JP2007207697A - Flat type nonaqueous electrolyte solution secondary battery - Google Patents

Flat type nonaqueous electrolyte solution secondary battery Download PDF

Info

Publication number
JP2007207697A
JP2007207697A JP2006028065A JP2006028065A JP2007207697A JP 2007207697 A JP2007207697 A JP 2007207697A JP 2006028065 A JP2006028065 A JP 2006028065A JP 2006028065 A JP2006028065 A JP 2006028065A JP 2007207697 A JP2007207697 A JP 2007207697A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
electrode
flat type
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006028065A
Other languages
Japanese (ja)
Other versions
JP4915101B2 (en
Inventor
Kanji Kawakami
幹児 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006028065A priority Critical patent/JP4915101B2/en
Publication of JP2007207697A publication Critical patent/JP2007207697A/en
Application granted granted Critical
Publication of JP4915101B2 publication Critical patent/JP4915101B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat type nonaqueous electrolyte solution secondary battery which is superior in high load characteristics by reducing internal resistance of the flat type nonaqueous electrolyte solution secondary battery. <P>SOLUTION: The flat type nonaqueous electrolyte solution secondary battery is provided which is superior in the high load characteristics by reducing the internal resistance of the battery by using a press molding product produced by pressure-molding a mixture made of spinel type lithium titanate, a conductive agent, and an ethylene-methacrylate copolymer as an electrode for heat-treating the electrode from 120 to 190°C and preferably from 150 to 170°C in the flat type nonaqueous electrolyte solution secondary battery in which lithium titanate having a spinel type structure shown by a chemical formula Li<SB>4</SB>Ti<SB>5</SB>O<SB>12</SB>is used as an active material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、扁平型非水電解液二次電池に関するものであり、さらに詳しくは高負荷放電特性に優れた扁平型非水電解液二次電池に関するものである。   The present invention relates to a flat type non-aqueous electrolyte secondary battery, and more particularly to a flat type non-aqueous electrolyte secondary battery excellent in high-load discharge characteristics.

近年のエレクトロニクス分野における技術の急速な発展により、電子機器の小型化が進み、それらの機器の電源として、小型軽量で高エネルギー密度を有する電池の需要が高まっている。中でも充放電が可能である二次電池は環境負荷が小さいため、特に注目されている。   Due to the rapid development of technology in the electronics field in recent years, electronic devices have been miniaturized, and as a power source for these devices, there is an increasing demand for batteries that are small and light and have a high energy density. Among them, secondary batteries that can be charged and discharged are particularly attracting attention because of their low environmental impact.

前記の要望に応えるべく、負極にリチウムを用いた二次電池が注目され、広く研究が行われてきたが、負極に金属リチウムを用いた場合、充放電の繰り返しによりリチウム負極の形状が損なわれ、十分な充放電サイクル寿命が得られなかったり、リチウムのデンドライトがセパレータを貫通し、電池の内部ショートを引き起こしたりなどの問題を抱えていた。   In order to meet the above demand, secondary batteries using lithium for the negative electrode have been attracting attention and extensive research has been conducted. However, when metallic lithium is used for the negative electrode, the shape of the lithium negative electrode is impaired by repeated charge and discharge. However, there were problems such as insufficient charge / discharge cycle life, and lithium dendrite penetrating the separator, causing internal short circuit of the battery.

この問題を解決する一つの手段として、負極にリチウム−アルミニウム合金、リチウム−鉛合金、リチウム−錫合金等のリチウム合金、各種カーボン材料や遷移金属酸化物などを用いることで改良がなされてきた。   As one means for solving this problem, improvements have been made by using lithium alloys such as lithium-aluminum alloys, lithium-lead alloys and lithium-tin alloys, various carbon materials, transition metal oxides and the like for the negative electrode.

特に、化学式Li4Ti512で示されるスピネル型構造を有するチタン酸リチウムは、広範囲な電位領域で優れた安定性を有することから、充放電サイクル寿命の飛躍的な向上だけではなく、耐過放電特性や耐過充電特性といった電池の信頼性においても優れていることが開示されている。(例えば特許文献1参照)
しかし、小型の扁平型電池に上記の活物質を電極活物質として使用する場合、電極面積が小さくなり、反応面積が減るために電池の内部抵抗が大きくなり、十分な負荷特性が得られないという問題があった。特に、スピネル型チタン酸リチウムは著しく比抵抗が高く、内部抵抗が非常に高くなるため十分な負荷特性が得られないという大きな課題を抱えていた。
In particular, lithium titanate having a spinel structure represented by the chemical formula Li 4 Ti 5 O 12 has excellent stability in a wide range of potential regions. It is disclosed that the battery is excellent in reliability such as overdischarge characteristics and overcharge resistance characteristics. (For example, see Patent Document 1)
However, when the above active material is used as an electrode active material for a small flat battery, the electrode area is reduced, the reaction area is reduced, the internal resistance of the battery is increased, and sufficient load characteristics cannot be obtained. There was a problem. In particular, spinel-type lithium titanate has a significant problem that the specific resistance is extremely high and the internal resistance becomes very high, so that sufficient load characteristics cannot be obtained.

このような問題を回避するため、特許文献2ではスピネル型チタン酸リチウムを用いた電極内に、導電剤、結着剤、及び導電補助剤としてポリアクリル酸を含有させ、200℃〜300℃で焼成することによって、電池の内部抵抗を下げ、負荷特性の改善を行っている。
特許第3269396号公報 特開2002−343363号公報
In order to avoid such a problem, in Patent Document 2, polyacrylic acid is contained as a conductive agent, a binder, and a conductive auxiliary agent in an electrode using spinel type lithium titanate at 200 ° C. to 300 ° C. By firing, the internal resistance of the battery is lowered and the load characteristics are improved.
Japanese Patent No. 3269396 JP 2002-343363 A

しかしながら、特許文献2に示されるように導電補助剤を含有させると、必然的に活物質の割合が減少し、容量の低下を招くという課題があった。本発明は上記問題に対処するためになされたものであって、活物質としてスピネル型チタン酸リチウムを用いた扁平型非水電解液二次電池の内部抵抗を低減し、高負荷特性に優れた扁平型非水電解液二次電池を提供することを目的とする。 However, as shown in Patent Document 2, when a conductive auxiliary agent is contained, there is a problem that the ratio of the active material is inevitably reduced and the capacity is reduced. The present invention has been made in order to address the above-described problems, and reduces the internal resistance of a flat type nonaqueous electrolyte secondary battery using spinel type lithium titanate as an active material, and is excellent in high load characteristics. An object of the present invention is to provide a flat type non-aqueous electrolyte secondary battery.

本発明では、上記目的を達成するために、正極、負極、セパレータ及び電解液を、電池
ケース、封口板及びガスケットからなる電池容器に収納した扁平型非水電解液二次電池において、前記正極又は負極の一方の電極が、化学式Li4Ti512で示されるスピネル型構造を有するチタン酸リチウム、導電剤、及びエチレン−メタクリル酸塩共重合体の混合物からなり、前記電極を120℃〜190℃で加熱処理したものを用いたことを特徴とする。
In the present invention, in order to achieve the above object, in a flat type non-aqueous electrolyte secondary battery in which a positive electrode, a negative electrode, a separator, and an electrolytic solution are housed in a battery container including a battery case, a sealing plate, and a gasket, One electrode of the negative electrode is composed of a mixture of lithium titanate having a spinel structure represented by the chemical formula Li 4 Ti 5 O 12 , a conductive agent, and an ethylene-methacrylate copolymer, and the electrode is formed at 120 ° C. to 190 ° C. It is characterized by using one that has been heat-treated at ℃.

本発明により、電池の内部抵抗を低減し、高負荷特性の優れた扁平型非水電解液二次電池が提供できる。   According to the present invention, it is possible to provide a flat type non-aqueous electrolyte secondary battery with reduced internal resistance of the battery and excellent high load characteristics.

本発明は、正極、負極、セパレータ及び電解液を、電池ケース、封口板及びガスケットからなる電池容器に収納した扁平型非水電解液二次電池において、前記正極又は負極の一方の電極が、化学式Li4Ti512で示されるスピネル型構造を有するチタン酸リチウム、導電剤、及びエチレン−メタクリル酸塩共重合体の混合物からなり、前記電極を120℃〜190℃で加熱処理したものを用いたことを特徴とし、スピネル型チタン酸リチウムに導電剤とエチレン−メタクリル酸塩共重合体とを混合し、ペレット状に加圧成型した電極を、120℃〜190℃で、より好ましくは150℃〜170℃で加熱処理したものを扁平型非水電解液二次電池に用いると、電極の比抵抗が大きく低減でき、高負荷特性の大幅な改善が達成できる。さらに導電剤を増やしたり、導電補助剤を添加していないため、容量の低下を招かない。 The present invention relates to a flat nonaqueous electrolyte secondary battery in which a positive electrode, a negative electrode, a separator, and an electrolytic solution are housed in a battery container including a battery case, a sealing plate, and a gasket. It consists of a mixture of lithium titanate having a spinel structure represented by Li 4 Ti 5 O 12 , a conductive agent, and an ethylene-methacrylate copolymer, and the electrode is heat-treated at 120 ° C. to 190 ° C. An electrode obtained by mixing a spinel type lithium titanate with a conductive agent and an ethylene-methacrylate copolymer and press-molding it into a pellet shape at 120 ° C. to 190 ° C., more preferably 150 ° C. When the heat treatment at ˜170 ° C. is used for a flat type non-aqueous electrolyte secondary battery, the specific resistance of the electrode can be greatly reduced, and a significant improvement in high load characteristics can be achieved. Further, since the conductive agent is not increased or the conductive auxiliary agent is not added, the capacity is not lowered.

エチレン−メタクリル酸塩共重合体の官能基は、カルボキシル基(−COOH)とそのカルボキシル基の一部がNa+、Ka+、NH+等と中和したイオン基(例えばNa+と中和している場合は−COO-Na+)が共存した状態である。カルボキシル基とイオン基では分解する温度に差があり、具体的にはイオン基は120℃〜190℃で、カルボキシル基は200℃以上で分解が起こる。分解が開始すると官能基の一部は炭素化する。炭素化することでエチレン−メタクリル酸塩共重合体が導電性を持つようになり、エチレン−メタクリル酸塩共重合体が導電補助剤として働くために電極の比抵抗が低減されると考えられる。 The functional group of the ethylene-methacrylate copolymer has a carboxyl group (—COOH) and an ionic group in which a part of the carboxyl group is neutralized with Na + , Ka + , NH +, etc. (for example, neutralized with Na +. In this case, —COO Na + ) coexists. There is a difference in the decomposition temperature between the carboxyl group and the ionic group. Specifically, the ionic group decomposes at 120 ° C. to 190 ° C., and the carboxyl group decomposes at 200 ° C. or higher. When decomposition begins, some of the functional groups are carbonized. It is considered that the specific resistance of the electrode is reduced because the ethylene-methacrylate copolymer becomes conductive by carbonization and the ethylene-methacrylate copolymer functions as a conductive additive.

一方エチレン−メタクリル酸塩共重合体の官能基は合剤中で物質同士を結着させるバインダーとしての役割も果たしている。120℃〜190℃で加熱処理することで、エチレン−メタクリル酸塩共重合体はイオン基の分解による導電性とカルボキシル基の結着性の特性を合わせ持ち、電極合剤としての形状を保ちつつ、電極の導電性を高めることができる。   On the other hand, the functional group of the ethylene-methacrylate copolymer also plays a role as a binder for binding substances together in the mixture. By heat-treating at 120 ° C. to 190 ° C., the ethylene-methacrylate copolymer has both the properties of conductivity due to the decomposition of ionic groups and the binding property of carboxyl groups, while maintaining the shape as an electrode mixture. The conductivity of the electrode can be increased.

このことにより、導電剤の増量や導電補助剤の添加などによって電極の比抵抗を低減させる従来方法では課題であった容量低下も防ぐことができる。   As a result, it is possible to prevent a decrease in capacity, which is a problem in the conventional method of reducing the specific resistance of the electrode by increasing the amount of the conductive agent or adding a conductive auxiliary agent.

加熱処理が200℃以上ではカルボキシル基の分解が進行し、結着性が失われ電極強度が著しく低下してしまい、電極としての形状が保持できなくなる。一方100℃以下ではイオン基の分解が不十分で、電極の導電性を高める効果が十分に得られない。   When the heat treatment is 200 ° C. or higher, the decomposition of the carboxyl group proceeds, the binding property is lost, the electrode strength is remarkably lowered, and the shape as an electrode cannot be maintained. On the other hand, at 100 ° C. or lower, the decomposition of the ionic group is insufficient, and the effect of increasing the conductivity of the electrode cannot be obtained sufficiently.

以下、本発明に係わる扁平型非水電解液二次電池の一例を詳細に説明する。   Hereinafter, an example of the flat type nonaqueous electrolyte secondary battery according to the present invention will be described in detail.

図1は、本発明の扁平型非水電解液二次電池の断面図である。   FIG. 1 is a cross-sectional view of a flat type nonaqueous electrolyte secondary battery of the present invention.

本発明の扁平型非水電解液二次電池は、ペレット状に加圧成型した正極1、負極2とセパレータ3及び非水電解液からなる発電要素を、正極端子を兼ねる電池ケース4、負極端
子を兼ねる封口板5及び電池ケースと封口板を絶縁するガスケット6により収納、封止されたものである。集電体7は電池ケース及び封口板の内面に塗布されている。
The flat type nonaqueous electrolyte secondary battery of the present invention includes a positive electrode 1, a negative electrode 2, a separator 3, and a battery case 4 that also serves as a positive electrode terminal, and a negative electrode terminal. The sealing plate 5 is also housed and sealed by a sealing plate 5 that also serves as a battery and a gasket 6 that insulates the sealing plate from the battery case. The current collector 7 is applied to the inner surfaces of the battery case and the sealing plate.

正極又は負極のどちらか一方が、活物質としてスピネル型チタン酸リチウムと、黒鉛やカーボンブラックなどの導電剤及びエチレン−メタクリル酸塩共重合体との混合物からなり、この混合物を加圧成型した後に120℃〜190℃で加熱処理して用いたとき、電池の内部抵抗が低減され、高い負荷特性が得られる。   After either the positive electrode or the negative electrode is composed of a mixture of spinel type lithium titanate as an active material, a conductive agent such as graphite or carbon black, and an ethylene-methacrylate copolymer, When heat-treated at 120 ° C. to 190 ° C., the internal resistance of the battery is reduced and high load characteristics can be obtained.

ここで、前記加熱処理を150℃〜170℃で行うと、さらに高い負荷特性が得られる。   Here, if the said heat processing is performed at 150 to 170 degreeC, a still higher load characteristic will be acquired.

正極活物質としては、例えば負極活物質にスピネル型チタン酸リチウムを用いた場合は、スピネル型チタン酸リチウムより高い電位を有する活物質、例えば五酸化バナジウム、三酸化モリブデン、リチウムマンガン複合酸化物などの3V級の活物質、また、リチウムを含有するコバルト酸リチウム、ニッケル酸リチウム、スピネル型のマンガン酸リチウムなどの4V級活物質が挙げられる。但し、可逆なリチウムを含有しない五酸化バナジウム、三酸化モリブデン、リチウムマンガン複合酸化物などを正極に用いる場合にのみ、電池を構成する際に負極にリチウムを化学的又は電気化学的に挿入する必要がある。   As the positive electrode active material, for example, when spinel type lithium titanate is used as the negative electrode active material, an active material having a higher potential than the spinel type lithium titanate, such as vanadium pentoxide, molybdenum trioxide, lithium manganese composite oxide, etc. 4V class active materials, such as lithium cobaltate containing lithium, lithium nickelate, spinel type lithium manganate, etc. are mentioned. However, only when using reversible lithium-free vanadium pentoxide, molybdenum trioxide, lithium manganese composite oxide, etc. for the positive electrode, it is necessary to insert lithium into the negative electrode chemically or electrochemically when configuring the battery. There is.

負極活物質としては、例えば正極活物質にスピネル型チタン酸リチウムを用いた場合は、スピネル型チタン酸リチウムより低い電位を有する金属酸化物や、黒鉛やコークス等の炭素材料、もしくはリチウム−アルミニウム合金、リチウム−鉛合金、リチウム−錫合金等のリチウム合金などが挙げられる。   As the negative electrode active material, for example, when spinel type lithium titanate is used as the positive electrode active material, a metal oxide having a lower potential than the spinel type lithium titanate, a carbon material such as graphite or coke, or a lithium-aluminum alloy And lithium alloys such as lithium-lead alloy and lithium-tin alloy.

セパレータには、従来から用いられているポリエチレンやポリプロピレン、またはセルロース、ポリフェニレンサルファイドをはじめとするエンジニアリングプラスチックなどを用いるのが好ましい。   For the separator, it is preferable to use conventionally used polyethylene, polypropylene, engineering plastics such as cellulose and polyphenylene sulfide.

ガスケットには、従来から用いられているポリプロピレンや、ポリフェニレンサルファイド、テトラフルオロエチレンーパーフルオロアルキルビニルエーテル共重合樹脂またはエチレン−テトラフルオロエチレンコポリマーをはじめとするエンジニアリングプラスチックなどを用いるのが好ましい。   For the gasket, it is preferable to use conventionally used polypropylene, engineering plastics such as polyphenylene sulfide, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin, or ethylene-tetrafluoroethylene copolymer.

有機電解液を構成する溶質としては、LiPF6、LiBF4、LiClO4、LiCF3SO3、LiAsF6、LiN(CF3SO22、LiN(C25SO22などの単体あるいは複数成分を混合して使用することができる。また、有機電解液を構成する溶媒として、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、スルホラン、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソラン、γ−ブチロラクトンなどの単体または複数成分を使用することができるが、これに限定されるものではない。 Solutes constituting the organic electrolyte include LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 or the like alone A plurality of components can be mixed and used. In addition, as a solvent constituting the organic electrolyte, propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, sulfolane, dimethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane, γ-butyrolactone, etc. Ingredients can be used, but are not limited thereto.

以下、本発明の実施例を図面および表を参照しながら、さらに具体的に説明する。   Hereinafter, embodiments of the present invention will be described more specifically with reference to the drawings and tables.

(実施例1)
図1の構造を持つ扁平型非水電解液二次電池を作製した。
Example 1
A flat nonaqueous electrolyte secondary battery having the structure of FIG. 1 was produced.

正極1は、LiCoO2に導電剤としてカーボンブラック、および結着剤としてフッ素樹脂粉末を重量比で90:5:5の割合で混合し、直径10mm、厚み0.5mmのペレット状に成型した後、200℃中で24時間乾燥したものを用いた。 The positive electrode 1 is obtained by mixing LiCoO 2 with carbon black as a conductive agent and fluororesin powder as a binder in a weight ratio of 90: 5: 5 and molding the pellets into a 10 mm diameter and 0.5 mm thick pellet. What was dried at 200 ° C. for 24 hours was used.

負極2はスピネル型チタン酸リチウムに、カーボンブラック及びエチレン−メタクリル酸塩共重合体を重量比93:5:2の割合で混合し、直径10mm、厚み0.5mmのペレット状に成型した後、120℃で24時間加熱処理したものを用いた。   The negative electrode 2 was prepared by mixing spinel type lithium titanate with carbon black and an ethylene-methacrylate copolymer at a weight ratio of 93: 5: 2, and forming into a pellet shape having a diameter of 10 mm and a thickness of 0.5 mm. What was heat-processed at 120 degreeC for 24 hours was used.

セパレータ3はポリプロピレン製不織布を用い、また、電池ケース4、封口板5にはステンレス鋼を、ガスケット6にはポリプロピレン製ガスケットを用いた。集電体7は、導電性カーボン塗料を電池ケース4及び封口板5の内面に塗布した後、塗膜の水分を除去するためにケースを150℃で6時間乾燥したものを用いた。また、電解液としてはエチレンカーボネートとメチルエチルカーボネ−トを体積比1:3の割合で混合した溶媒に、溶質としてLiPF6を1mol/Lの割合で溶解したものを用いた電池を電池Aとした。 The separator 3 is made of a polypropylene nonwoven fabric, the battery case 4 and the sealing plate 5 are made of stainless steel, and the gasket 6 is made of a polypropylene gasket. As the current collector 7, a conductive carbon paint was applied to the inner surfaces of the battery case 4 and the sealing plate 5, and then the case was dried at 150 ° C. for 6 hours in order to remove moisture from the coating film. In addition, a battery using a solution in which LiPF 6 was dissolved as a solute at a rate of 1 mol / L in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a rate of 1: 3 as an electrolyte was used as a battery A. It was.

(実施例2)
負極を150℃で加熱処理した以外は電池Aと同様にして作製した電池を電池Bとした。
(Example 2)
A battery B was prepared in the same manner as Battery A except that the negative electrode was heat-treated at 150 ° C.

(実施例3)
負極を160℃で加熱処理した以外は電池Aと同様にして作製した電池を電池Cとした。
(Example 3)
A battery produced in the same manner as battery A except that the negative electrode was heat-treated at 160 ° C. was designated as battery C.

(実施例4)
負極を170℃で加熱処理した以外は電池Aと同様にして作製した電池を電池Dとした。
Example 4
A battery produced in the same manner as battery A except that the negative electrode was heat-treated at 170 ° C. was designated as battery D.

(実施例5)
負極を190℃で加熱処理した以外は電池Aと同様にして作製した電池を電池Eとした。
(Example 5)
A battery E was prepared in the same manner as Battery A except that the negative electrode was heat-treated at 190 ° C.

(比較例1)
負極を100℃で加熱処理した以外は電池Aと同様にして作製した電池を電池Fとした。
(Comparative Example 1)
A battery produced in the same manner as battery A except that the negative electrode was heat-treated at 100 ° C. was designated as battery F.

(比較例2)
負極を220℃で加熱処理した以外は電池Aと同様にして作製した電池を電池Gとした。
(Comparative Example 2)
A battery G was prepared in the same manner as Battery A except that the negative electrode was heat-treated at 220 ° C.

(比較例3)
負極を250℃で加熱処理した以外は電池Aと同様にして作製を試みたが、エチレン−メタクリル酸塩共重合体の結着性が著しく低下してしまい、ペレット形状を維持できなくなり、電池を作製することができなかった。
(Comparative Example 3)
Preparation was made in the same manner as Battery A except that the negative electrode was heat-treated at 250 ° C., but the binding property of the ethylene-methacrylate copolymer was significantly lowered, and the pellet shape could not be maintained. It could not be produced.

完成電池はいずれも直径16mm、厚さ1.6mmである。これらの電池について、組み立て後、2.5Vの定電圧で24時間初充電(保護抵抗50Ω)を行った。これらの電池の1kHzにおける内部抵抗と、1.0mAの定電流で1.5Vまで放電したときの放電容量を表1に示す。   Each finished battery has a diameter of 16 mm and a thickness of 1.6 mm. After assembling these batteries, initial charging (protective resistance 50Ω) was performed for 24 hours at a constant voltage of 2.5V. Table 1 shows the internal resistance of these batteries at 1 kHz and the discharge capacity when discharged to 1.5 V with a constant current of 1.0 mA.


表1の結果から分かるように、エチレン−メタクリル酸塩共重合体を用いた負極を、120℃から190℃で加熱処理して用いた電池AからEの電池は、100℃で加熱処理した電池Fや220℃で加熱処理を行った電池Gに比べ、電池の内部抵抗が低く抑えられ、1.0mAの高負荷放電に対しても充分な放電容量が得られた。また、加熱処理温度が150℃から170℃の場合はさらに内部抵抗が低く、より高い放電容量が得られた。

As can be seen from the results in Table 1, the batteries A to E using the negative electrode using the ethylene-methacrylate copolymer heat-treated at 120 to 190 ° C. were heat-treated at 100 ° C. The internal resistance of the battery was suppressed lower than that of the battery G that was heat-treated at F or 220 ° C., and a sufficient discharge capacity was obtained even for a high-load discharge of 1.0 mA. Further, when the heat treatment temperature was 150 ° C. to 170 ° C., the internal resistance was further low, and a higher discharge capacity was obtained.

なお、上記の実施例では負極に本発明の電極を用いた電池での結果を示したが、正極に用いた場合も同様の結果を示す。   In addition, although the result in the battery using the electrode of the present invention as the negative electrode is shown in the above-mentioned example, the same result is shown when it is used as the positive electrode.

本発明の非水電解液電池は、電子機器等の主電源またはバックアップ用電源として有用である。 The non-aqueous electrolyte battery of the present invention is useful as a main power source or backup power source for electronic devices and the like.

本発明の実施例における電池の断面図Sectional drawing of the battery in the Example of this invention

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
4 電池ケース
5 封口板
6 ガスケット
7 集電体
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery case 5 Sealing plate 6 Gasket 7 Current collector

Claims (2)

正極、負極、セパレータ及び電解液を、電池ケース、封口板及びガスケットからなる電池容器に収納した扁平型非水電解液二次電池において、前記正極又は負極の一方の電極が、化学式Li4Ti512で示されるスピネル型構造を有するチタン酸リチウム、導電剤、及びエチレン−メタクリル酸塩共重合体の混合物からなり、前記電極を120℃〜190℃で加熱処理したものを用いたことを特徴とする扁平型非水電解液二次電池。 In a flat type non-aqueous electrolyte secondary battery in which a positive electrode, a negative electrode, a separator, and an electrolytic solution are housed in a battery container including a battery case, a sealing plate, and a gasket, one of the positive electrode and the negative electrode has a chemical formula Li 4 Ti 5 A mixture of lithium titanate having a spinel structure represented by O 12 , a conductive agent, and an ethylene-methacrylate copolymer, wherein the electrode is heat-treated at 120 ° C. to 190 ° C. A flat type non-aqueous electrolyte secondary battery. 前記加熱処理を150℃〜170℃で行った電極を用いたことを特徴とする請求項1記載の扁平型非水電解液二次電池。   The flat non-aqueous electrolyte secondary battery according to claim 1, wherein an electrode subjected to the heat treatment at 150 ° C. to 170 ° C. is used.
JP2006028065A 2006-02-06 2006-02-06 Flat type non-aqueous electrolyte secondary battery Expired - Fee Related JP4915101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006028065A JP4915101B2 (en) 2006-02-06 2006-02-06 Flat type non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006028065A JP4915101B2 (en) 2006-02-06 2006-02-06 Flat type non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2007207697A true JP2007207697A (en) 2007-08-16
JP4915101B2 JP4915101B2 (en) 2012-04-11

Family

ID=38486954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006028065A Expired - Fee Related JP4915101B2 (en) 2006-02-06 2006-02-06 Flat type non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4915101B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021556A (en) * 2006-07-13 2008-01-31 Sharp Corp Lithium secondary battery and its manufacturing method
JP2011181367A (en) * 2010-03-02 2011-09-15 Sumitomo Chemical Co Ltd Nonaqueous electrolyte secondary battery
JP2015176656A (en) * 2014-03-13 2015-10-05 本田技研工業株式会社 positive electrode material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850894A (en) * 1994-08-09 1996-02-20 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPH08329946A (en) * 1995-05-29 1996-12-13 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery
JPH1069922A (en) * 1996-08-27 1998-03-10 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte lithium secondary battery
JPH11238505A (en) * 1997-12-16 1999-08-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, negative electrode thereof, and manufacture of the negative electrode
JPH11354126A (en) * 1998-06-09 1999-12-24 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery negative electrode and battery using it
JP2001250536A (en) * 2000-03-02 2001-09-14 Matsushita Electric Ind Co Ltd Method of producing negative electrode plate for nonaqueous electrolyte secondary battery
JP2002343363A (en) * 2001-05-17 2002-11-29 Toshiba Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005332657A (en) * 2004-05-19 2005-12-02 Sii Micro Parts Ltd Non-aqueous electrolyte secondary battery
WO2006054604A1 (en) * 2004-11-19 2006-05-26 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2006075446A1 (en) * 2005-01-14 2006-07-20 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium ion secondary battery, process for producing the same, lithium ion secondary battery and process for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850894A (en) * 1994-08-09 1996-02-20 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
JPH08329946A (en) * 1995-05-29 1996-12-13 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery
JPH1069922A (en) * 1996-08-27 1998-03-10 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte lithium secondary battery
JPH11238505A (en) * 1997-12-16 1999-08-31 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, negative electrode thereof, and manufacture of the negative electrode
JPH11354126A (en) * 1998-06-09 1999-12-24 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery negative electrode and battery using it
JP2001250536A (en) * 2000-03-02 2001-09-14 Matsushita Electric Ind Co Ltd Method of producing negative electrode plate for nonaqueous electrolyte secondary battery
JP2002343363A (en) * 2001-05-17 2002-11-29 Toshiba Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005332657A (en) * 2004-05-19 2005-12-02 Sii Micro Parts Ltd Non-aqueous electrolyte secondary battery
WO2006054604A1 (en) * 2004-11-19 2006-05-26 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2006075446A1 (en) * 2005-01-14 2006-07-20 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium ion secondary battery, process for producing the same, lithium ion secondary battery and process for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008021556A (en) * 2006-07-13 2008-01-31 Sharp Corp Lithium secondary battery and its manufacturing method
JP2011181367A (en) * 2010-03-02 2011-09-15 Sumitomo Chemical Co Ltd Nonaqueous electrolyte secondary battery
JP2015176656A (en) * 2014-03-13 2015-10-05 本田技研工業株式会社 positive electrode material

Also Published As

Publication number Publication date
JP4915101B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4231411B2 (en) Electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
EP1995817B1 (en) Lithium rechargeable battery using ionic liquid
JP5341837B2 (en) Positive electrode, non-aqueous electrolyte battery and battery pack
JP5232631B2 (en) Non-aqueous electrolyte battery
JP2009054475A (en) Nonaqueous electrolyte solution battery and battery pack
JP2004047180A (en) Nonaqueous electrolytic solution battery
JP3507926B2 (en) Solid-state battery
JP2004022379A (en) Secondary cell, electrolyte therefor and usage thereof
JP3969072B2 (en) Nonaqueous electrolyte secondary battery
JP4915101B2 (en) Flat type non-aqueous electrolyte secondary battery
CN107078274B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same
CN111052486B (en) Nonaqueous electrolyte secondary battery
JP2008305772A (en) Nonaqueous electrolyte solution secondary battery and nonaqueous electrolyte solution
JP2003007331A (en) Nonaqueous electrolyte secondary battery
JP2007134245A (en) Electrolyte solution and battery
JP5646661B2 (en) Positive electrode, non-aqueous electrolyte battery and battery pack
JP2000243445A (en) Nonaqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP5242315B2 (en) Nonaqueous electrolyte secondary battery
JP2004186035A (en) Nonaqueous electrolytic solution battery
JPH10270079A (en) Nonaqueous electrolyte battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP2000243454A (en) Nonaqueous electrolyte secondary battery
JP4753690B2 (en) Organic electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4915101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees