し、かつ活物質が無駄なく有効に電解反
応に関与し、電池容量も増大する。
In the electrode material having such a structure, the particles of the electrode active material are taken into the fine cavities of the aggregate or the particles are entangled with the carbon fibers of the aggregate. The contact probability increases, and the number of electrical contact points greatly increases. This makes it extremely easy for current to flow,
The internal resistance is reduced, the active material is effectively involved in the electrolytic reaction without waste, and the battery capacity is increased.

【0021】さらに、電極活物質が黒鉛粉末の場合に
は、上記作用効果に加えて、黒鉛粒子の大部分が凝集体
内の微細空洞に取り込まれるため、充放電による黒鉛粒
子の膨張が抑えられる。このため、電極材自体が膨潤
し、変形することがなく、充放電の繰り返しによる電池
容量の低下が防止され、長寿命となる。
Further, when the electrode active material is graphite powder, in addition to the above-mentioned functions and effects, most of the graphite particles are taken into the fine cavities in the aggregate, so that the expansion of the graphite particles due to charging and discharging is suppressed. For this reason, the electrode material itself does not swell and is not deformed, and a decrease in battery capacity due to repetition of charge and discharge is prevented, resulting in a long life.

【0022】本発明の電極材を用いて二次電池を構成す
るには、リチウムイオン二次電池の場合では、例えば上
述した正極用のシート状電極合剤と負極用のシート状電
極合剤との間にポリプロピレン不織布などからなるシー
ト状のセパレータを挟み込み、この積層物を渦巻状に巻
回する。このもののそれぞれの合剤の集電体にリード線
を取り付けて、缶体に収容し、過塩素酸リチウムなどの
リチウム塩を溶解したエチレンカーボネート、プロピレ
ンカーボネートなどの電解液を注入するなどの方法で行
われる。勿論、これ以外の種々の形態を取りうることは
説明するまでもない。
In order to form a secondary battery using the electrode material of the present invention, in the case of a lithium ion secondary battery, for example, the above-mentioned sheet electrode mixture for the positive electrode and the sheet electrode mixture for the negative electrode are combined. A sheet-like separator made of a polypropylene non-woven fabric or the like is sandwiched between them, and the laminate is spirally wound. Attach a lead wire to the current collector of each mixture of this thing, house it in a can, and inject an electrolyte such as ethylene carbonate and propylene carbonate in which lithium salts such as lithium perchlorate are dissolved. Done. Of course, it is needless to say that various other forms can be taken.

【0023】以下、具体例を示す。 (実施例1)本実施例では、図1に示す構造のコイン型
リチウムイオン電池を作成した。図中符号1は電池ケー
ス、2は封口板であり、これらは、耐電解液性のステン
レス鋼板からなるものである。電池ケース1内には、ス
テンレス鋼ネットからなる正極集電体3がスポット溶接
によって取り付けられている。この正極集電体3には正
極電極材4が設けられて、正極となっている。この正極
電極材4は、黒鉛粉末95重量部と上記凝集体5重量部
とを混合し、この混合物8重量部に対してフッ素樹脂結
着剤2重量部を加え、ヘンシェルミキサーによって混合
した合剤0.2gを正極集電体3上に充填、成形したも
のである。
Hereinafter, specific examples will be described. Example 1 In this example, a coin-type lithium ion battery having the structure shown in FIG. 1 was manufactured. In the figure, reference numeral 1 denotes a battery case, 2 denotes a sealing plate, and these are made of electrolytic solution-resistant stainless steel plate. A positive electrode current collector 3 made of a stainless steel net is mounted in the battery case 1 by spot welding. The positive electrode current collector 3 is provided with a positive electrode material 4 to serve as a positive electrode. The positive electrode material 4 was prepared by mixing 95 parts by weight of graphite powder and 5 parts by weight of the above-described aggregate, adding 2 parts by weight of a fluororesin binder to 8 parts by weight of the mixture, and mixing the mixture with a Henschel mixer. 0.2 g was filled and molded on the positive electrode current collector 3.

【0024】上記黒鉛粉末には、温度3000℃で加熱
処理した人造黒鉛電極(d002=0.338nm)を
粉砕して平均粒径5μmとしたものを用いた。上記凝集
体には、分枝状の気相成長炭素繊維を圧縮成形し、嵩密
度0.06g/cm2とした成形体を1300℃で熱処
理し、さらに2800℃で5分間加熱し黒鉛化したもの
を解砕して大きさが100〜300μmのフロック状の
もの(d002=0.339nm)を用いた。
As the above graphite powder, an artificial graphite electrode (d002 = 0.338 nm) heat-treated at a temperature of 3000 ° C. was pulverized to an average particle size of 5 μm. The above-mentioned aggregate was subjected to compression molding of a vapor-grown carbon fiber having a branch shape, heat treatment of a molded body having a bulk density of 0.06 g / cm 2 at 1300 ° C., and further heating at 2800 ° C. for 5 minutes to graphitize. The material was crushed and used as a floc having a size of 100 to 300 μm (d002 = 0.339 nm).

【0025】正極電極体4上には微孔性のポリプロピレ
ン製セパレータ5が設けられ、このセパレータ5上には
円板状の金属リチウムの負極6が設けられ、この負極6
は封口板2に接合されている。符号7は、ポリプロピレ
ン製のパッキングである。電解液には、エチレンカーボ
ネートとジエチルカーボネートとの等容積混合溶媒にL
iPF6を1モル/リットルの濃度となるように溶解し
た溶液を用いた。このコイン型電池の寸法は、直径20
mm、厚さ16mmであった。
A microporous polypropylene separator 5 is provided on the positive electrode body 4, and a disk-shaped negative electrode 6 of metallic lithium is provided on the separator 5.
Are joined to the sealing plate 2. Reference numeral 7 denotes a packing made of polypropylene. For the electrolyte, a mixed solvent of ethylene carbonate and diethyl carbonate in an equal volume was used.
A solution in which iPF 6 was dissolved to a concentration of 1 mol / liter was used. The size of this coin-type battery is 20 mm in diameter.
mm and a thickness of 16 mm.

【0026】(比較例1)実施例1において、人造黒鉛
電極粉砕粉末8重量部に対してフッ素樹脂結着剤2重量
部を加え、ヘンシェルミキサーで混合した合剤0.2g
を正極集電体3上に充填、成形した以外は同様にしてコ
イン型電池を作成した。
(Comparative Example 1) In Example 1, 2 parts by weight of a fluororesin binder was added to 8 parts by weight of the pulverized powder of artificial graphite electrode, and 0.2 g of the mixture was mixed with a Henschel mixer.
Was charged and molded on the positive electrode current collector 3 to produce a coin-type battery in the same manner.

【0027】(比較例2)実施例1において、人造黒鉛
電極粉砕粉末95重量部と、特公昭62−49363号
公報に示された方法で合成された平均繊維径0.2μ
m、平均繊維長さ30μmの気相成長炭素繊維をアハゴ
ン中で2800℃で5分間加熱して部分的に黒鉛化した
炭素繊維5重量部とを混合し、この混合物8重量部に対
してフッ素樹脂結着剤2重量部を加え、ヘンシェルミキ
サーで混合した合剤0.2gを正極集電体3上に充填、
成形した以外は同様にしてコイン型電池を作成した。
(Comparative Example 2) In Example 1, 95 parts by weight of the pulverized artificial graphite electrode powder and an average fiber diameter of 0.2 μm synthesized by the method disclosed in JP-B-62-49363.
m, a vapor-grown carbon fiber having an average fiber length of 30 μm is mixed with 5 parts by weight of partially graphitized carbon fiber by heating at 2800 ° C. for 5 minutes in an ahagon, and 8 parts by weight of the mixture is mixed with fluorine. 2 g of the resin binder was added, and 0.2 g of the mixture mixed with a Henschel mixer was filled on the positive electrode current collector 3.
A coin-type battery was prepared in the same manner except for molding.

【0028】これら3種のコイン型電池について、10
0mHz時の内部抵抗値、正極黒鉛粉末の重量エネルギ
ー密度、充放電回数を測定した。充放電条件は、電流密
度0.3mA/cm2、充電終止電圧3.0V、放電終
止電圧0Vで、定電流充放電を行った。結果を表1、表
2、表3に示す。
For these three types of coin-type batteries, 10
The internal resistance at 0 mHz, the weight energy density of the positive graphite powder, and the number of times of charge / discharge were measured. The charge and discharge conditions were a constant current charge and discharge at a current density of 0.3 mA / cm 2 , a charge end voltage of 3.0 V, and a discharge end voltage of 0 V. The results are shown in Tables 1, 2 and 3.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】(実施例2)実施例1で使用した正極を負
極とし、集電体のステンレス鋼ネットを封口板にスポッ
ト溶接した。正極として、LiCoO2 80重量部と
実施例1での凝集体10重量部とフッ素樹脂結着剤10
0重量部とをヘンシェルミキサーで混合した合剤0.4
gをチタン製ネットの正極集電体とともにケース内に充
填、成形したものを用いた以外は実施例1と同様にして
ボタン電池を作成した。
(Example 2) The positive electrode used in Example 1 was used as a negative electrode, and a stainless steel net as a current collector was spot-welded to a sealing plate. As the positive electrode, 80 parts by weight of LiCoO 2 , 10 parts by weight of the aggregate in Example 1, and 10 parts of the fluororesin binder
0 parts by weight with a Henschel mixer 0.4
g was filled in a case together with a positive electrode current collector of titanium net in a case, and a button battery was prepared in the same manner as in Example 1 except that a molded product was used.

【0033】このボタン電池について、充放電電流密度
2.0mA/cm2、充電終止電圧4.0V、放電終止
電圧2.7Vの条件下で定電流充放電試験を行った。そ
の結果、重量エネルギー密度は140mAh/gであ
り、500サイクルの充放電後において初期エネルギー
密度の94%を維持していた。
The button battery was subjected to a constant current charge / discharge test under the conditions of a charge / discharge current density of 2.0 mA / cm 2 , a charge end voltage of 4.0 V, and a discharge end voltage of 2.7 V. As a result, the weight energy density was 140 mAh / g, and maintained 94% of the initial energy density after 500 cycles of charge and discharge.

【0034】(比較例3)実施例2において、正極とし
て、LiCoO2 8重量部とアセチレンブラック1重
量部とフッ素樹脂結着剤1重量部とをヘンシェルミキサ
ーで混合した合剤0.4gを用いた以外は同様にして、
ボタン電池を作成した。このものについて、実施例2と
同様の試験条件で充放電試験を行ったところ、重量エネ
ルギー密度は120mAh/gであり、500サイクル
の充放電後において初期エネルギー密度の70%を維持
していた。
Comparative Example 3 In Example 2, 0.4 g of a mixture obtained by mixing 8 parts by weight of LiCoO 2, 1 part by weight of acetylene black and 1 part by weight of a fluororesin binder with a Henschel mixer was used as a positive electrode. Except that
I made a button battery. This was subjected to a charge / discharge test under the same test conditions as in Example 2. As a result, the weight energy density was 120 mAh / g, and 70% of the initial energy density was maintained after 500 cycles of charge / discharge.

【0035】(比較例4)実施例2において、正極とし
てLiCoO2 8重量部と、比較例2で使用した気相
炭素繊維1重量部とフッ素樹脂結着剤1重量部をヘンシ
ェルミキサーで混合した合剤0.4gを用いた以外は同
様にしてボタン電池を作成した。このものについて、実
施例2と同様の試験条件で充放電試験を行ったところ、
重量エネルギー密度は130mAh/gであり、500
サイクルの充放電後において初期エネルギー密度の78
%を維持していた。
Comparative Example 4 In Example 2, 8 parts by weight of LiCoO 2 as a positive electrode, 1 part by weight of gas-phase carbon fiber used in Comparative Example 2 and 1 part by weight of a fluororesin binder were mixed by a Henschel mixer. A button battery was prepared in the same manner except that 0.4 g of the mixture was used. This was subjected to a charge / discharge test under the same test conditions as in Example 2.
The weight energy density is 130 mAh / g and 500
After the charge / discharge cycle, the initial energy density of 78
% Had been maintained.

【0036】[0036]

【発明の効果】以上説明したように、本発明の電極材に
よれば電極活物質の粒子が凝集体の微細空洞内に取り込
まれたり、粒子が炭素繊維に絡み付いたりして、粒子と
炭素繊維との接触確率が増加して粒子と炭素繊維との電
気的接触が多くなり、かつ凝集体自体の電気抵抗も低い
ので、内部抵抗が小さく、活物質の無駄がなく、有効に
電解反応に関与するので、電池容量が増大する。また、
黒鉛粉末を活物質とした場合には、黒鉛粒子の充放電に
起因する膨張が抑えられ、電極材の膨張、変形が防止さ
れて充放電可能な回数が増し、長寿命となる。
As described above, according to the electrode material of the present invention, the particles of the electrode active material are taken into the fine cavities of the aggregate, or the particles are entangled with the carbon fiber, so that the particle and the carbon fiber The probability of contact with carbon particles increases and the electrical contact between the particles and the carbon fiber increases, and the electrical resistance of the aggregate itself is low, so the internal resistance is low, active material is not wasted, and it is effectively involved in the electrolytic reaction. Therefore, the battery capacity increases. Also,
When the graphite powder is used as the active material, expansion due to charging and discharging of the graphite particles is suppressed, expansion and deformation of the electrode material are prevented, and the number of times of charging and discharging is increased, resulting in a longer life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例におけるボタン電池の例を示
す概略断面図である。
FIG. 1 is a schematic sectional view showing an example of a button battery according to an embodiment of the present invention.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 気相成長炭素繊維が絡み合って形成され
た凝集体の微細空洞内に電極活物質粉末が包含された複
合体からなる電池用電極材。
An electrode material for a battery comprising a composite in which an electrode active material powder is contained in a fine cavity of an aggregate formed by entanglement of vapor-grown carbon fibers.
【請求項2】 電極活物質がリチウム含有複合酸化物で
ある請求項1記載の電池用電極材。
2. The electrode material for a battery according to claim 1, wherein the electrode active material is a lithium-containing composite oxide.
【請求項3】 電極活物質が黒鉛である請求項1記載の
電池用電極材。
3. The battery electrode material according to claim 1, wherein the electrode active material is graphite.
【請求項4】 電極活物質が二酸化鉛または金属鉛であ
る請求項1記載の電池用電極材。
4. The battery electrode material according to claim 1, wherein the electrode active material is lead dioxide or metallic lead.
【請求項5】 上記凝集体が気相成長樹枝状炭素繊維を
圧縮し、加熱し、さらに解砕したものである請求項1記
載の電池用電極材。
5. The battery electrode material according to claim 1, wherein the aggregate is obtained by compressing, heating and further crushing the vapor-grown dendritic carbon fiber.
【請求項6】 上記複合体には同時に炭素粉末が包含さ
れている請求項1記載の電池用電極材。
6. The electrode material for a battery according to claim 1, wherein the composite contains carbon powder at the same time.
【請求項7】 請求項1ないし6のいずれかに記載の電
池用電極材を用いてなる二次電池。
7. A secondary battery using the battery electrode material according to any one of claims 1 to 6.
【請求項8】 請求項1、2、3、5、および6のいず
れかに記載の電池用電極材を用いてなるリチウム二次電
池。
8. A lithium secondary battery using the battery electrode material according to any one of claims 1, 2, 3, 5, and 6.
JP32042296A 1996-11-29 1996-11-29 Battery electrode material and secondary battery Expired - Lifetime JP3618492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32042296A JP3618492B2 (en) 1996-11-29 1996-11-29 Battery electrode material and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32042296A JP3618492B2 (en) 1996-11-29 1996-11-29 Battery electrode material and secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004149461A Division JP2004281414A (en) 2004-05-19 2004-05-19 Electrode material for battery, and secondary battery

Publications (2)

Publication Number Publication Date
JPH10162811A true JPH10162811A (en) 1998-06-19
JP3618492B2 JP3618492B2 (en) 2005-02-09

Family

ID=18121288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32042296A Expired - Lifetime JP3618492B2 (en) 1996-11-29 1996-11-29 Battery electrode material and secondary battery

Country Status (1)

Country Link
JP (1) JP3618492B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015170A (en) * 1999-06-29 2001-01-19 Sony Corp Nonaqueous electrolyte battery
JP2001196052A (en) * 2000-01-12 2001-07-19 Sony Corp Negative electrode and nonaqueous electrolyte battery
JP2009043715A (en) * 2007-07-18 2009-02-26 Panasonic Corp Nonaqueous electrolyte secondary battery
JP2009176721A (en) * 2007-12-25 2009-08-06 Kao Corp Composite material for positive electrode of lithium battery
US7655356B2 (en) 2005-03-23 2010-02-02 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2010232077A (en) * 2009-03-27 2010-10-14 Toyota Industries Corp Electrode for nonaqueous secondary battery and method for manufacturing the same
US8426064B2 (en) 2007-12-25 2013-04-23 Kao Corporation Composite material for positive electrode of lithium battery
US8999585B2 (en) 2007-07-18 2015-04-07 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
WO2015056925A1 (en) * 2013-10-18 2015-04-23 주식회사 엘지화학 Carbon nanotube-sulfur composite comprising carbon nanotube aggregates, and method for preparing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101543682B1 (en) 2010-03-02 2015-08-11 쇼와 덴코 가부시키가이샤 Process for production of carbon fibers

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015170A (en) * 1999-06-29 2001-01-19 Sony Corp Nonaqueous electrolyte battery
JP2001196052A (en) * 2000-01-12 2001-07-19 Sony Corp Negative electrode and nonaqueous electrolyte battery
US7655356B2 (en) 2005-03-23 2010-02-02 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2009043715A (en) * 2007-07-18 2009-02-26 Panasonic Corp Nonaqueous electrolyte secondary battery
JP4712837B2 (en) * 2007-07-18 2011-06-29 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US8999585B2 (en) 2007-07-18 2015-04-07 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery
JP2009176721A (en) * 2007-12-25 2009-08-06 Kao Corp Composite material for positive electrode of lithium battery
US8426064B2 (en) 2007-12-25 2013-04-23 Kao Corporation Composite material for positive electrode of lithium battery
JP2010232077A (en) * 2009-03-27 2010-10-14 Toyota Industries Corp Electrode for nonaqueous secondary battery and method for manufacturing the same
WO2015056925A1 (en) * 2013-10-18 2015-04-23 주식회사 엘지화학 Carbon nanotube-sulfur composite comprising carbon nanotube aggregates, and method for preparing same
US9911975B2 (en) 2013-10-18 2018-03-06 Lg Chem, Ltd. Carbon nanotube-sulfur composite comprising carbon nanotube aggregates, and method for preparing same

Also Published As

Publication number Publication date
JP3618492B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
JP5462445B2 (en) Lithium ion secondary battery
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP3285520B2 (en) Graphite particles, method for producing graphite particles, graphite paste using graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP2015228290A (en) Method for manufacturing electrode material
CN109037660A (en) A kind of preparation method of composite lithium iron phosphate material
JP3618492B2 (en) Battery electrode material and secondary battery
JP2001345100A (en) Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JP3216661B2 (en) Non-aqueous electrolyte secondary battery
JPH09245770A (en) Non-aqueous electrolyte battery
JP4943308B2 (en) Battery electrode material and secondary battery
JP3052760B2 (en) Non-aqueous electrolyte secondary battery
JP3508411B2 (en) Lithium ion secondary battery
JP3732654B2 (en) Graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP7223999B2 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JPH0684515A (en) Nonaqueous electrolyte secondary cell
JP2003331823A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the battery
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JPH11219700A (en) Lithium secondary battery, its negative electrode and its manufacture
JP3052660B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2004281414A (en) Electrode material for battery, and secondary battery
JP2001185149A (en) Lithium secondary battery
JP4135162B2 (en) Negative electrode for lithium secondary battery
JP4066699B2 (en) Negative electrode for lithium secondary battery
JP3325021B2 (en) Graphite particles for negative electrode of lithium secondary battery and graphite paste for negative electrode of lithium secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

EXPY Cancellation because of completion of term