JPH0835069A - Film forming device - Google Patents

Film forming device

Info

Publication number
JPH0835069A
JPH0835069A JP17108194A JP17108194A JPH0835069A JP H0835069 A JPH0835069 A JP H0835069A JP 17108194 A JP17108194 A JP 17108194A JP 17108194 A JP17108194 A JP 17108194A JP H0835069 A JPH0835069 A JP H0835069A
Authority
JP
Japan
Prior art keywords
film
roll
magnetic
cooling
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17108194A
Other languages
Japanese (ja)
Inventor
Shigemi Wakabayashi
繁美 若林
Noriyuki Kitaori
典之 北折
Osamu Yoshida
修 吉田
Hirohide Mizunoya
博英 水野谷
Akira Shiga
章 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP17108194A priority Critical patent/JPH0835069A/en
Publication of JPH0835069A publication Critical patent/JPH0835069A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a protective film with excellent efficiency, at the time of forming a diamond-like carbon film as a protective film on the surface of a metallic film on the surface of a magnetic recording medium, by adopting a microwave ECR plasm CVD method. CONSTITUTION:For protecting the surface of a magnetic recording medium in which a magnetic film by the fine powder of a magnetic metal by Fe, Co or Ni-base metals or alloys is formed on one side of a wide, long and thin suppporting body by a nonmagnetic polymer material by a vacuum deposition method or the like, the metal magnetic film of a magnetic recording medium 11 is wound in a state in which it is not abutted on a columnar cooling can roll 12 through a guide roll 13. While it is conveyed at a high speed of about 50m/, the space of an electrode sheet 14 and the cooling can roll 12 is fed with gaseous hydrocarbon such as benzene as a carbon source, high frequency voltage is impressed between the space of the cooling can roll 12 and electrode sheet 14 by an electric source 15 to generate plasma discharge, and carbon produced by the thermal decomposition of benzene is formed on the metal magnetic film as a diamond-like carbon protective film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば幅広な金属磁性
膜上にダイヤモンドライクカーボン膜を効率良く成膜す
ることが出来る成膜装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film forming apparatus capable of efficiently forming a diamond-like carbon film on a wide metal magnetic film.

【0002】[0002]

【発明の背景】磁気テープ等の磁気記録媒体において
は、高密度記録化の要請から、非磁性支持体上に設けら
れる磁性膜として、バインダ樹脂を用いた塗布型のもの
ではなく、バインダ樹脂を用いない金属薄膜型のものが
提案されていることは周知の通りである。
BACKGROUND OF THE INVENTION In a magnetic recording medium such as a magnetic tape, due to a demand for high density recording, a binder resin is not used as a magnetic film provided on a non-magnetic support instead of a coating type using a binder resin. It is well known that a metal thin film type that is not used has been proposed.

【0003】すなわち、無電解メッキといった湿式メッ
キ手段、真空蒸着、スパッタリングあるいはイオンプレ
ーティングといった乾式メッキ手段により磁性膜を構成
した磁気記録媒体が提案されている。そして、この種の
磁気記録媒体は磁性体の充填密度が高いことから、高密
度記録に適したものである。ところで、この種の金属薄
膜型磁気記録媒体における金属磁性膜は潤滑性に劣るこ
とから、金属磁性膜を保護する為の保護膜を表面に設け
ることが提案されている。例えば、ダイヤモンドライク
カーボン膜もこれらの提案の一つである。
That is, there has been proposed a magnetic recording medium having a magnetic film formed by a wet plating means such as electroless plating or a dry plating means such as vacuum deposition, sputtering or ion plating. Since the magnetic recording medium of this type has a high packing density of magnetic material, it is suitable for high-density recording. By the way, since the metal magnetic film in this kind of metal thin film magnetic recording medium is inferior in lubricity, it has been proposed to provide a protective film on the surface for protecting the metal magnetic film. For example, a diamond-like carbon film is one of these proposals.

【0004】このダイヤモンドライクカーボン膜を表面
に設ける手段としては各種のものが有り、その一つとし
てCVD手段が有る。すなわち、図2に示す如く、金属
磁性膜が支持体上に設けられた磁気記録媒体1を真空容
器2内に配設された供給側ロール3aから冷却キャンロ
ール4を経て巻取側ロール3bに走行させ、そして円筒
形のプラズマガン5を作動させ、冷却キャンロール4に
添接されている磁気記録媒体1の金属磁性膜に対して炭
化水素ガスのプラズマを吹き付けると、金属磁性膜の表
面にダイヤモンドライクカーボン膜が形成される。尚、
図2中、6はマイクロ波電源、7はバイアス電源、8は
ガス導入管である。
There are various means for providing the diamond-like carbon film on the surface, and one of them is the CVD means. That is, as shown in FIG. 2, the magnetic recording medium 1 having the metal magnetic film provided on the support is transferred from the supply-side roll 3a arranged in the vacuum container 2 to the winding-side roll 3b via the cooling can roll 4. When running, and operating the cylindrical plasma gun 5, the plasma of the hydrocarbon gas is blown to the metal magnetic film of the magnetic recording medium 1 attached to the cooling can roll 4 to the surface of the metal magnetic film. A diamond-like carbon film is formed. still,
In FIG. 2, 6 is a microwave power supply, 7 is a bias power supply, and 8 is a gas introduction pipe.

【0005】ところで、このような装置でダイヤモンド
ライクカーボン膜を成膜するに際して、次のような問題
点の有ることが判って来た。すなわち、実験室段階にあ
っては、成膜しようとするダイヤモンドライクカーボン
膜に幅広いことが要求されていなかった為、問題はなか
った。しかしながら、これを工業的な段階に移すと、成
膜しようとするダイヤモンドライクカーボン膜に幅広い
ことが必要であった。つまり、磁気テープ原反などは幅
が数mにわたる場合もあり、このような場合には成膜し
ようとするダイヤモンドライクカーボン膜も幅が数mに
わたることになる。そして、このような場合において、
これまでのものでは幅方向に均一で効率良くダイヤモン
ドライクカーボン膜を成膜できなかったのである。
By the way, it has been found that there are the following problems in forming a diamond-like carbon film with such an apparatus. That is, in the laboratory stage, there was no problem because a wide range was not required for the diamond-like carbon film to be formed. However, if this is moved to an industrial stage, it is necessary to have a wide range of diamond-like carbon film to be formed. That is, the width of the magnetic tape stock may be several meters, and in such a case, the diamond-like carbon film to be formed also has a width of several meters. And in such a case,
Thus far, the diamond-like carbon film could not be formed uniformly and efficiently in the width direction.

【0006】[0006]

【発明の開示】本発明の目的は、幅広いダイヤモンドラ
イクカーボン膜を幅方向に均一で効率良く成膜できる装
置を提供することである。この本発明の目的は、マイク
ロ波ECRプラズマCVD法により成膜が行われる装置
であって、走行手段と、この走行手段によって走行させ
られる長尺体を案内する磁石製のロールと、このロール
に沿って設けられた断面が円弧状の電極板と、この電極
板に接続された電源と、前記ロールと断面円弧状電極板
との間の空間にガスを供給するガス供給手段とを具備す
ることを特徴とする成膜装置によって達成される。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide an apparatus capable of forming a wide range of diamond-like carbon films uniformly and efficiently in the width direction. An object of the present invention is an apparatus in which film formation is performed by a microwave ECR plasma CVD method, and a traveling unit, a roll made of a magnet for guiding a long body to be traveled by the traveling unit, and the roll. An electrode plate having an arcuate cross-section provided along the electrode plate; a power source connected to the electrode plate; and gas supply means for supplying gas to a space between the roll and the arcuate electrode plate having a cross-section. Is achieved by the film forming apparatus.

【0007】すなわち、マイクロ波ECRプラズマCV
D装置における長尺体を案内する冷却キャンロールをマ
グネットで構成すると共に、このマグネット製冷却キャ
ンロールに対向して断面円弧状電極板を配設したなら
ば、冷却キャンロールと断面円弧状電極板との間におい
てロール面に垂直方向に作用する電場と、この電場に対
して垂直方向に作用するマグネット製冷却キャンロール
からの磁場との協同作用によるプラズマ空間(冷却キャ
ンロールと断面円弧状電極板との間の空間)においてE
CR共鳴点が冷却キャンロールに対して同心円筒状に分
布するようになる。従って、冷却キャンロールの幅方向
において全面に均一で効率良くダイヤモンドライクカー
ボン膜を成膜できるようになる。又、成膜速度も速いも
のとなる。すなわち、全幅にわたる領域を一度に成膜で
きるから、プラズマガンを幅方向に走査する必要がな
く、従って長尺体の走行速度を上げることが出来、成膜
速度が速いものとなる。
That is, the microwave ECR plasma CV
If the cooling can roll for guiding the elongated body in the device D is composed of a magnet, and the arc-shaped electrode plate having a cross section is disposed so as to face the cooling can roll made of a magnet, the cooling can roll and the arc-shaped electrode plate having a cross section are provided. Plasma space (cooling can roll and arc-shaped electrode plate having a circular cross section) by a cooperative action of an electric field acting in a direction perpendicular to the roll surface and a magnetic field from a magnet-made cooling can roll acting in a direction perpendicular to the electric field. In the space between) and E
The CR resonance points are distributed concentrically with the cooling can roll. Therefore, the diamond-like carbon film can be uniformly and efficiently formed on the entire surface of the cooling can roll in the width direction. In addition, the film forming speed becomes high. That is, since the film can be formed over the entire width at one time, it is not necessary to scan the plasma gun in the width direction, so that the traveling speed of the elongated body can be increased and the film formation speed can be increased.

【0008】ロール(冷却キャンロール)は磁石、特に
永久磁石で構成される。このロールは、直径が約10〜
300cm、長さが数m以内、例えば約5cm〜1mの
円柱状をしたものであり、ロールの表面から10cm離
れた位置における磁場が、例えば約875Gとなるよう
な磁石で構成される。断面円弧状電極板とロール(ロー
ルに添接されている長尺体)との間には電場が形成され
る訳であるが、この電場は強度が約100〜10000
V/mとなるよう電極板に電源(マイクロ波電源)が接
続されている。
The roll (cooling can roll) is composed of a magnet, especially a permanent magnet. This roll has a diameter of about 10
It has a cylindrical shape with a length of 300 cm and a length of several meters, for example, about 5 cm to 1 m, and is composed of a magnet such that the magnetic field at a position 10 cm away from the surface of the roll is about 875 G. An electric field is formed between the electrode plate having an arcuate cross section and the roll (long body attached to the roll). The electric field has a strength of about 100 to 10,000.
A power source (microwave power source) is connected to the electrode plate so as to attain V / m.

【0009】尚、電源の一方の端子は断面円弧状電極板
に接続されており、他方の端子はロールに添接されてい
る長尺体(長尺体表面に設けられた金属薄膜)に接続さ
れる。つまり、長尺体表面に設けられた金属薄膜に当接
し、長尺体を案内する案内ローラに電源の他方の端子が
接続されている。これにより、断面円弧状電極板と長尺
体との間には電場が形成される。
One terminal of the power source is connected to the electrode plate having an arcuate cross section, and the other terminal is connected to the elongated body (metal thin film provided on the surface of the elongated body) attached to the roll. To be done. That is, the other terminal of the power source is connected to the guide roller that contacts the metal thin film provided on the surface of the elongated body and guides the elongated body. As a result, an electric field is formed between the electrode plate having an arcuate cross section and the elongated body.

【0010】上記ロールや断面円弧状電極板は、勿論、
真空槽内に配置されている。そして、成膜が行われる真
空雰囲気は真空度が約10〜10-4Torr程度となる
よう真空ポンプで排気が行われる。断面円弧状電極板と
ロールとの間の空間には、成膜原料となるガスが供給さ
れなければならない。このガスを供給するノズルは、一
つであっても良いが、断面円弧状電極板とロールとの間
の空間に均一に供給されるように複数のノズルが配置さ
れることが好ましい。
Of course, the roll and the electrode plate having an arcuate cross section are
It is located in a vacuum chamber. Then, the vacuum atmosphere in which the film is formed is evacuated by a vacuum pump so that the degree of vacuum is about 10 to 10 −4 Torr. Gas serving as a film-forming raw material must be supplied to the space between the electrode plate having an arcuate cross section and the roll. The number of nozzles that supply this gas may be one, but it is preferable that a plurality of nozzles be arranged so that the gas is uniformly supplied to the space between the electrode plate having an arcuate cross section and the roll.

【0011】ガス供給ノズルから供給されるガスとして
は各種のものを用いることが出来る。形成される膜がダ
イヤモンドライクカーボン膜であれば、炭化水素、特に
ベンゼンやシクロヘキサンなどの環状炭化水素、あるい
はピリジンのようなN元素を含む環状炭化水素を用いる
ことが出来る。本発明の装置が磁気記録媒体に適用され
る場合には、長尺状の支持体は非磁性のものである。例
えば、ポリエチレンテレフタレート等のポリエステル、
ポリアミド、ポリイミド、ポリスルフォン、ポリカーボ
ネート、ポリプロピレン等のオレフィン系の樹脂、セル
ロース系の樹脂、塩化ビニル系の樹脂といった高分子材
料が用いられる。尚、支持体面上には磁性膜の密着性を
向上させる為のアンダーコート層が設けられている。す
なわち、表面の粗さを適度に粗すことにより乾式メッキ
により構成される磁性膜の密着性を向上させ、さらに磁
気記録媒体表面の表面粗さを適度なものとして走行性を
改善する為、例えばSiO2 等の粒子を含有させた厚さ
が0.005〜0.1μmの塗膜を設けることによって
アンダーコート層が構成されている。このアンダーコー
ト層の上に、例えば斜め蒸着手段によって金属薄膜型の
磁性膜(記録膜)が設けられる。例えば、10-4〜10
-6Torr程度の真空雰囲気下において磁性金属を抵抗
加熱、高周波加熱、電子ビーム加熱などにより蒸発さ
せ、金属磁性粒子を支持体面上に堆積(蒸着)させるこ
とにより、金属磁性膜が形成される。金属磁性膜の材料
として、例えばFe,Co,Ni等の金属の他に、Co
−Ni合金、Co−Pt合金、Co−Ni−Pt合金、
Fe−Co合金、Fe−Ni合金、Fe−Co−Ni合
金、Fe−Co−B合金、Co−Ni−Fe−B合金、
Co−Cr合金、あるいはこれらにAl等の金属を含有
させたもの等が用いられる。尚、金属磁性膜の形成は、
上記した蒸着法による他、直流スパッタ法、交流スパッ
タ法、高周波スパッタ法、直流マグネトロンスパッタ
法、高周波マグネトロンスパッタ法、イオンビームスパ
ッタ法などの各種の手段を採用できる。
Various kinds of gas can be used as the gas supplied from the gas supply nozzle. If the formed film is a diamond-like carbon film, hydrocarbons, particularly cyclic hydrocarbons such as benzene and cyclohexane, or cyclic hydrocarbons containing N element such as pyridine can be used. When the device of the present invention is applied to a magnetic recording medium, the elongated support is non-magnetic. For example, polyester such as polyethylene terephthalate,
Polymer materials such as olefin resins such as polyamide, polyimide, polysulfone, polycarbonate, and polypropylene, cellulose resins, and vinyl chloride resins are used. An undercoat layer for improving the adhesion of the magnetic film is provided on the surface of the support. That is, in order to improve the adhesion of the magnetic film formed by dry plating by appropriately roughening the surface roughness and further improve the running property by making the surface roughness of the magnetic recording medium surface moderate, for example, The undercoat layer is formed by providing a coating film containing particles such as SiO 2 and having a thickness of 0.005 to 0.1 μm. A metal thin film type magnetic film (recording film) is provided on the undercoat layer by, for example, oblique vapor deposition means. For example, 10 -4 to 10
A magnetic metal film is formed by evaporating a magnetic metal by resistance heating, high frequency heating, electron beam heating, etc. in a vacuum atmosphere of about −6 Torr and depositing (evaporating) metal magnetic particles on the surface of a support. Examples of materials for the metal magnetic film include Co, in addition to metals such as Fe, Co, and Ni.
-Ni alloy, Co-Pt alloy, Co-Ni-Pt alloy,
Fe-Co alloy, Fe-Ni alloy, Fe-Co-Ni alloy, Fe-Co-B alloy, Co-Ni-Fe-B alloy,
A Co—Cr alloy or an alloy containing a metal such as Al is used. The formation of the metal magnetic film is
In addition to the above vapor deposition method, various means such as a DC sputtering method, an AC sputtering method, a high frequency sputtering method, a DC magnetron sputtering method, a high frequency magnetron sputtering method, and an ion beam sputtering method can be adopted.

【0012】そして、上記のように構成させた金属薄膜
型の磁性膜が設けられた磁気記録媒体を、金属薄膜型の
磁性膜と反対側の面がロールに添接されるように装填
し、走行させ、そして原料ガスを供給すると共に電源を
オンにすると、断面円弧状電極板とロールとの間の空間
にプラズマが形成され、金属薄膜型の磁性膜上にダイヤ
モンドライクカーボン膜が均一に形成されるようにな
る。
Then, the magnetic recording medium provided with the metal thin film type magnetic film configured as described above is loaded so that the surface opposite to the metal thin film type magnetic film is attached to the roll, When running and supplying the source gas and turning the power on, plasma is formed in the space between the electrode plate and the roll with an arcuate cross section, and a diamond-like carbon film is uniformly formed on the metal thin film type magnetic film. Will be done.

【0013】以下、具体的な実施例を挙げて本発明を説
明する。
The present invention will be described below with reference to specific examples.

【0014】[0014]

【実施例】図1は、本発明になる成膜装置の要部を示す
概略図である。尚、以下においては、この成膜装置が金
属薄膜型の磁性膜面上にダイヤモンドライクカーボン膜
を形成する為に用いられた場合を挙げて説明する。同図
中、11は、通常の斜め蒸着装置を用いて厚さ10μm
で幅155mmのPETフィルム11にCo粒子を堆積
させ、2000Å厚さのCo磁性膜が設けられた磁気記
録媒体の原反である。そして、この原反11が、図示し
ない供給側ロールから巻取側ロールに冷却キャンロール
12を経て走行するようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view showing a main part of a film forming apparatus according to the present invention. In the following, a case where this film forming apparatus is used for forming a diamond-like carbon film on the surface of a metal thin film type magnetic film will be described. In the figure, 11 is a thickness of 10 μm using an ordinary oblique vapor deposition apparatus.
Is a raw material of a magnetic recording medium in which Co particles are deposited on a PET film 11 having a width of 155 mm and a 2000 magnetic layer of Co magnetic film is provided. Then, the original fabric 11 travels from a supply-side roll (not shown) to a winding-side roll via a cooling can roll 12.

【0015】この冷却キャンロール12は、直径40c
m、長さ20cmの円柱状に構成されたものであり、そ
して永久磁石で作製されたものである。尚、磁極は冷却
キャンロール12の両端部にあり、従って磁力線は冷却
キャンロール12の円柱状側面に沿った方向にある。
尚、冷却キャンロール12から10cm離れた位置P点
における磁場強度は875Gである。
The cooling can roll 12 has a diameter of 40c.
m, a column having a length of 20 cm, and made of a permanent magnet. The magnetic poles are located at both ends of the cooling can roll 12, and therefore the magnetic force lines are in the direction along the cylindrical side surface of the cooling can roll 12.
The magnetic field strength at the point P, which is 10 cm away from the cooling can roll 12, is 875 G.

【0016】冷却キャンロール12の前段階の位置に金
属製の案内ローラ13が配設されている。そして、この
案内ローラ13に原反11表面の磁性膜表面が当接する
よう原反11が掛けられている。従って、図1からも判
る通り、原反11表面の磁性膜は冷却キャンロール12
に当接していない。14は直径が80cmの半円筒形状
をした電極板であり、2.45GHzの高周波電源15
の一方の端子に接続されている。尚、高周波電源15の
他方の端子は案内ローラ13に接続されている。
A guide roller 13 made of metal is disposed at a position in front of the cooling can roll 12. Then, the original fabric 11 is hung on the guide roller 13 so that the surface of the magnetic film on the surface of the original fabric 11 contacts. Therefore, as can be seen from FIG. 1, the magnetic film on the surface of the raw fabric 11 is the cooling can roll 12
Is not in contact with. 14 is a semi-cylindrical electrode plate having a diameter of 80 cm, and a high frequency power supply of 2.45 GHz 15
Is connected to one terminal. The other terminal of the high frequency power source 15 is connected to the guide roller 13.

【0017】上記のように構成させた装置において、原
反11を50m/minの速度で走行させた。そして、
真空度が0.1Torrのものとし、ベンゼンを50s
ccm、二酸化炭素を50sccm、アルゴンを50s
ccm、水素を1000sccmの割合で冷却キャンロ
ール12と電極板14との間の空間に供給し、原反11
表面の磁性膜表面にダイヤモンドライクカーボン膜を1
00Å厚さ設けた。
In the apparatus constructed as described above, the original fabric 11 was run at a speed of 50 m / min. And
The degree of vacuum is 0.1 Torr and benzene is 50s.
ccm, carbon dioxide 50 sccm, argon 50 s
Ccm and hydrogen are supplied at a rate of 1000 sccm into the space between the cooling can roll 12 and the electrode plate 14,
1 diamond-like carbon film on the surface of the magnetic film
The thickness is set to 00Å.

【0018】これに対して、従来のプラズマガンを用い
たCVD装置で上記実施例の原反表面の磁性膜上に10
0Å厚のダイヤモンドライクカーボン膜を成膜しようと
した場合には、原反の走行速度を1m/minと大幅に
落とさなければならず、成膜効率が大幅に劣るものであ
った。すなわち、本発明になるものは、幅方向に広いも
のであっても成膜速度を低下させないものであり、生産
性が極めて高いものである。
On the other hand, a conventional CVD apparatus using a plasma gun is used to form a film on the magnetic film on the original surface of the above-mentioned embodiment.
When it was attempted to form a diamond-like carbon film having a thickness of 0Å, the running speed of the raw material had to be significantly reduced to 1 m / min, and the film-forming efficiency was significantly inferior. That is, the present invention does not decrease the film forming rate even if it is wide in the width direction, and has extremely high productivity.

【0019】[0019]

【効果】本発明によれば、幅方向に広いものであっても
高い効率で成膜できる。
[Effect] According to the present invention, a film having a large width can be formed with high efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になる成膜装置の概略図FIG. 1 is a schematic view of a film forming apparatus according to the present invention.

【図2】従来の成膜装置の概略図FIG. 2 is a schematic view of a conventional film forming apparatus.

【符号の説明】[Explanation of symbols]

11 磁気記録媒体原反 12 永久磁石製冷却キャンロール 13 金属製案内ローラ 14 半円筒形状電極板 15 高周波電源 11 Magnetic Recording Medium Roll 12 Permanent Magnet Cooling Can Roll 13 Metal Guide Roller 14 Semi-Cylindrical Electrode Plate 15 High Frequency Power Supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水野谷 博英 栃木県芳賀郡市貝町大字赤羽2606 花王株 式会社情報科学研究所内 (72)発明者 志賀 章 栃木県芳賀郡市貝町大字赤羽2606 花王株 式会社情報科学研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirohide Mizutani 2606 Akabane, Kaiga-cho, Haga-gun, Tochigi Prefecture Kao Co., Ltd.Institute of Information Sciences (72) Inventor Akira Shiga 2606 Akabane, Kai-cho, Haga-gun, Tochigi Kao Company Information Science Laboratory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 マイクロ波ECRプラズマCVD法によ
り成膜が行われる装置であって、走行手段と、この走行
手段によって走行させられる長尺体を案内する磁石製の
ロールと、このロールに沿って設けられた断面が円弧状
の電極板と、この電極板に接続された電源と、前記ロー
ルと断面円弧状電極板との間の空間にガスを供給するガ
ス供給手段とを具備することを特徴とする成膜装置。
1. An apparatus for forming a film by a microwave ECR plasma CVD method, comprising: a traveling unit, a roll made of a magnet for guiding an elongated body to be traveled by the traveling unit, and a roll along the roll. An electrode plate having an arcuate cross section provided, a power source connected to the electrode plate, and gas supply means for supplying gas to a space between the roll and the electrode plate having an arcuate cross section. Film forming apparatus.
JP17108194A 1994-07-22 1994-07-22 Film forming device Pending JPH0835069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17108194A JPH0835069A (en) 1994-07-22 1994-07-22 Film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17108194A JPH0835069A (en) 1994-07-22 1994-07-22 Film forming device

Publications (1)

Publication Number Publication Date
JPH0835069A true JPH0835069A (en) 1996-02-06

Family

ID=15916662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17108194A Pending JPH0835069A (en) 1994-07-22 1994-07-22 Film forming device

Country Status (1)

Country Link
JP (1) JPH0835069A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2458776A (en) * 2008-03-31 2009-10-07 Qinetiq Ltd Chemical vapour deposition process
EP2365117A1 (en) * 2005-07-28 2011-09-14 Nanocomp Technologies, Inc. Apparatus and method for formation and collection of nanofibrous non-woven sheet
US8847074B2 (en) 2008-05-07 2014-09-30 Nanocomp Technologies Carbon nanotube-based coaxial electrical cables and wiring harness
US9061913B2 (en) 2007-06-15 2015-06-23 Nanocomp Technologies, Inc. Injector apparatus and methods for production of nanostructures
US9198232B2 (en) 2008-05-07 2015-11-24 Nanocomp Technologies, Inc. Nanostructure-based heating devices and methods of use
US9718691B2 (en) 2013-06-17 2017-08-01 Nanocomp Technologies, Inc. Exfoliating-dispersing agents for nanotubes, bundles and fibers
US10581082B2 (en) 2016-11-15 2020-03-03 Nanocomp Technologies, Inc. Systems and methods for making structures defined by CNT pulp networks
US11434581B2 (en) 2015-02-03 2022-09-06 Nanocomp Technologies, Inc. Carbon nanotube structures and methods for production thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10029442B2 (en) 2005-07-28 2018-07-24 Nanocomp Technologies, Inc. Systems and methods for formation and harvesting of nanofibrous materials
EP2365117A1 (en) * 2005-07-28 2011-09-14 Nanocomp Technologies, Inc. Apparatus and method for formation and collection of nanofibrous non-woven sheet
US8999285B2 (en) 2005-07-28 2015-04-07 Nanocomp Technologies, Inc. Systems and methods for formation and harvesting of nanofibrous materials
US11413847B2 (en) 2005-07-28 2022-08-16 Nanocomp Technologies, Inc. Systems and methods for formation and harvesting of nanofibrous materials
US9061913B2 (en) 2007-06-15 2015-06-23 Nanocomp Technologies, Inc. Injector apparatus and methods for production of nanostructures
GB2458776B (en) * 2008-03-31 2010-06-02 Qinetiq Ltd Chemical vapour deposition process
GB2458776A (en) * 2008-03-31 2009-10-07 Qinetiq Ltd Chemical vapour deposition process
US8847074B2 (en) 2008-05-07 2014-09-30 Nanocomp Technologies Carbon nanotube-based coaxial electrical cables and wiring harness
US9396829B2 (en) 2008-05-07 2016-07-19 Nanocomp Technologies, Inc. Carbon nanotube-based coaxial electrical cables and wiring harness
US9198232B2 (en) 2008-05-07 2015-11-24 Nanocomp Technologies, Inc. Nanostructure-based heating devices and methods of use
US9718691B2 (en) 2013-06-17 2017-08-01 Nanocomp Technologies, Inc. Exfoliating-dispersing agents for nanotubes, bundles and fibers
US11434581B2 (en) 2015-02-03 2022-09-06 Nanocomp Technologies, Inc. Carbon nanotube structures and methods for production thereof
US10581082B2 (en) 2016-11-15 2020-03-03 Nanocomp Technologies, Inc. Systems and methods for making structures defined by CNT pulp networks

Similar Documents

Publication Publication Date Title
JPH0835069A (en) Film forming device
JPH10251851A (en) Film deposition method and film deposition device
JP4608944B2 (en) Film forming apparatus and film forming method
JPH08100266A (en) Formation of thin film and device therefor
JP3358352B2 (en) Film forming equipment
JPH0860373A (en) Thin film forming method and device therefor
JP3687117B2 (en) Magnetic recording medium and method for manufacturing the same
JPH08193270A (en) Formation of diamondlike carbon film and device therefor
JPH02281420A (en) Method and device for producing protective film of metallic thin film type magnetic recording medium
JP2002030446A (en) Film deposition method, film deposition system, method for producing magnetic tape and device tehrefor
JPH10310869A (en) Production of magnetic recording medium and device for producing magnetic recording medium
JPH0853770A (en) Thin film deposition system
JP4887685B2 (en) Deposition equipment
JPH07331440A (en) Formation of thin film
JPH10152778A (en) Formation of protective film
JPH10237659A (en) Formation of coating and device therefor
JP2000331335A (en) Apparatus for production of magnetic recording medium
JPH11161948A (en) Production of magnetic recording medium
JPH1091957A (en) Production of magnetic recording medium
JPH10251858A (en) Apparatus for producing protective film and production of protective film
JPH08203074A (en) Thin film forming device
JPH0849078A (en) Thin film forming device and method therefor
JP2002194549A (en) Apparatus and method for film formation
JPH08129750A (en) Method of forming protective film and producing device for protective film
JPH11154316A (en) Magnetic recording medium