JPH08238478A - Method and apparatus for making pure water or ultrapure water from which boron is removed - Google Patents

Method and apparatus for making pure water or ultrapure water from which boron is removed

Info

Publication number
JPH08238478A
JPH08238478A JP7043130A JP4313095A JPH08238478A JP H08238478 A JPH08238478 A JP H08238478A JP 7043130 A JP7043130 A JP 7043130A JP 4313095 A JP4313095 A JP 4313095A JP H08238478 A JPH08238478 A JP H08238478A
Authority
JP
Japan
Prior art keywords
water
boron
exchange resin
ultrapure water
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7043130A
Other languages
Japanese (ja)
Other versions
JP3215277B2 (en
Inventor
Madoka Tanabe
円 田辺
Sakae Kaneko
栄 金子
Ikuo Shindo
郁夫 神藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP04313095A priority Critical patent/JP3215277B2/en
Publication of JPH08238478A publication Critical patent/JPH08238478A/en
Application granted granted Critical
Publication of JP3215277B2 publication Critical patent/JP3215277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To reduce the elution amt. of TOC from a boron selective ion exchange resin used in a state incorporated in a pure water or ultrapure water making apparatus. CONSTITUTION: Pure water or ultrapure water being water to be treated is brought into contact with a boron selective ion exchange resin wherein a weak basic exchange group is prepared in a free base form and a strong basic exchange group is prepared in a salt form to remove boron ions in water to be treated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、純水又は超純水の製造
方法及び製造装置に関し、例えば半導体製造などの電子
産業分野あるいはその関連分野等で有効なほう素濃度を
大幅に低減させた純水又は超純水の製造方法及び装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing pure water or ultrapure water, in which the effective boron concentration is greatly reduced in the electronic industry field such as semiconductor manufacturing and related fields. The present invention relates to a method and an apparatus for producing pure water or ultrapure water.

【0002】[0002]

【従来技術】[Prior art]

[発明の背景]従来から、例えば半導体製造の分野で
は、半導体デバイスの高集積度化に伴い、製造工程で用
いられる生産機械やガス,薬品等と共に、純水も大幅な
高純度化が要求され、超純水(場合により超々純水とも
称される)などの極めて高純度な用水も要求されてい
る。この用水高純度化の要求は今後も一層高まる傾向に
あると考えられ、このような過程で純水水質においてこ
れまでは注目されることのなかった極微細な微粒子、コ
ロイド状物質、超微量などの不純物が新たな除去対象物
質として注目されてきており、そのような物質の一つと
してほう素が挙げられる。
BACKGROUND OF THE INVENTION Conventionally, for example, in the field of semiconductor manufacturing, as the degree of integration of semiconductor devices has increased, it has been required to greatly purify pure water as well as production machines, gases and chemicals used in the manufacturing process. There is also a demand for extremely high-purity water such as ultrapure water (also sometimes referred to as ultrapure water). It is considered that the demand for high purification of this water will continue to increase in the future, and in this process ultrafine particles, colloidal substances, ultra traces, etc. The impurities have been attracting attention as a new substance to be removed, and one of such substances is boron.

【0003】ほう素は微量測定の難しい元素であり、イ
オン,非イオン性物質の除去のために様々な装置を使用
して製造されている超純水中にこれが含まれているか否
かも従来は必ずしも明らかでなかったこともあって、超
純水の水質評価項目として注目されていなかった。しか
し測定技術の発達に伴って近時においてはpptレベル
で不純物の存在を検出することができるようになった結
果、利用する原水の水質や超純水等の製造装置の構成に
よっては、製造された超純水中にはほう素が含まれてい
ることが明らかとなった。
Boron is an element whose trace amount is difficult to measure, and whether or not it is contained in ultrapure water produced by using various devices for removing ionic and nonionic substances has not been conventionally known. Since it was not always clear, it did not attract attention as a water quality evaluation item for ultrapure water. However, with the development of measurement technology, it has become possible to detect the presence of impurities at the ppt level in recent years. As a result, depending on the quality of raw water used and the configuration of the production equipment for producing ultrapure water, it is produced. It was revealed that boron was contained in ultrapure water.

【0004】そしてこのほう素が超純水中に相当量含ま
れたまま例えば半導体デバイスの製造過程における洗浄
水として長期間に渡って使用される場合を考えると、ほ
う素がウエハ表面に高濃度に付着する結果として該半導
体デバイスの特性を損なう虞れが無視できないという問
題が新しい課題とされるようになった。
Considering the case where boron is used for a long period of time while being contained in ultrapure water as a cleaning water in a semiconductor device manufacturing process, the boron is highly concentrated on the wafer surface. As a result, the problem that the characteristics of the semiconductor device may be impaired as a result of being adhered to the substrate has become a new problem.

【0005】上記課題として例えば、基盤上にnチャネ
ルトランジスタを形成させる場合にほう素の除去が十分
でない超純水を半導体デバイス製造用水として利用する
と、nチャネルトランジスタのしきい値電圧は基盤中の
ほう素濃度に依存するので製造工程中のほう素濃度の管
理が不安定である結果として製品の半導体デバイス特性
を著しく損なう可能性があることや、高集積度化が求め
られる近時において例えば微細なnチャネルMOSトラ
ンジスタを製造する場合を考えると、パンチスルー防止
の観点から基盤の深さ方向のほう素濃度分布を精密に制
御することが必要になる等のことが挙げられる。
For example, when ultrapure water in which boron is not sufficiently removed is used as water for manufacturing a semiconductor device when forming an n-channel transistor on a substrate, the threshold voltage of the n-channel transistor is Depending on the boron concentration, unstable management of the boron concentration during the manufacturing process may result in a significant loss of the semiconductor device characteristics of the product. Considering the case of manufacturing such a n-channel MOS transistor, it is necessary to precisely control the boron concentration distribution in the depth direction of the substrate from the viewpoint of preventing punch-through.

【0006】[従来の技術]本出願人は、上記のような
課題を解決するために、既にほう素選択性イオン交換樹
脂を利用してほう素を除去した超純水を長期間安定して
製造することを可能とした技術を開発し提案した(特願
平6−240232号)。
[Prior Art] In order to solve the above problems, the applicant of the present invention has stabilized boron-removed ultrapure water for a long period of time by using a boron-selective ion exchange resin. We have developed and proposed a technology that enables manufacturing (Japanese Patent Application No. 6-240232).

【0007】図1は、上記のほう素を除去した超純水の
長期間安定製造を可能とした本出願人の提案する一例的
な超純水製造装置の概要をフロー図で示したものであ
る。
FIG. 1 is a flow chart showing an outline of an example of an ultrapure water producing apparatus proposed by the applicant of the present invention, which enables stable production of ultrapure water from which the above boron has been removed for a long period of time. is there.

【0008】この図1に基づいてほう素除去機能を有す
る超純水製造装置の概要を簡単に説明すると、工業用水
等の原水は、まず、懸濁物質と有機物の一部を前処理装
置1で除去した後、処理水はろ過水槽2を経て例えば2
床3塔式イオン交換装置である脱塩装置3に送られる。
この脱塩装置3で不純物イオンを除去した処理水は、脱
塩水槽4を経て逆浸透膜(RO)装置5に送られ、該処
理水中に残留する無機イオン、有機物、微粒子等の不純
物が除去される。次のこの微粒子等が除去された処理水
は、RO透過水槽6を経て真空脱気装置7で溶存酸素を
除去した後再生型混床式イオン交換装置8で高純度の一
次純水とされ、この一次純水は純水貯槽9に貯溜され
る。
The outline of an ultrapure water producing system having a boron removing function will be briefly described with reference to FIG. 1. Raw water such as industrial water is prepared by first treating a part of suspended matter and organic matter with a pretreatment system 1. After being removed in step 2, the treated water is passed through the filtered water tank 2 to, for example, 2
It is sent to the desalting apparatus 3, which is a three-bed floor ion exchange apparatus.
The treated water from which the impurity ions have been removed by the desalination device 3 is sent to a reverse osmosis membrane (RO) device 5 via a desalination water tank 4 to remove impurities such as inorganic ions, organic substances and fine particles remaining in the treated water. To be done. Next, the treated water from which the fine particles and the like have been removed is passed through the RO permeation water tank 6 to remove dissolved oxygen by the vacuum degassing device 7 and then made into high-purity primary pure water by the regenerative mixed bed ion exchange device 8. This primary pure water is stored in the pure water storage tank 9.

【0009】純水貯槽9の一次純水は次に二次純水処理
系に送られ、まず、紫外線酸化装置10での紫外線照射
により純水中の有機物を分解すると共にバクテリアの殺
菌が行なわれる。
The primary pure water in the pure water storage tank 9 is then sent to the secondary pure water treatment system, and first, the ultraviolet rays are irradiated by the ultraviolet oxidation device 10 to decompose the organic substances in the pure water and sterilize the bacteria. .

【0010】そしてほう素除去を行なわない従来一般的
な超純水製造装置(図3参照)では、カートリッジポリ
ッシャ12で更なるイオンの除去、次いで限外ろ過膜
(UF)装置13で更なる微粒子の除去を行なった後、
上記純水貯槽9に超純水を戻すように接続された二次純
水循環配管15の途中から分岐した送水配管を通して使
用場所14に超純水を給水するが、ほう素除去を行なう
図1の装置では、紫外線酸化装置10とカートリッジポ
リッシャ12の間にほう素除去塔11を設けて、これに
充填したほう素選択性イオン交換樹脂(例えばアンバー
ライト(登録商標、以下同様)IRA−743T)によ
り、処理水中に含まれるほう素が除去される。
In a conventional general ultrapure water production system (see FIG. 3) that does not perform boron removal, the cartridge polisher 12 further removes ions, and then the ultrafiltration membrane (UF) device 13 produces further fine particles. After removing the
The ultrapure water is supplied to the place of use 14 through a water supply pipe branched from the middle of the secondary pure water circulation pipe 15 connected to return the ultrapure water to the pure water storage tank 9, but boron is removed. In this apparatus, a boron removal tower 11 is provided between the ultraviolet oxidation device 10 and the cartridge polisher 12, and a boron selective ion exchange resin (for example, Amberlite (registered trademark, the same applies hereinafter) IRA-743T) filled in the boron removal tower 11. Thereby, boron contained in the treated water is removed.

【0011】なお上記において純水貯槽9−紫外線照射
装置10−ほう素除去塔11−カートリッジポリッシャ
12−限外ろ過膜装置13−二次純水循環配管15の閉
ループで処理水を常に循環させる理由は、この閉ループ
を採用せずに使用場所14での使用,不使用に応じて装
置の運転を稼動させたり停止したりすると、停止時に配
管や各装置内で水が滞留することによるバクテリアの増
殖、イオン成分や有機物などの溶出が微量ながらも生じ
たり、停止後再稼動時のショックで各装置などから微粒
子が吐き出されて超純水の水質を劣化させる虞れがある
ことを考慮したためであり、上記のほう素除去のために
ほう素除去塔11を設けたこととの関連性は特にない。
In the above, the reason why the treated water is always circulated in the closed loop of the pure water storage tank 9, the ultraviolet irradiation device 10, the boron removal tower 11, the cartridge polisher 12, the ultrafiltration membrane device 13 and the secondary pure water circulation pipe 15. Does not adopt this closed loop, and when the operation of the device is activated or stopped depending on whether it is used or not at the place 14 of use, the bacteria multiply due to the accumulation of water in the pipes and each device at the time of stop. This is because it was considered that the elution of ionic components and organic substances may occur even in a small amount, and that the shocks when restarting after stopping may cause the fine particles to be discharged from each device and deteriorate the water quality of ultrapure water. There is no particular relation with the provision of the boron removal tower 11 for the above boron removal.

【0012】[0012]

【発明が解決しようとする課題】上記のほう素選択性イ
オン交換樹脂を用いてほう素を除去した超純水の製造を
行なうようにした提案が有用であるのは次の理由によ
る。すなわち、強塩基性陰イオン交換樹脂をイオン除去
のために用いている従来の装置であっても、再生直後の
比較的短い期間など、部分的,短期間的にはほう素を有
効に除去できると考えられるが、長期間に渡る安定した
ほう素の除去はできないので工業的な装置としては不十
分となるからである。
The reason why the above-mentioned proposal for producing ultrapure water from which boron has been removed using the boron-selective ion exchange resin is useful is as follows. That is, even with a conventional device that uses a strongly basic anion exchange resin for ion removal, boron can be effectively removed partially or in a short period of time, such as a relatively short period immediately after regeneration. This is because it is not possible to remove boron as a stable material for a long period of time, which makes it unsatisfactory as an industrial apparatus.

【0013】ところで、ほう素選択性イオン交換樹脂は
ほう素除去のためにグルカミン交換基を有するものであ
って、その樹脂構造上の性質から通水した処理水中に有
機炭素が溶出すると考えられ、実際に上記図1の超純水
製造に適用した場合にほう素除去塔から出る処理水中の
全有機炭素(以下「TOC」という)濃度が高くなるこ
とが確認された。この場合のTOC溶出量は、他用途の
用水製造の場合には問題とならない量とも言えるが、本
発明が対象とするような例えば半導体製造などの電子産
業分野等に使用する純水や超純水等の用水では、上述の
ように半導体デバイスの信頼性低下や歩留まり低下につ
ながるため無視できない問題である。
By the way, the boron-selective ion exchange resin has a glucamine exchange group for removing boron, and it is considered that organic carbon is eluted in the treated water that has been passed through due to its resin structure. It was confirmed that the concentration of total organic carbon (hereinafter referred to as "TOC") in the treated water discharged from the boron removal tower was increased when it was actually applied to the ultrapure water production of FIG. The TOC elution amount in this case can be said to be an amount that does not pose a problem in the production of water for other purposes, but pure water or ultrapure water used in the electronic industry field such as semiconductor production, which is the object of the present invention, is used. Water, such as water, is a problem that cannot be ignored because it leads to lower reliability and lower yield of semiconductor devices as described above.

【0014】そこで、上記のほう素選択性イオン交換樹
脂を使用する場合にTOC溶出が影響しない装置運用を
図るための工夫、例えば一般的なイオン交換樹脂につい
て知られているTOCの溶出を低減させる処理、具体的
には、装置稼動前のほう素除去塔に対して酸溶液とア
ルカリ溶液を交互に通液して洗浄する、温水を通水す
る、などによってTOC溶出の低減化を図ることが挙げ
られる。また別の工夫として、溶出したTOCの影響を
低減するためにこれを除去するのに有効な装置構成を採
用する、一例的に言えば再生型混床式イオン交換装置等
の前段にほう素除去塔を配置するという装置構成を採用
することが有利になると考えられる。
Therefore, when the above-mentioned boron-selective ion exchange resin is used, a device for operating the apparatus which is not affected by TOC elution, for example, TOC elution which is known for general ion exchange resins is reduced. The treatment, specifically, the TOC elution can be reduced by alternately passing an acid solution and an alkaline solution to the boron removal tower before the operation of the apparatus for washing, and passing hot water. Can be mentioned. In addition, as another device, in order to reduce the influence of the dissolved TOC, a device structure that is effective for removing it is adopted. For example, boron removal is performed before the regenerative mixed bed ion exchange device. It may be advantageous to employ a device configuration that arranges the towers.

【0015】しかし、一般的イオン交換樹脂について知
られる上記,のTOC溶出低減法による効果は、ほ
う素選択性イオン交換樹脂においてはそれほど高くな
く、したがってある程度の効果を得るには前処理に長時
間を要することになってその負担が必ずしも小さくない
という問題がある。またほう素除去塔の配置を上述の配
置とすることで最終的に製造される超純水中のTOCを
低減させることはできるが、この場合でもTOC溶出が
再生型混床式イオン交換装置の再生サイクル期間への影
響を無視できないとか、装置構成のレイアウトが制約さ
れるなどの影響が避けられないという問題が残る。
However, the effect of the above TOC elution reduction method, which is known for general ion exchange resins, is not so high for boron-selective ion exchange resins, and therefore a long time is required for pretreatment to obtain a certain effect. Therefore, there is a problem that the burden is not necessarily small. Further, by arranging the boron removal tower as described above, TOC in the ultrapure water finally produced can be reduced. However, even in this case, TOC elution is caused by the regeneration-type mixed bed ion exchange apparatus. There remains a problem that influences on the reproduction cycle period cannot be ignored, and influences such as restrictions on the layout of the device configuration cannot be avoided.

【0016】本発明者等は、以上のような純水,超純水
という極めて高純度な水を製造するにあたって、更にこ
れに含まれるほう素を除去するために有用なほう素選択
性イオン交換樹脂を用いる場合の問題、すなわちこのほ
う素選択性イオン交換樹脂からTOCが溶出することの
影響をより有利に解決できる方法につき研究、開発を重
ね、本発明を完成するに至ったものである。
The inventors of the present invention, when producing the above-described pure water and ultrapure water of extremely high purity, further use boron-selective ion exchange useful for removing boron contained therein. The present invention has been completed through repeated research and development on a method that can more advantageously solve the problem of using a resin, that is, the effect of TOC elution from this boron-selective ion exchange resin.

【0017】すなわち本発明の目的の一つは、ほう素濃
度が低減されかつTOC濃度も十分に小さい純水又は超
純水を製造するのに有効な方法及び装置を提供するとこ
ろにある。
That is, one of the objects of the present invention is to provide a method and apparatus effective for producing pure water or ultrapure water in which the boron concentration is reduced and the TOC concentration is sufficiently small.

【0018】本発明の他の目的は、純水又は超純水製造
装置に組み込まれて使用されるほう素選択性イオン交換
樹脂からのTOC溶出量をできるだけ少なくするところ
にある。
Another object of the present invention is to minimize the TOC elution amount from a boron-selective ion exchange resin used by being incorporated in a pure water or ultrapure water production apparatus.

【0019】本発明の更に他の目的は、純水又は超純水
の製造装置内に設置するほう素除去塔に配置上の制約を
少なくできるように工夫された純水又は超純水の製造方
法及び装置を提供するところにある。
Still another object of the present invention is the production of pure water or ultrapure water devised so that the boron removal tower installed in the apparatus for producing pure water or ultrapure water can have less restrictions on the arrangement. Methods and apparatus are provided.

【0020】本発明の別の目的は、ほう素選択性イオン
交換樹脂からのTOC溶出の低減化を図る調製のための
前処理を容易かつ短時間に行なうことができるほう素選
択性イオン交換樹脂の調製方法を提供するところにあ
る。
Another object of the present invention is a boron-selective ion exchange resin which can be easily and quickly pretreated for preparation to reduce TOC elution from the boron-selective ion exchange resin. To provide a method of preparing

【0021】[0021]

【課題を解決するための手段】上記の目的を達成する本
発明の特徴の一つは、被処理水である純水又は超純水を
強塩基***換基及び弱塩基性であるグルカミン交換基を
有するほう素選択性イオン交換樹脂に接触させて、該被
処理水中のほう素イオンを除去した純水又は超純水を製
造する方法において、上記ほう素選択性イオン交換樹脂
の弱塩基***換基を遊離塩基形に調製しかつ強塩基***
換基を塩形に調製して用いるようにしたところにある。
Means for Solving the Problems One of the features of the present invention that achieves the above object is to use pure water or ultrapure water, which is water to be treated, as a strongly basic exchange group and a weakly basic glucamine exchange group. In the method for producing pure water or ultrapure water in which the boron ions in the water to be treated have been removed by contacting the boron-selective ion exchange resin, the weak basic exchange of the boron-selective ion exchange resin. The groups are prepared in the free base form and the strong base exchange groups are prepared in the salt form for use.

【0022】本発明において上記構成を採用した理由は
次のことによる。すなわち、グルカミン交換基を有する
ほう素選択性イオン交換樹脂に関するカタログやその他
の刊行物によれば、当該ほう素選択性イオン交換樹脂の
交換基は弱塩基***換基であるグルカミン交換基しか記
載されていないが、本発明者等は、純水又は超純水中に
含まれるほう素を除去する研究の過程において、上記ほ
う素選択性イオン交換樹脂には、強塩基***換基が混在
して含まれていて、TOCの溶出は主に、強塩基***換
基が一般的なイオン交換樹脂の再生処理の結果として水
酸化物イオン形となっていることに原因するという知見
の得られたことに注目した。そこで、強塩基***換基が
水酸化物イオン形である場合に比べて物理的な安定度の
高いイオン形とすることでTOC溶出を低減できると考
え、例えばほう素選択性イオン交換樹脂を塩酸や硫酸で
処理してCl形,SO4 形の塩形にする再生処理を行な
い、確認のために下記の通水試験を行なったところ、明
らかにTOCの溶出が低減することが確認された。
The reason why the above configuration is adopted in the present invention is as follows. That is, according to the catalogs and other publications relating to the boron-selective ion exchange resin having a glucamine exchange group, the exchange group of the boron-selective ion exchange resin only describes the glucamine exchange group which is a weakly basic exchange group. However, the present inventors have found that in the course of research for removing boron contained in pure water or ultrapure water, the boron-selective ion exchange resin contains a mixture of strong basic exchange groups. It was found that the TOC elution was mainly due to the fact that the strong basic exchange group was in the hydroxide ion form as a result of the general regeneration treatment of the ion exchange resin. I paid attention to. Therefore, it is considered that TOC elution can be reduced by using an ion form having a higher physical stability than the case where the strongly basic exchange group is a hydroxide ion form. For example, a boron-selective ion exchange resin is converted to hydrochloric acid. When the salt form of Cl type or SO 4 type was treated with sulfuric acid or sulfuric acid and the following water flow test was conducted for confirmation, it was confirmed that TOC elution was clearly reduced.

【0023】しかしながら、本発明が対象とする純水,
超純水という高純度な用水を製造する場合にあっては、
上記再生処理法を単純に採用しても必ずしも有利とは言
えないこともまた判明した。すなわち、上記処理を行な
うと、同様に塩形となった弱塩基***換基から加水分解
により多量のイオンリークを招く(例えば、抵抗率が
0.05MΩ・cm以下になる)結果となることが上述
の通水試験により明らかとなったからである。原水によ
り持ち込まれるイオン以外に系内の装置から多量のイオ
ンを新たに生じさせることは、イオン除去のための種々
の装置を組み込んで構成されている純水,超純水製造用
の装置において適当でないことは当然である。
However, pure water, which is the object of the present invention,
When producing high-purity water called ultrapure water,
It has also been found that simply adopting the above reprocessing method is not always advantageous. That is, the above treatment may result in a large amount of ion leakage (for example, a resistivity of 0.05 MΩ · cm or less) due to hydrolysis from the weakly basic exchange group in the salt form. This is because it became clear by the above-mentioned water flow test. Generating a large amount of ions from the equipment in the system in addition to the ions brought in by the raw water is suitable for the equipment for producing pure water and ultrapure water, which is configured by incorporating various equipment for ion removal. Not surprisingly.

【0024】以上のようないくつかの知見に基づき、本
発明者は、強塩基***換基からのTOC溶出を低減させ
ながら、同時に弱塩基***換基からの加水分解による多
量のイオンリークを招くことがないようにした上記構成
の本発明をなすに至ったのである。
Based on the above findings, the present inventor reduces the TOC elution from the strongly basic exchange group while at the same time causing a large amount of ion leakage due to hydrolysis from the weakly basic exchange group. Thus, the present invention having the above-described structure, which is configured to prevent such a situation, has been achieved.

【0025】以下本発明をより具体的に説明すると、上
記ほう素選択性イオン交換樹脂として用いられるものと
しては、例えば特開昭58−174241号で説明され
る樹脂等を用いることができ、より具体的には上述した
公知のアンバーライトIRA−743Tを挙げることが
できる。
The present invention will be described in more detail below. As the boron-selective ion exchange resin, for example, the resin described in JP-A-58-174241 can be used. Specific examples include the known Amberlite IRA-743T described above.

【0026】また上記において、ほう素選択性イオン交
換樹脂に含まれる弱塩基***換基を「遊離塩基形に調
製」というのは、グルカミン交換基が結合している三級
アミンを遊離塩基形に調製することを指し、例えば、ほ
う素選択性イオン交換樹脂に水酸化ナトリウム溶液を接
触させた後、通水に供する前に塩酸,硫酸等の鉱酸に接
触させないことをいう。なお弱塩基***換基は中性塩を
分解する能力がないので水酸化ナトリウム溶液を接触さ
せた後に塩化ナトリウム等の中性塩を接触させても、弱
塩基***換基は遊離塩基形に保つことができる。
In the above description, the weak basic exchange group contained in the boron-selective ion exchange resin is "prepared in free base form" means that the tertiary amine to which the glucamine exchange group is bonded is converted into the free base form. It means to prepare, for example, to bring a boron-selective ion exchange resin into contact with a sodium hydroxide solution and not to bring it into contact with a mineral acid such as hydrochloric acid or sulfuric acid before being used for passing water. Since the weakly basic exchange group does not have the ability to decompose a neutral salt, even if a neutral salt such as sodium chloride is contacted after contacting with a sodium hydroxide solution, the weakly basic exchange group is kept in a free base form. be able to.

【0027】また上記において、ほう素選択性イオン交
換樹脂に含まれる強塩基***換基を「塩形に調製」とい
うのは、該強塩基***換基を炭酸水素イオン形,炭酸イ
オン形,塩化物イオン形,硫酸イオン形にすることをい
い、ほう素選択性イオン交換樹脂の弱塩基***換基を遊
離塩基形にし、かつ強塩基***換基を塩形に調製するた
めの手法は、後で詳しく説明する。
In the above description, the strong basic exchange group contained in the boron-selective ion exchange resin is referred to as "prepared in salt form" means that the strong basic exchange group is a hydrogen carbonate ion type, a carbonate ion type, or a chloride type. It is referred to as a product ion form or a sulfate ion form. The method for preparing a weakly basic exchange group of a boron-selective ion exchange resin as a free base form and a strong basic exchange group as a salt form is described later. Will be explained in detail.

【0028】本発明が対象とする被処理水である「純
水」あるいは「超純水」というのは、これらの用語で示
されるものが一般に必ずしも明確に定義されているもの
ではなくまた両者の違いも明確なものではないが、本発
明においては、原水中に含まれる懸濁物質を除去するた
めの除濁手段を有する前処理手段と、この前処理手段か
らの処理水に含まれるイオン及びイオン性物質を除去す
る脱塩手段及び膜処理手段とにより水質を高純度にした
水を言う。これらの脱塩手段及び膜処理手段等の他に紫
外線照射装置,脱気装置等を必要に応じて更に付帯設備
したものであっても当然よいし、装置の配置関係,順序
等で限定されるものでもない。また、本発明の上記「被
処理水」には、上記前処理,脱塩処理,膜処理を経た後
であれば、種々の構成の純水,超純水製造プロセスの途
中段階の水であってもこれが含まれることは当然であ
る。
The "purified water" or "ultra pure water" which is the water to be treated, which is the subject of the present invention, is not always one in which the terms shown by these terms are generally clearly defined, and both Although the difference is not clear, in the present invention, pretreatment means having a turbidity removing means for removing suspended matter contained in the raw water, and ions contained in the treated water from the pretreatment means and It refers to water whose water quality is highly purified by a desalting means and a membrane treatment means for removing ionic substances. In addition to the desalting means and the membrane treatment means, an ultraviolet irradiation device, a degassing device, etc. may of course be additionally provided, if necessary, and may be limited by the arrangement relationship and order of the devices. Not even a thing. Further, the “water to be treated” of the present invention means pure water of various constitutions and water in the intermediate stage of the ultrapure water production process, after being subjected to the pretreatment, desalting treatment and membrane treatment. However, it is natural that this is included.

【0029】上記のほう素選択性イオン交換樹脂の弱塩
基***換基を遊離塩基形に調製しかつ強塩基***換基を
塩形に調製するための方法としては、該ほう素選択性イ
オン交換樹脂の再生処理(新品樹脂を超純水製造装置等
に組み込んで稼動させる前に行なう前処理の場合を含
む)の最終段階で接触させる水酸化ナトリウム溶液に続
いて、炭酸水素ナトリウム溶液を接触させる操作を行な
う方法を挙げることができ、これにより弱塩基***換基
を遊離塩基形に調製し、かつ強塩基***換基は炭酸水素
イオン形に調製される。
The method for preparing the weakly basic exchange group of the above boron-selective ion exchange resin in the free base form and the strong base exchange group in the salt form is the boron-selective ion exchange resin. The sodium hydroxide solution to be contacted at the final stage of the resin regeneration treatment (including the pretreatment performed before the new resin is installed in the ultrapure water production system etc. before it is operated) is contacted with the sodium hydrogen carbonate solution. There may be mentioned a method of carrying out the operation, whereby the weakly basic exchange group is prepared in the free base form and the strong basic exchange group is prepared in the hydrogen carbonate ion form.

【0030】また、同様の処理において上記炭酸水素ナ
トリウム溶液に代え炭酸ナトリウム溶液を接触させる操
作を行なうことで強塩基***換基は炭酸イオン形に調製
され、同様に、炭酸水素ナトリウム溶液に代えて塩化ナ
トリウム溶液を接触させる操作を行なうことで強塩基性
交換基は塩化物イオン形に調製され、硫酸ナトリウム溶
液を接触させる操作を行なうことで強塩基***換基は硫
酸イオン形に調製される。前述した如く、弱塩基***換
基は中性塩分解能力を有していないので、遊離塩基形に
なっている交換基に炭酸水素ナトリウム,炭酸ナトリウ
ム,塩化ナトリウム,硫酸ナトリウム等の溶液が接触し
てもそのイオン形は変化しない。
Further, in the same treatment, the strongly basic exchange group is prepared in the carbonate ion form by carrying out the operation of contacting the sodium hydrogen carbonate solution instead of the above sodium hydrogen carbonate solution. Similarly, the strong hydrogen exchange group is replaced with the sodium hydrogen carbonate solution. The strong basic exchange group is prepared in the chloride ion form by carrying out the operation of contacting with a sodium chloride solution, and the strong basic exchange group is prepared in the sulfate ion form by carrying out the operation of contacting with the sodium sulfate solution. As mentioned above, since the weakly basic exchange group does not have the ability to decompose neutral salts, the free base form of the exchange group may come into contact with a solution of sodium hydrogen carbonate, sodium carbonate, sodium chloride, sodium sulfate or the like. However, its ionic form does not change.

【0031】本発明のほう素選択性イオン交換樹脂を上
記イオン形とするには、上記のように再生処理の最終段
階において水酸化ナトリウム溶液に接触させることと、
これに続いて、炭酸水素ナトリウム溶液,炭酸ナトリウ
ム溶液,塩化ナトリウム溶液,硫酸ナトリウム溶液のい
ずれかの溶液に接触させることを行なえばよいものであ
り、これらの操作,処理を損なわない限り他の操作,処
理を併せて行うこともできる。例えば上記の水酸化ナト
リウム溶液に接触させる操作の前に、ほう素選択性イオ
ン交換樹脂を硫酸や塩酸等の酸水溶液に接触させるよう
にしてもよく、このようにすれば吸着したほう素をより
強力に脱着できるという利点が得られる。
In order to bring the boron-selective ion exchange resin of the present invention into the above-mentioned ionic form, it is contacted with a sodium hydroxide solution in the final stage of the regeneration treatment as described above,
This may be followed by contact with any one of a sodium hydrogen carbonate solution, a sodium carbonate solution, a sodium chloride solution, and a sodium sulfate solution. , Processing can also be performed together. For example, the boron-selective ion exchange resin may be contacted with an acid aqueous solution such as sulfuric acid or hydrochloric acid before the operation of contacting with the sodium hydroxide solution described above. The advantage of strong desorption is obtained.

【0032】通水試験 強塩基***換基のイオン形を下記〜、及び比較のた
めにのように調製したほう素選択性イオン交換樹脂
(アンバーライトIRA−743T)をそれぞれ充填し
た各樹脂塔に、超純水(抵抗率;18.2MΩ・cm,
TOC;1.0ppb)を通水して、樹脂塔出口水のT
OC増加分(ΔTOC)と抵抗率を測定し、表1に示し
た。
Water Flow Test Each resin column filled with a boron-selective ion exchange resin (Amberlite IRA-743T) prepared as described below for comparison with the ionic form of the strongly basic exchange group and for comparison is used. , Ultrapure water (resistivity: 18.2 MΩ · cm,
TOC; 1.0 ppb), and T of the water exiting the resin tower
The OC increment (ΔTOC) and the resistivity were measured and are shown in Table 1.

【0033】:強塩基***換基を炭酸水素イオン形と
するために、1M水酸化ナトリウム溶液をほう素選択性
イオン交換樹脂に対して通水速度SV4で樹脂体積の8
倍量通液した後、超純水で20分間洗浄し、1M炭酸水
素ナトリウム溶液を通水速度SV4で樹脂体積の8倍量
通液し、24時間超純水で洗浄した。
In order to make the strongly basic exchange group into a hydrogen carbonate ion form, a 1M sodium hydroxide solution is applied to a boron-selective ion exchange resin at a water flow rate SV4 of 8 times the resin volume.
After passing twice the volume of the solution, it was washed with ultrapure water for 20 minutes, and a 1M sodium hydrogen carbonate solution was passed through the volume of 8 times the resin volume at a water flow rate SV4, and washed with ultrapure water for 24 hours.

【0034】:強塩基***換基を炭酸イオン形とする
ために、1M水酸化ナトリウム溶液をほう素選択性イオ
ン交換樹脂に対して通水速度SV4で樹脂体積の8倍量
通液した後、超純水で20分間洗浄し、1M炭酸ナトリ
ウム溶液を通水速度SV4で樹脂体積の8倍量通液し、
24時間超純水で洗浄した。
In order to convert the strongly basic exchange group into a carbonate ion type, a 1M sodium hydroxide solution was passed through a boron-selective ion exchange resin at a water flow rate SV4 in an amount 8 times the resin volume, Wash with ultrapure water for 20 minutes, then pass 1M sodium carbonate solution at a water flow rate SV4 of 8 times the resin volume,
It was washed with ultrapure water for 24 hours.

【0035】:強塩基***換基を塩化物イオン形とす
るために、1M水酸化ナトリウム溶液をほう素選択性イ
オン交換樹脂に対して通水速度SV4で樹脂体積の8倍
量通液した後、超純水で20分間洗浄し、1M塩化ナト
リウム溶液を通水速度SV4で樹脂体積の8倍量通液
し、24時間超純水で洗浄した。
After the 1M sodium hydroxide solution was passed through the boron-selective ion exchange resin at a water flow rate SV4 in an amount of 8 times the resin volume in order to convert the strongly basic exchange group into the chloride ion form. The sample was washed with ultrapure water for 20 minutes, and a 1M sodium chloride solution was passed through it at a water flow rate of SV4 in an amount 8 times the resin volume, and washed with ultrapure water for 24 hours.

【0036】:強塩基***換基を硫酸イオン形とする
ために、1M水酸化ナトリウム溶液をほう素選択性イオ
ン交換樹脂に対して通水速度SV4で樹脂体積の8倍量
通液した後、超純水で20分間洗浄し、1M硫酸ナトリ
ウム溶液を通水速度SV4で樹脂体積の8倍量通液し、
24時間超純水で洗浄した。
In order to convert the strongly basic exchange group into the sulfate ion form, a 1M sodium hydroxide solution was passed through the boron-selective ion exchange resin at a water flow rate SV4 in an amount 8 times the resin volume, Wash with ultrapure water for 20 minutes, then pass 1M sodium sulfate solution at a water flow rate SV4 of 8 times the resin volume,
It was washed with ultrapure water for 24 hours.

【0037】なおこれらの〜の操作を行なうことに
よって、弱塩基***換基は遊離塩基形に調製された。
The weakly basic exchange group was prepared in the free base form by carrying out the operations 1 to 3.

【0038】:弱塩基***換基を遊離塩基系にすると
共に強塩基***換基を水酸化物イオン形とするために、
1M水酸化ナトリウム溶液をほう素選択性イオン交換樹
脂に対して通水速度SV4で樹脂体積の8倍量通液した
後、24時間超純水で洗浄した。
In order to make the weakly basic exchange group a free base system and the strong basic exchange group a hydroxide ion type,
A 1 M sodium hydroxide solution was passed through a boron-selective ion exchange resin at a water flow rate of SV4 in an amount 8 times the resin volume, and then washed with ultrapure water for 24 hours.

【0039】[0039]

【表1】 [Table 1]

【0040】この表1の結果から、上記の弱塩基***
換基が遊離塩基形で、かつ強塩基***換基が水酸化物イ
オン形となっている場合にはΔTOCが大きい値を示し
ているのに比べて、〜の操作で弱塩基***換基を遊
離塩基形に強塩基***換基を塩形に調製した場合は、Δ
TOCは1/4〜1/10程度と大幅に減少した。
From the results shown in Table 1, when the weak basic exchange group is in the free base form and the strong basic exchange group is in the hydroxide ion form, ΔTOC shows a large value. In contrast to the case of, when the weak basic exchange group and the strong basic exchange group were prepared in the free base form and the salt form by the operation of,
The TOC was greatly reduced to about 1/4 to 1/10.

【0041】なお、ほう素選択性イオン交換樹脂を単に
塩酸や硫酸で処理(超純水による洗浄も実施)して、強
塩基***換基及び弱塩基***換基の双方のイオン形をC
l形,SO4 形の塩形にした場合についても同じ通水試
験を行なったところ、ΔTOCは上記〜と同等であ
ったが、抵抗率が0.05MΩ・cm以下となるような
塩形の弱塩基***換基の加水分解に起因する多量のイオ
ンリークを招いた。
The boron-selective ion exchange resin is simply treated with hydrochloric acid or sulfuric acid (also washed with ultrapure water) so that the ionic forms of both the strong basic exchange group and the weak basic exchange group are changed to C.
The same water permeation test was carried out for the salt forms of l-type and SO 4 type , and ΔTOC was equivalent to the above-mentioned items, but the salt-type of which the resistivity was 0.05 MΩ · cm or less. A large amount of ion leakage caused by the hydrolysis of the weakly basic exchange group was caused.

【0042】[0042]

【作用】本発明によれば、ほう素を除去した純水,超純
水という高純度な水の製造を行うために有効に使用され
るほう素選択性イオン交換樹脂を、TOCの溶出が少な
くかつイオンのリークも少ない状態で効果的に使用でき
る。
According to the present invention, a boron-selective ion exchange resin effectively used for producing high-purity water such as pure water and ultrapure water from which boron has been removed can be produced with less TOC elution. It can be used effectively with little ion leakage.

【0043】[0043]

【実施例】以下、本発明を実施例にしたがって更に説明
する。
EXAMPLES The present invention will be further described below with reference to examples.

【0044】実施例1 本発明の実施例1の超純水製造装置は、従来技術を説明
するために用いた図1の構成と各装置等の関連構成がそ
のフロー図においては同様のものとして説明される。
Example 1 In the ultrapure water production system of Example 1 of the present invention, the structure of FIG. 1 used for explaining the prior art and the related structure of each device are the same in the flow chart. Explained.

【0045】すなわち、工業用水等の原水から懸濁物質
と有機物の一部を除去する前処理装置1、ろ過水槽2を
経てこの前処理装置1の処理水に含まれる不純物イオン
を除去する2床3塔式イオン交換装置等からなる脱塩装
置3、脱塩水槽4を経た脱塩装置3からの処理水中に残
留する無機イオン、有機物、微粒子等の不純物等を除去
する逆浸透膜(RO)装置5、RO透過水槽6を経た処
理水中から溶存酸素等の溶存気体を除去する真空脱気装
置7、そして更に残留するイオンを除去する再生型混床
式イオン交換装置8、の以上の各装置により一次純水処
理系が構成されて高純度の一次純水が製造され、この一
次純水は純水貯槽9に貯溜される。
That is, a pretreatment device 1 for removing suspended substances and a part of organic substances from raw water such as industrial water, and two beds for removing impurity ions contained in the treated water of the pretreatment device 1 through a filtered water tank 2. Reverse osmosis membrane (RO) for removing impurities such as inorganic ions, organic substances, and fine particles remaining in the treated water from the desalination device 3 including the three-column type ion exchange device and the desalination device 3 through the desalination water tank 4. Device 5, vacuum degassing device 7 for removing dissolved gas such as dissolved oxygen from treated water that has passed through RO permeation water tank 6, and regenerative mixed bed ion exchange device 8 for further removing remaining ions By this, a primary pure water treatment system is configured to produce high-purity primary pure water, and this primary pure water is stored in the pure water storage tank 9.

【0046】次に純水貯槽9の一次純水は二次純水処理
系に送られ、紫外線酸化装置10での紫外線照射により
純水中の有機物を分解すると共にバクテリアの殺菌が行
なわれた後、ほう素除去塔11でほう素の除去が行なわ
れ、カートリッジポリッシャ12で更なるイオンの除
去、次いで限外ろ過膜(UF)装置13で更なる微粒子
の除去を行なった後、上記純水貯槽9に超純水を戻すよ
うに接続された二次純水循環配管15の途中から分岐し
た送水配管を通して使用場所14に超純水を給水する。
Next, the primary pure water in the pure water storage tank 9 is sent to the secondary pure water treatment system, and after the organic substances in the pure water are decomposed and the bacteria are sterilized by the ultraviolet irradiation in the ultraviolet oxidation device 10. After boron is removed in the boron removal tower 11, further ions are removed by the cartridge polisher 12, and further fine particles are removed by the ultrafiltration membrane (UF) device 13, and then the pure water storage tank The ultrapure water is supplied to the place of use 14 through a water supply pipe branched from the middle of a secondary pure water circulation pipe 15 connected to return the ultrapure water to 9.

【0047】超純水製造試験 試験例1 以上の装置を用い、ほう素除去塔11に、ほう素選択性
イオン交換樹脂(アンバーライトIRA−743T:ロ
ームアンドハース社製)を上述した〜の処理を行な
ったものを夫々充填し、該ほう素除去塔11に通水速度
SV50(以下において同じ)で通水して超純水の製造
を行なった。そして、使用場所14においてほう素濃
度、TOCを測定し、結果を下記表2に示した。なおほ
う素濃度はICP−MS(横河電機(株)社製)により
測定し、TOCはオルガドック(オルガノ(株)社製)
により測定した(以下において同じ)。
Ultrapure Water Production Test Test Example 1 Using the above equipment, the boron removal tower 11 was treated with a boron-selective ion exchange resin (Amberlite IRA-743T: manufactured by Rohm and Haas Co.) as described above. Each of those obtained by performing the above step was filled, and water was passed through the boron removal tower 11 at a water flow rate SV50 (the same applies below) to produce ultrapure water. Then, the boron concentration and TOC were measured at the place of use 14, and the results are shown in Table 2 below. The boron concentration was measured by ICP-MS (manufactured by Yokogawa Electric Co., Ltd.), and TOC was Organdoc (manufactured by Organo Corporation).
(Same below).

【0048】試験例2 上述したの処理を行なって強塩基***換基のイオン形
を水酸化物形としたほう素選択性イオン交換樹脂を充填
したほう素除去塔11を設けた装置により超純水の製造
を行ない、使用場所14においてのほう素濃度、TOC
を測定した。その結果ほう素濃度は0.02〜1.5p
pb、TOCは1.0ppbであった。試験例3ほう素
選択性イオン交換樹脂を使用しない場合との比較のため
に、ほう素除去塔11を除いた以外は図1と全く同じ構
成の図3に示す超純水製造装置(図1装置のほう素除去
塔11にバイパス路を設けたものと同じ)を構成して、
同じ条件で超純水の製造を行ない、使用場所14におい
てのほう素濃度、TOCを測定して、結果を下記表2に
示した。
Test Example 2 Ultra pure by an apparatus provided with a boron removal tower 11 filled with a boron-selective ion exchange resin in which the ionic form of the strong basic exchange group is converted to a hydroxide form by performing the above-mentioned treatment. Water is produced, boron concentration and TOC at the place of use 14
Was measured. As a result, the boron concentration is 0.02-1.5p.
pb and TOC were 1.0 ppb. Test Example 3 For comparison with the case where a boron-selective ion exchange resin is not used, the ultrapure water production system shown in FIG. 3 having the same configuration as that of FIG. 1 except that the boron removal tower 11 is omitted (see FIG. The same as the one provided with a bypass passage in the boron removal tower 11 of the apparatus),
Ultrapure water was produced under the same conditions, the boron concentration and TOC were measured at the place of use 14, and the results are shown in Table 2 below.

【0049】[0049]

【表2】 [Table 2]

【0050】この表2の結果から、強塩基***換基を塩
形に調製したのうちでも、炭酸水素イオン形,炭酸イオ
ン形に調製した場合に比べて、塩化物イオン形,硫酸イ
オン形に調製した場合はTOCの溶出がより少ないので
その点からみた有効性は高いことが分かる。
From the results shown in Table 2, even when the strong basic exchange group was prepared in the salt form, it was converted into the chloride ion form and the sulfate ion form as compared with the case of preparing the hydrogen carbonate ion form and the carbonate ion form. It can be seen that the TOC is less effective when prepared, and therefore the effectiveness is high in that respect.

【0051】しかし、本例の構成ではほう素除去塔11
が設けられているのが二次純水処理系であって、しかも
万一にも、ほう素除去塔からリークする虞れのあるイオ
ン(Cl- ,SO4 2-)の影響を絶対的に忌避すべき要
求のある純水,超純水の製造装置、例えば半導体製造プ
ロセスでの用水製造用としては、TOC溶出低減に関し
効果が若干程度低いものの、上記万一のリークをも絶対
的に避けることができるように、強塩基***換基を炭酸
水素イオン形,炭酸イオン形とする構成を採用すること
が好ましい場合が多い。
However, in the configuration of this example, the boron removal tower 11
Is provided for the secondary pure water treatment system, and by any chance, the influence of ions (Cl , SO 4 2− ) that may leak from the boron removal tower is absolutely Although it is slightly less effective in reducing TOC elution for pure water and ultrapure water manufacturing equipment that has demands to be avoided, for example, for manufacturing water in the semiconductor manufacturing process, the above-mentioned leak should be absolutely avoided. In many cases, it is preferable to adopt a configuration in which the strongly basic exchange group is in a hydrogen carbonate ion type or a carbonate ion type so that it can be achieved.

【0052】なおほう素除去塔11を設けない場合は、
使用場所14のほう素濃度は上述した如く最大1.5p
pbとなる。この理由はカートリッジポリッシャに一度
吸着したほう素イオンが他のイオンによって押し出され
ることによる。
When the boron removal tower 11 is not provided,
The boron concentration at the place of use 14 is a maximum of 1.5p as described above.
It becomes pb. The reason for this is that boron ions once adsorbed on the cartridge polisher are pushed out by other ions.

【0053】実施例2 図2に示される本例は、実施例1では紫外線酸化装置1
0とカートリッジポリッシャ12の間にほう素除去塔を
設置していたが、これに代えて一次純水処理系の真空脱
気装置7と再生型混床式イオン交換装置8の間にほう素
除去塔11を設置したことを特徴とする超純水製造装置
を示すものである。それ以外の構成は実施例1と同じで
あるので、同一の装置等に同じ符号を付して詳細な説明
は省略する。
Example 2 In this example shown in FIG. 2, the ultraviolet oxidizer 1 in Example 1 was used.
The boron removal tower was installed between 0 and the cartridge polisher 12, but instead of this, boron removal was performed between the vacuum degassing device 7 of the primary pure water treatment system and the regenerative mixed bed ion exchange device 8. 1 shows an ultrapure water production system having a tower 11 installed therein. Since the other configurations are the same as those of the first embodiment, the same reference numerals are given to the same devices and the like, and detailed description thereof will be omitted.

【0054】本例の超純水製造装置によれば、実施例1
と同様のほう素除去の効果が得られると共に、ほう素選
択性イオン交換樹脂を充填したほう素除去塔11が一次
純水処理系に設けられ、かつ後段に機能的にTOC除去
能力が高い再生型混床式イオン交換装置8が設けられて
いるので、後述する超純水製造試験の結果からも分かる
ように、実施例1の場合に比べ、強塩基***換基が上記
〜のいずれのイオン形である場合であっても製造さ
れた超純水中に含まれるTOC濃度はより低減されると
いう効果が得られる。
According to the ultrapure water production system of this example, Example 1
A boron removal tower 11 filled with a boron-selective ion-exchange resin is provided in the primary pure water treatment system, and the same TOC removal capability is functionally provided in the subsequent stage as regeneration with a high boron removal capability. Since the mixed bed type ion exchange device 8 is provided, as can be seen from the results of the ultrapure water production test described later, compared with the case of Example 1, the strongly basic exchange group has any of the above ions Even in the case of the shape, the effect that the TOC concentration contained in the produced ultrapure water is further reduced can be obtained.

【0055】超純水製造試験 実施例1と同様にして試験例4,5の超純水製造試験を
行なった。なお、ほう素除去塔11を除いた超純水製造
装置は実施例1で説明した図3の装置構成と同じで、試
験結果は試験例3で述べた通りである。
Ultrapure Water Production Test The ultrapure water production tests of Test Examples 4 and 5 were carried out in the same manner as in Example 1. The ultrapure water production system excluding the boron removal tower 11 has the same apparatus configuration as that of FIG. 3 described in Example 1, and the test results are as described in Test Example 3.

【0056】試験例4 図2の超純水製造装置のほう素除去塔11に、上記〜
の処理を行なったアンバーライトIRA−743Tを
夫々充填し、該ほう素除去塔11の通水速度をSV50
(以下において同じ)として超純水の製造を行ない、使
用場所14においてのほう素濃度、TOCを測定して、
結果を下記表3に示した。
Test Example 4 In the boron removal tower 11 of the ultrapure water production system of FIG.
Amberlite IRA-743T that has been subjected to the above treatment is filled in each, and the water flow rate of the boron removal tower 11 is SV50.
(The same applies below), ultrapure water is produced, and the boron concentration and TOC at the place of use 14 are measured,
The results are shown in Table 3 below.

【0057】試験例5 上述したの処理を行なって強塩基***換基のイオン形
を水酸化物形としたほう素選択性イオン交換樹脂を充填
したほう素除去塔11を設けた超純水製造装置により超
純水の製造を行ない、使用場所14においてのほう素濃
度、TOCを測定して、結果を下記表3に示した。
Test Example 5 Ultrapure water production provided with a boron removal tower 11 filled with a boron-selective ion-exchange resin in which the ionic form of the strong basic exchange group is changed to the hydroxide form by performing the above-mentioned treatment Ultrapure water was produced by the apparatus, the boron concentration and TOC at the place of use 14 were measured, and the results are shown in Table 3 below.

【0058】[0058]

【表3】 [Table 3]

【0059】上述実施例1でも説明したように、またこ
の表3の結果からも明らかであるように、強塩基***換
基は、炭酸水素イオン形,炭酸イオン形とされた場合に
比べて塩化物イオン形,硫酸イオン形とされた場合にT
OCの溶出がより少ないことが分かる。
As described in Example 1 above, and as is clear from the results in Table 3, the strongly basic exchange group is chlorinated as compared with the case of the hydrogen carbonate ion type and the carbonate ion type. T when the product ion type and sulfate ion type
It can be seen that there is less elution of OC.

【0060】そして、上記実施例1の構成では、用途に
よって(Cl- ,SO4 2-)の万一のリークを考慮すべ
き事情のあることを説明したが、本例の構成にあって
は、ほう素除去塔11の後段に配置されている再生型混
床式イオン交換装置8によって、除去すべきイオン負荷
のレベルからすれば該ほう素除去塔から万一にも溶出す
ることがあってもそれにより増加するイオン負荷量は殆
ど無視できる程度であるから、むしろTOCの溶出低減
により有効な塩化物イオン形,硫酸イオン形に強塩基性
交換基を調製して超純水等の製造を行うことが好まし
い。
In the configuration of the first embodiment described above, there is a circumstance in which an unexpected leak of (Cl , SO 4 2− ) should be taken into consideration depending on the application, but in the configuration of this example, By the regeneration type mixed bed type ion exchange device 8 arranged at the subsequent stage of the boron removal tower 11, it may be eluted from the boron removal tower in view of the level of the ion load to be removed. However, since the ion load that increases due to this is almost negligible, it is rather possible to prepare ultra-pure water etc. by preparing a strong basic exchange group in the chloride ion type or sulfate ion type by reducing the elution of TOC. It is preferable to carry out.

【0061】[0061]

【発明の効果】本発明によれば、ほう素濃度を十分に低
下させた純水や超純水を製造することができ、特に、半
導体製造分野やその関連分野において有効なほう素濃度
を十分に低減した各種用水を供給できるという効果があ
る。
According to the present invention, it is possible to produce pure water or ultrapure water in which the boron concentration is sufficiently lowered, and particularly, it is possible to obtain a boron concentration effective in the semiconductor manufacturing field and related fields. The effect is to be able to supply various types of water that have been reduced.

【0062】また本発明によれば、純水,超純水という
極めて高純度な水を製造する際にこれに含まれるほう素
をほう素選択性イオン交換樹脂を用いて除去するにあた
り、このほう素選択性イオン交換樹脂に含まれる強塩基
***換基を塩形とすることで、TOC溶出量を可及的に
少なくでき、したがって、ほう素が除去されかつTOC
濃度も十分に小さい純水又は超純水を製造できるという
効果が得られる。
According to the present invention, the boron contained in the pure water and ultrapure water, which are extremely high purity, is removed by using the boron-selective ion exchange resin. By making the strongly basic exchange group contained in the elementary selective ion exchange resin into a salt form, the TOC elution amount can be reduced as much as possible. Therefore, boron is removed and the TOC is removed.
The effect is that pure water or ultrapure water having a sufficiently low concentration can be produced.

【0063】また本発明によれば、ほう素選択性イオン
交換樹脂からのTOCの溶出が少ないだけでなく、弱塩
基***換基を遊離塩基形としたので、この弱塩基***換
基が塩形となっている場合に生ずる加水分解によるイオ
ンリークがないという効果が得られる。従って、例えば
純水又は超純水製造装置内のほう素除去塔の配置につい
ての制約が軽減されて設計の自由度が増すという効果が
併せて得られる。
Further, according to the present invention, not only is TOC less eluted from the boron-selective ion exchange resin, but the weakly basic exchange group is in the free base form. The effect that there is no ion leak due to hydrolysis that occurs when Therefore, for example, the restriction on the arrangement of the boron removal tower in the pure water or ultrapure water production apparatus is alleviated, and the degree of freedom in design is increased.

【0064】更に本発明によれば、ほう素選択性イオン
交換樹脂からのTOC溶出量が少なくかつイオンリーク
も少ないので、再生型イオン交換装置の再生サイクルや
非再生型イオン交換装置の交換頻度を増加させることな
く、常に安定してほう素濃度を低く保つことができると
いう効果が得られる。
Further, according to the present invention, since the TOC elution amount from the boron-selective ion exchange resin is small and the ion leak is also small, the regeneration cycle of the regenerative ion exchange apparatus and the exchange frequency of the non-regenerative ion exchange apparatus can be reduced. It is possible to obtain an effect that the boron concentration can be constantly kept low without increasing it.

【0065】また更に、ほう素選択性イオン交換樹脂か
らのTOC溶出の低減化やイオンリークの防止を図るた
めに行なうほう素選択性イオン交換樹脂の再生処理操作
を、容易にしかも効率よく行なうことができるという効
果がある。
Furthermore, the regeneration treatment operation of the boron-selective ion-exchange resin to reduce the elution of TOC from the boron-selective ion-exchange resin and prevent ion leakage should be carried out easily and efficiently. There is an effect that can be.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の超純水製造装置の構成概要
をフロー図で示した図。
FIG. 1 is a diagram showing a flow chart outlining the configuration of an ultrapure water production system of Example 1 of the present invention.

【図2】本発明の実施例2の超純水製造装置の構成概要
をフロー図で示した図。
FIG. 2 is a flowchart showing an outline of the configuration of an ultrapure water production system according to Example 2 of the present invention.

【図3】実施例1との比較のために用いた、図1の装置
に比べほう素除去塔を除いた構成の超純水製造装置の概
要をフロー図で示した図。
3 is a flow chart showing an outline of an ultrapure water production system used for comparison with Example 1 and having a configuration in which a boron removal tower is removed as compared with the system of FIG.

【符号の説明】[Explanation of symbols]

1・・・前処理装置、2・・・ろ過水槽、3・・・脱塩
装置、4・・・脱塩水槽、5・・・逆浸透膜(RO)装
置、6・・・透過水槽、7・・・真空脱気装置、8・・
・再生型混床式イオン交換装置、9・・・純水貯槽、1
0・・・紫外線酸化装置、11・・・ほう素除去塔、1
2・・・カートリッジポリッシャ、13・・・限外ろ過
膜(UF)装置、14・・・使用場所、15・・・二次
純水循環配管。
1 ... Pretreatment device, 2 ... Filtration water tank, 3 ... Desalination device, 4 ... Desalination water tank, 5 ... Reverse osmosis membrane (RO) device, 6 ... Permeation water tank, 7 ... Vacuum deaerator, 8 ...
・ Regeneration type mixed bed type ion exchanger, 9 ... Pure water storage tank, 1
0 ... UV oxidizer, 11 ... Boron removal tower, 1
2 ... Cartridge polisher, 13 ... Ultrafiltration membrane (UF) device, 14 ... Location of use, 15 ... Secondary pure water circulation piping.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年3月29日[Submission date] March 29, 1996

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0048[Correction target item name] 0048

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0048】試験例2 上述したの処理を行なって強塩基***換基のイオン形
を水酸化物形としたほう素選択性イオン交換樹脂を充填
したほう素除去塔11を設けた装置により超純水の製造
を行ない、使用場所14においてのほう素濃度、TOC
を測定した。その結果を表2に示した。 試験例3 ほう素選択性イオン交換樹脂を使用しない場合として
ほう素除去塔11を除いた以外は図1と全く同じ構成の
図3に示す超純水製造装置(図1装置のほう素除去塔1
1にバイパス路を設けたものと同じ)を構成して、同じ
条件で超純水の製造を行ない、使用場所14においての
ほう素濃度、TOCを測定した。その結果ほう素濃度は
0.02〜1.5ppb、TOCは1.0ppbであっ
た。
Test Example 2 Ultra pure by means of an apparatus provided with a boron removal tower 11 filled with a boron-selective ion exchange resin in which the ionic form of the strong basic exchange group is converted to a hydroxide form by performing the above-mentioned treatment. Water is produced, boron concentration and TOC at the place of use 14
Was measured. The results are shown in Table 2 . Test Example 3 As a case where a boron-selective ion exchange resin is not used,
The ultrapure water producing apparatus shown in FIG. 3 having the same configuration as that of FIG. 1 except that the boron removing tower 11 is removed (the boron removing tower 1 of the apparatus shown in FIG.
No. 1 was provided with a bypass passage), ultrapure water was produced under the same conditions, and the boron concentration and TOC at the place of use 14 were measured . As a result, the boron concentration is
0.02-1.5ppb, TOC is 1.0ppb
It was

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0050[Correction target item name] 0050

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0050】この表2の結果から、強塩基***換基を塩
形に調製したうちでも、炭酸水素イオン形,炭酸イオン
形に調製した場合に比べて、塩化物イオン形,硫酸イオ
ン形に調製した場合はTOCの溶出がより少ないのでそ
の点からみた有効性は高いことが分かる。
[0050] From the results of Table 2, rainy Chidemo prepare strongly basic exchange groups into salt form, bicarbonate ion form, as compared with the case where the prepared carbonate ion form, a chloride ion form, sulfate ions form It can be seen that the effectiveness is high in that respect because the TOC elution is less when the preparation is performed.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被処理水である純水又は超純水を、弱塩
基***換基であるグルカミン交換基及び強塩基***換基
を有するほう素選択性イオン交換樹脂に接触させて該被
処理水中のほう素イオンを除去した純水又は超純水を製
造する方法において、 上記ほう素選択性イオン交換樹脂の弱塩基***換基を遊
離塩基形に調製しかつ強塩基***換基を塩形に調製して
用いることを特徴とするほう素を除去した純水又は超純
水の製造方法。
1. Pure water or ultrapure water, which is water to be treated, is brought into contact with a boron-selective ion exchange resin having a glucamine exchange group and a strongly basic exchange group which are weakly basic exchange groups, and the treated water is then treated. In the method for producing pure water or ultrapure water in which boron ions in water are removed, the weak basic exchange group of the above boron-selective ion exchange resin is prepared in a free base form and the strong basic exchange group is converted into a salt form. A method for producing pure water or ultrapure water from which boron has been removed, which is prepared and used as described above.
【請求項2】 請求項1において、強塩基***換基の塩
形が炭酸水素イオン形,炭酸イオン形,塩化物イオン
形,硫酸イオン形のいずれかであるほう素を除去した純
水又は超純水の製造方法。
2. The pure or ultrapure water from which boron has been removed, wherein the salt form of the strongly basic exchange group is any one of hydrogen carbonate ion type, carbonate ion type, chloride ion type and sulfate ion type. Pure water manufacturing method.
【請求項3】 少なくとも原水中に含まれる懸濁物質を
除去する除濁手段を流水系中に有する前処理手段と、少
なくとも該前処理手段からの処理水に含まれるイオン及
びイオン性物質を除去する脱塩手段及び膜処理手段を有
する純水製造装置とを備えた純水又は超純水の製造装置
において、 上記脱塩手段及び/又は膜処理手段の後段に、弱塩基性
交換基を遊離塩基形に調製しかつ強塩基***換基を塩形
に調製したほう素選択性イオン交換樹脂を有するイオン
交換樹脂塔を設け、かつ該イオン交換樹脂塔の後段に強
酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂の混
床塔を設けたことを特徴とするほう素を除去した純水又
は超純水の製造装置。
3. Pretreatment means having a turbidity removing means for removing suspended matter contained in at least raw water in a running water system, and at least ions and ionic substances contained in treated water from said pretreatment means. In the apparatus for producing pure water or ultrapure water provided with a pure water producing apparatus having a desalting means and a membrane treating means, a weak basic exchange group is released after the desalting means and / or the membrane treating means. An ion-exchange resin column having a boron-selective ion-exchange resin prepared in a basic form and a strong basic exchange group in a salt form is provided, and a strong acidic cation-exchange resin and a strong acidic cation-exchange resin are provided in the subsequent stage of the ion-exchange resin column. A device for producing pure water or ultrapure water from which boron has been removed, which is provided with a mixed bed column of basic anion exchange resin.
JP04313095A 1995-03-02 1995-03-02 Method and apparatus for producing pure water or ultrapure water from which boron has been removed Expired - Lifetime JP3215277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04313095A JP3215277B2 (en) 1995-03-02 1995-03-02 Method and apparatus for producing pure water or ultrapure water from which boron has been removed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04313095A JP3215277B2 (en) 1995-03-02 1995-03-02 Method and apparatus for producing pure water or ultrapure water from which boron has been removed

Publications (2)

Publication Number Publication Date
JPH08238478A true JPH08238478A (en) 1996-09-17
JP3215277B2 JP3215277B2 (en) 2001-10-02

Family

ID=12655272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04313095A Expired - Lifetime JP3215277B2 (en) 1995-03-02 1995-03-02 Method and apparatus for producing pure water or ultrapure water from which boron has been removed

Country Status (1)

Country Link
JP (1) JP3215277B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192661A (en) * 1996-01-17 1997-07-29 Japan Organo Co Ltd Ultrapure water producing device
JP2009112945A (en) * 2007-11-06 2009-05-28 Kurita Water Ind Ltd Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2009240891A (en) * 2008-03-31 2009-10-22 Japan Organo Co Ltd Method for producing ultrapure water
WO2023166881A1 (en) * 2022-03-01 2023-09-07 オルガノ株式会社 Ultrapure-water production system and method for producing ultrapure water

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060827A1 (en) * 2007-11-06 2009-05-14 Kurita Water Industries Ltd. Process and apparatus for producing ultrapure water, and method and apparatus for cleaning electronic component members

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192661A (en) * 1996-01-17 1997-07-29 Japan Organo Co Ltd Ultrapure water producing device
JP2009112945A (en) * 2007-11-06 2009-05-28 Kurita Water Ind Ltd Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP2009240891A (en) * 2008-03-31 2009-10-22 Japan Organo Co Ltd Method for producing ultrapure water
WO2023166881A1 (en) * 2022-03-01 2023-09-07 オルガノ株式会社 Ultrapure-water production system and method for producing ultrapure water

Also Published As

Publication number Publication date
JP3215277B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
JP3200301B2 (en) Method and apparatus for producing pure or ultrapure water
JP5189255B2 (en) Iodine recovery from polarizing film manufacturing wastewater
JP2677468B2 (en) Method and apparatus for producing pure water
JP2003205299A (en) Hydrogen dissolved water manufacturing system
US20050263458A1 (en) Process for removing organics from ultrapure water
JP2008272713A (en) Method for producing ultrapure water, and production device therefor
JP4480061B2 (en) Ultrapure water production apparatus and cleaning method for ultrapure water production and supply system in the apparatus
JPH06238271A (en) Conditioning method for ion exchange resin
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
JPH1085743A (en) Method and apparatus for treating water containing boron
TWI808053B (en) Ultrapure water production system and ultrapure water production method
JP3200314B2 (en) Organic wastewater treatment equipment
JPH0638953B2 (en) High-purity water manufacturing equipment
JPH08238478A (en) Method and apparatus for making pure water or ultrapure water from which boron is removed
JPH0649190B2 (en) High-purity water manufacturing equipment
JP2009240943A (en) Conditioning method of ion-exchange resin
JP2009112944A (en) Ultrapure water production method and apparatus, and washing method and apparatus for electronic component members
JP3968678B2 (en) Method for treating tetraalkylammonium ion-containing liquid
JP2514929B2 (en) Method for cleaning terminal reverse osmosis membrane device
JP2001179252A (en) Method and apparatus for making pure water reduced in content of oxidizing substance
JPH09253638A (en) Ultrapure water making apparatus
JP6924300B1 (en) Wastewater treatment method, ultrapure water production method and wastewater treatment equipment
JP4848641B2 (en) Pure water production method and apparatus
JP2891790B2 (en) Regeneration method of anion exchange resin
JP2003145148A (en) Ultrapure water supply apparatus and ultrapure water supply method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term