JP2001179252A - Method and apparatus for making pure water reduced in content of oxidizing substance - Google Patents

Method and apparatus for making pure water reduced in content of oxidizing substance

Info

Publication number
JP2001179252A
JP2001179252A JP36512799A JP36512799A JP2001179252A JP 2001179252 A JP2001179252 A JP 2001179252A JP 36512799 A JP36512799 A JP 36512799A JP 36512799 A JP36512799 A JP 36512799A JP 2001179252 A JP2001179252 A JP 2001179252A
Authority
JP
Japan
Prior art keywords
water
pure water
oxidizing substance
treated
oxidizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36512799A
Other languages
Japanese (ja)
Inventor
Hiromi Henmi
ひろみ 逸見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP36512799A priority Critical patent/JP2001179252A/en
Publication of JP2001179252A publication Critical patent/JP2001179252A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus, making pure water reduced in the content of an oxidizing substance capable of sufficiently removing an oxidizing substance like hydrogen peroxide contained in water to be treated in a pure water making process and making it hard to elute impurities from an oxidizable substance removing means into treated water. SOLUTION: Water to be treated containing an oxidizing substance is brought into contact with an anion exchange resin having sulfite ions and/or hydrosulfite ions supported thereon. For example, the treated water of the ultraviolet oxidizing device 22 of the secondary pure water system of a pure water making apparatus is passed through an oxidizing substance removing device 24 packed with the anion exchange resin having sulfite ions and/or hydrosulfite ions supported thereon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコンウエハの
洗浄などに使用される超純水のような純水の製造方法及
び装置に関し、特に、過酸化水素のような酸化性物質の
濃度を低減した純水の製造方法及び装置に関する。な
お、本明細書においては、以下、一般には必ずしも明確
に定義分けされていない純水、超純水等の語で説明され
る高純度な水を総称して「純水」という。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing pure water such as ultrapure water used for cleaning silicon wafers, and more particularly, to reducing the concentration of an oxidizing substance such as hydrogen peroxide. The present invention relates to a method and an apparatus for producing purified water. In the present specification, high-purity water, which is generally described in terms of pure water, ultrapure water, and the like, which are not necessarily clearly defined, is generally referred to as “pure water”.

【0002】[0002]

【従来の技術】半導体製造産業においては、不純物を高
度に除去した純水を用いてウエハの洗浄等が行われてい
る。純水は、一般に、原水(例えば河川水、地下水、工
業用水)中に含まれる懸濁物質や有機物の一部を前処理
工程で除去した後、その処理水を一次純水系システム及
び二次純水系システム(サブシステム)で順次処理する
ことによって製造され、ウエハ洗浄等を行うユースポイ
ントに供給される。このような純水は、不純物の定量も
困難であるほどの純度を有するが、全く不純物を含有し
ないわけではない。
2. Description of the Related Art In the semiconductor manufacturing industry, wafer cleaning and the like are performed using pure water from which impurities are highly removed. In general, pure water is obtained by removing a part of suspended substances and organic substances contained in raw water (eg, river water, groundwater, industrial water) in a pretreatment process, and then treating the treated water with a primary pure water system and a secondary pure water system. Manufactured by sequential processing in an aqueous system (subsystem), and supplied to a use point where wafer cleaning and the like are performed. Such pure water has such a purity that it is difficult to quantify impurities, but it does not mean that it does not contain any impurities.

【0003】例えば、純水中に含まれる溶存酸素(D
O)は、シリコンウエハの表面に自然酸化膜を形成す
る。自然酸化膜がウエハ表面に形成されると、低温での
エピタキシャルSi薄膜の成長を妨げたり、ゲート酸化
膜の膜圧及び膜質の精密制御の妨げとなったり、コンタ
クトホールのコントクト抵抗の増加原因となったりす
る。そのため、ウエハ表面の自然酸化膜の形成は極力抑
制する必要がある。
For example, dissolved oxygen (D) contained in pure water
O) forms a natural oxide film on the surface of the silicon wafer. If a natural oxide film is formed on the wafer surface, it will hinder the growth of the epitaxial Si thin film at low temperatures, hinder the precise control of the film pressure and film quality of the gate oxide film, and increase the contact resistance of the contact hole. Or become. Therefore, it is necessary to suppress formation of a natural oxide film on the wafer surface as much as possible.

【0004】そこで、純水製造装置においては、特に一
次純水系システムにおいて脱気装置を用いて溶存酸素を
低減している。この脱気装置により、二次純水系システ
ム入口における被処理水(一次純水)中の溶存酸素濃度
は、通常1μg/L程度にまで低減されている。
Therefore, in a pure water producing apparatus, a dissolved oxygen is reduced by using a deaerator in a primary pure water system in particular. With this deaerator, the concentration of dissolved oxygen in the water to be treated (primary pure water) at the inlet of the secondary pure water system is usually reduced to about 1 μg / L.

【0005】[0005]

【発明が解決しようとする課題】前述した純水の製造で
は、一般に、二次純水系システムに設置した紫外線酸化
装置によって有機物の分解を行っている。この場合、上
記紫外線酸化装置では、過酸化水素やオゾンに紫外線を
照射すると有機物を完全分解できるヒドロキシルラジカ
ルが生成することから、被処理水に過酸化水素やオゾン
を添加することもある。
In the above-described production of pure water, organic substances are generally decomposed by an ultraviolet oxidizer installed in a secondary pure water system. In this case, in the ultraviolet oxidizing apparatus, when hydrogen peroxide or ozone is irradiated with ultraviolet rays, hydroxyl radicals capable of completely decomposing organic substances are generated, so that hydrogen peroxide or ozone may be added to the water to be treated.

【0006】そのため、二次純水系システムの紫外線酸
化装置の処理水中には、被処理水に添加された過酸化水
素や、紫外線酸化装置で副生成した過酸化水素が残存し
ているのが通常である。この過酸化水素は、二次純水系
システムのその後のポリッシャ工程で分解されて酸素を
生成し、その結果、処理水中の溶存酸素濃度を上昇させ
てしまう。この現象は、特に通水初期に顕著に生じる。
Therefore, in the treated water of the ultraviolet oxidizer of the secondary pure water system, hydrogen peroxide added to the water to be treated and hydrogen peroxide by-produced by the ultraviolet oxidizer usually remain. It is. This hydrogen peroxide is decomposed in a subsequent polisher step of the secondary pure water system to generate oxygen, and as a result, increases the dissolved oxygen concentration in the treated water. This phenomenon occurs remarkably, particularly at the beginning of water passage.

【0007】これに対し、紫外線酸化装置の処理水中に
含まれる過酸化水素から発生した溶存酸素を、膜脱気装
置を用いて除去する方法が提案されている(特開平9−
29251)。しかし、この方法では溶存酸素を十分に
除去することができず、ウエハ表面の自然酸化膜の形成
を抑制できる純水を得ることは難しかった。
On the other hand, there has been proposed a method of removing dissolved oxygen generated from hydrogen peroxide contained in the treated water of an ultraviolet oxidizer using a membrane deaerator (Japanese Patent Application Laid-Open No. 9-1997).
29251). However, in this method, dissolved oxygen cannot be sufficiently removed, and it has been difficult to obtain pure water capable of suppressing formation of a natural oxide film on the wafer surface.

【0008】また、紫外線酸化装置の処理水中に含まれ
る過酸化水素を、合成炭素系粒状吸着剤を用いて吸着除
去する方法が提案されている(特開平9−2923
3)。この方法によれば、紫外線酸化装置の処理水中に
残存する過酸化水素自体を除去することから、ウエハ表
面の自然酸化膜の形成を抑制することが可能である。し
かし、この方法では、所定の過酸化水素除去率を得るた
めには多量の合成炭素系粒状吸着剤を充填した大型の吸
着搭が必要であった。
Further, a method has been proposed in which hydrogen peroxide contained in treated water of an ultraviolet oxidizer is adsorbed and removed by using a synthetic carbon-based particulate adsorbent (JP-A-9-2923).
3). According to this method, the formation of a natural oxide film on the wafer surface can be suppressed because the hydrogen peroxide itself remaining in the treatment water of the ultraviolet oxidizing apparatus is removed. However, in this method, a large adsorption tower filled with a large amount of a synthetic carbon-based particulate adsorbent was required to obtain a predetermined hydrogen peroxide removal rate.

【0009】さらに、紫外線酸化装置の処理水中に含ま
れる過酸化水素を、パラジウムを担持した触媒樹脂によ
って分解する方法が提案されている(特開平9−192
658)。しかし、上記パラジウム担持触媒樹脂では、
パラジウムは樹脂に物理的に担持されているため、樹脂
からパラジウムがコロイドや酸化物として処理水中に溶
出するおそれがあった。
Furthermore, there has been proposed a method of decomposing hydrogen peroxide contained in treated water of an ultraviolet oxidizing device by using a catalyst resin carrying palladium (JP-A-9-192).
658). However, in the above palladium-supported catalyst resin,
Since palladium is physically supported on the resin, there is a possibility that palladium may be eluted from the resin as a colloid or an oxide into the treated water.

【0010】本発明は、上述した事情に鑑みてなされた
もので、純水の製造工程において、被処理水中に含まれ
る過酸化水素のような酸化性物質を十分に除去すること
ができ、しかも酸化性物質除去手段から処理水中に不純
物が溶出しにくい酸化性物質低減純水製造方法及び装置
を提供することを目的とする。
[0010] The present invention has been made in view of the above-mentioned circumstances, and it is possible to sufficiently remove an oxidizing substance such as hydrogen peroxide contained in water to be treated in a process of producing pure water. An object of the present invention is to provide a method and an apparatus for producing oxidized substance-reduced pure water in which impurities are less likely to elute into treated water from the oxidized substance removing means.

【0011】[0011]

【課題を解決するための手段】本発明者は、前記目的を
達成するために鋭意検討を行った結果、酸化性物質を含
有する被処理水を亜硫酸イオン及び/又は亜硫酸水素イ
オンを担持した陰イオン交換樹脂(以下、「亜硫酸(水
素)イオン担持樹脂」ということもある)に接触させた
場合、被処理水中に含まれる過酸化水素のような酸化性
物質を十分に除去できること、亜硫酸(水素)イオン担
持樹脂からは処理水中に不純物が溶出しにくいこと、亜
硫酸(水素)イオン担持樹脂は比較的少量で酸化性物質
を除去できること見出した。
Means for Solving the Problems The present inventors have conducted intensive studies in order to achieve the above object, and as a result, have found that the water to be treated containing an oxidizing substance is converted into a negative electrode carrying sulfite ions and / or hydrogen sulfite ions. When brought into contact with an ion-exchange resin (hereinafter, also referred to as a “sulfite (hydrogen) ion-carrying resin”), it must be possible to sufficiently remove oxidizing substances such as hydrogen peroxide contained in the water to be treated, It was found that impurities hardly eluted from the ion-supporting resin into the treated water, and that the oxidizing substance could be removed with a relatively small amount of the sulfite (hydrogen) ion-supporting resin.

【0012】本発明は、上記知見に基づいてなされたも
ので、純水製造工程において、酸化性物質を含有する被
処理水を亜硫酸イオン及び/又は亜硫酸水素イオンを担
持した陰イオン交換樹脂に接触させることを特徴とする
酸化性物質低減純水製造方法を提供する。
The present invention has been made based on the above findings. In the pure water production step, the water to be treated containing an oxidizing substance is contacted with an anion exchange resin carrying sulfite ions and / or hydrogen sulfite ions. And a method for producing pure water with reduced oxidizing substance.

【0013】また、本発明は、純水製造装置において、
亜硫酸イオン及び/又は亜硫酸水素イオンを担持した陰
イオン交換樹脂を充填してなる酸化性物質除去装置を備
えたことを特徴とする酸化性物質低減純水製造装置を提
供する。
[0013] The present invention also provides a pure water producing apparatus,
Provided is an oxidizing substance reduced pure water producing apparatus, which is provided with an oxidizing substance removing apparatus filled with an anion exchange resin carrying sulfite ions and / or hydrogen sulfite ions.

【0014】なお、陰イオン交換樹脂を利用した過酸化
水素の除去方法として、過マンガン酸型陰イオン交換樹
脂又はマンガン酸化物を担持した陰イオン交換樹脂に排
超純水を接触させる方法が提案されている(特開平5−
261369)。しかし、この方法は、排超純水中の比
較的高濃度の過酸化水素を除去するためのものであり、
この方法では、一次純水中の比較的低濃度の過酸化水素
を除去することは難しい。また、陰イオン交換樹脂とし
て一般的に使用されているOH形陰イオン交換樹脂に過
酸化水素を含有する被処理水を接触させても、被処理水
中に含まれる過酸化水素を除去することは困難である。
As a method for removing hydrogen peroxide using an anion exchange resin, there has been proposed a method in which waste water is brought into contact with a permanganate-type anion exchange resin or an anion exchange resin carrying manganese oxide. (Japanese Unexamined Patent Publication No.
261369). However, this method is for removing a relatively high concentration of hydrogen peroxide in waste ultrapure water,
With this method, it is difficult to remove a relatively low concentration of hydrogen peroxide in the primary purified water. Further, even if the water to be treated containing hydrogen peroxide is brought into contact with an OH type anion exchange resin generally used as an anion exchange resin, it is not possible to remove hydrogen peroxide contained in the water to be treated. Have difficulty.

【0015】以下、本発明につきさらに詳しく説明す
る。本発明に係る酸化性物質低減純水製造方法では、酸
化性物質を含有する被処理水を亜硫酸(水素)イオン担
持樹脂に接触させることにより、被処理水中に含まれる
酸化性物質を除去する。この場合、除去対象となる酸化
性物質は代表的には過酸化水素であるが、本発明方法に
よればそれ以外の酸化性物質、例えばオゾンなども除去
することができる。
Hereinafter, the present invention will be described in more detail. In the method for producing pure water with reduced oxidizing substance according to the present invention, the oxidizing substance contained in the water to be treated is removed by bringing the treated water containing the oxidizing substance into contact with a sulfite (hydrogen) ion-carrying resin. In this case, the oxidizing substance to be removed is typically hydrogen peroxide, but according to the method of the present invention, other oxidizing substances, such as ozone, can also be removed.

【0016】また、本発明方法は、純水製造工程におけ
る酸化性物質を含有する水であれば、いずれの水に対し
ても適用することが可能である。本発明方法を適用する
被処理水の一例としては、二次純水系システムの紫外線
酸化装置の処理水、すなわち一次純水に紫外線を照射し
て酸化処理した水を挙げることができる。この水は、前
述したように過酸化水素を比較的多く含んでいるのが通
常である。本発明方法を適用する被処理水の他の例とし
ては、配管系の殺菌や非イオン状シリカをイオン状シリ
カに変換することを目的として、純水製造工程でオゾン
を添加した水を挙げることができる。この水は、オゾン
の分解により生成した過酸化水素を含んでいる。
The method of the present invention can be applied to any water containing an oxidizing substance in the pure water production process. As an example of the water to be treated to which the method of the present invention is applied, there may be mentioned treated water of an ultraviolet oxidizing device of a secondary pure water system, that is, water which has been oxidized by irradiating primary pure water with ultraviolet rays. This water usually contains a relatively large amount of hydrogen peroxide as described above. Another example of the water to be treated to which the method of the present invention is applied is water to which ozone is added in a pure water production process for the purpose of sterilizing a piping system or converting nonionic silica to ionic silica. Can be. This water contains hydrogen peroxide generated by the decomposition of ozone.

【0017】本発明方法において、亜硫酸イオン及び/
又は亜硫酸水素イオン(以下、「亜硫酸(水素)イオ
ン」ということもある)を担持させる陰イオン交換樹脂
の種類に限定はないが、亜硫酸(水素)イオンの保持力
が高い点で、強塩基性陰イオン交換樹脂が好ましい。ま
た、亜硫酸(水素)イオンを陰イオン交換樹脂に担持さ
せる方法としては、例えば、OH形陰イオン交換樹脂に
亜硫酸(水素)イオンを含有する水溶液を接触させる方
法を挙げることができる。この場合、陰イオン交換樹脂
における亜硫酸(水素)イオンの担持量は、上記水溶液
の液量、亜硫酸(水素)イオン濃度や、上記水溶液と樹
脂との接触時間を変えることで適宜調整できる。
In the method of the present invention, sulfite ions and / or
Alternatively, the type of anion exchange resin supporting bisulfite ion (hereinafter, also referred to as “sulfite (hydrogen) ion”) is not limited, but strong basic sulfite (hydrogen) ion has a high holding power for sulfite (hydrogen) ion. Anion exchange resins are preferred. Examples of a method for supporting sulfite (hydrogen) ions on an anion exchange resin include a method in which an aqueous solution containing sulfite (hydrogen) ions is brought into contact with an OH type anion exchange resin. In this case, the amount of sulfite (hydrogen) ions carried in the anion exchange resin can be appropriately adjusted by changing the amount of the aqueous solution, the concentration of the sulfite (hydrogen) ion, and the contact time between the aqueous solution and the resin.

【0018】本発明方法において、被処理水と樹脂とを
接触させる方法は任意の方法を採用することができ、例
えば、亜硫酸(水素)イオン担持樹脂を充填した酸化性
物質除去装置(樹脂充填塔など)に被処理水を通水する
ことによって、被処理水と樹脂とを接触させることがで
きる。この場合、被処理水と樹脂との接触時間は、被処
理水中に含まれる酸化性物質の濃度や、樹脂の酸化性物
質除去能力等を考慮して適宜決定することができる。
In the method of the present invention, any method can be adopted as the method of bringing the water to be treated into contact with the resin, for example, an oxidizing substance removing apparatus (resin-filled tower filled with a resin carrying a sulfurous acid (hydrogen) ion). ), The water to be treated can be brought into contact with the resin. In this case, the contact time between the water to be treated and the resin can be appropriately determined in consideration of the concentration of the oxidizing substance contained in the water to be treated, the ability of the resin to remove the oxidizing substance, and the like.

【0019】亜硫酸(水素)イオン担持樹脂と接触した
酸化性物質が、いかなる機構によって除去されるのか明
確には判明していないが、例えば酸化性物質が過酸化水
素の場合は、発生期の酸素の大部分が樹脂に担持されて
いる亜硫酸(水素)イオンと直接反応し、亜硫酸(水
素)イオンが硫酸イオンに酸化されることにより除去さ
れ、また過酸化水素の一部は分解されて酸素を発生する
と考えられる。なお、この酸素は、亜硫酸(水素)イオ
ン担持樹脂との反応により除去されるため、本発明方法
では、結果的には酸化性物質とともにその分解で生じた
溶存酸素も除去される。ただし、亜硫酸(水素)イオン
担持樹脂に接触させた後の水をさらに脱気処理すること
で、溶存酸素濃度がより低減した純水を得ることが可能
である。この場合、脱気処理は、例えば膜脱気装置、真
空脱気装置、加熱脱気装置等を用いて行うことができ
る。
The mechanism by which the oxidizing substance in contact with the sulfite (hydrogen) ion-carrying resin is removed is not clearly known. For example, when the oxidizing substance is hydrogen peroxide, the oxidizing substance in the developing phase is Most of the hydrogen peroxide reacts directly with the sulfurous acid (hydrogen) ions supported on the resin, and the sulfurous acid (hydrogen) ions are removed by being oxidized to sulfate ions, and part of the hydrogen peroxide is decomposed to form oxygen. It is thought to occur. Since the oxygen is removed by the reaction with the sulfite (hydrogen) ion-carrying resin, in the method of the present invention, as a result, dissolved oxygen generated by its decomposition is also removed together with the oxidizing substance. However, by further degassing the water after contacting the resin with the sulfite (hydrogen) ion-carrying resin, it is possible to obtain pure water having a further reduced dissolved oxygen concentration. In this case, the deaeration process can be performed using, for example, a film deaerator, a vacuum deaerator, a heated deaerator, or the like.

【0020】本発明方法では、亜硫酸(水素)イオン担
持樹脂に接触させた後の水を、さらにH形強酸性陽イオ
ン交換樹脂及び/又はOH形強塩基性陰イオン交換樹脂
に接触させることが適当であり、例えば、H形強酸性陽
イオン交換樹脂の単床層、OH形強塩基性陰イオン交換
樹脂の単床層、H形強酸性陽イオン交換樹脂とOH形強
塩基性陰イオン交換樹脂との混床層、又は、H形強酸性
陽イオン交換樹脂層とOH形強塩基性陰イオン樹脂層と
を積層させた樹脂層に接触させることが有効である。す
なわち、亜硫酸(水素)イオン担持樹脂に接触させた後
の水をOH形強塩基性イオン交換樹脂と接触させること
で、亜硫酸(水素)イオン担持樹脂から微量溶出してく
る亜硫酸(水素)イオンを除去することができる。ま
た、亜硫酸(水素)イオン担持樹脂に接触させた後の水
をH形強酸性陽イオン交換樹脂と接触させることで、酸
化性物質により酸化分解された陽イオン性の有機物が処
理水中に微量放出された場合でも、この有機物を除去す
ることができる。また、亜硫酸(水素)イオン担持樹脂
にH形強酸性陽イオン交換樹脂及び/又はOH形強塩基
性陰イオン交換樹脂を混合することによっても、同様の
効果を得ることが可能である。
In the method of the present invention, the water that has been brought into contact with the sulfite (hydrogen) ion-carrying resin may be further contacted with an H-form strongly acidic cation exchange resin and / or an OH-form strongly basic anion exchange resin. Suitable are, for example, a single bed layer of H-form strongly acidic cation exchange resin, a single bed layer of OH-form strongly basic anion exchange resin, H-form strongly acidic cation exchange resin and OH form strong basic anion exchange It is effective to contact a mixed bed layer with a resin or a resin layer in which an H-type strongly acidic cation exchange resin layer and an OH-type strongly basic anion resin layer are laminated. That is, by contacting the water after contacting with the sulfite (hydrogen) ion-supporting resin with the OH-type strong basic ion exchange resin, a small amount of sulfite (hydrogen) ions eluted from the sulfite (hydrogen) ion-supporting resin are removed. Can be removed. Also, by contacting the water after contacting with the sulfite (hydrogen) ion-carrying resin with the H-type strongly acidic cation exchange resin, a small amount of cationic organic substances oxidatively decomposed by the oxidizing substance is released into the treated water. In this case, the organic matter can be removed. The same effect can be obtained by mixing an H-type strongly acidic cation exchange resin and / or an OH-type strongly basic anion exchange resin with a sulfite (hydrogen) ion-carrying resin.

【0021】本発明の酸化性物質低減純水製造装置は、
亜硫酸(水素)イオン担持樹脂を充填してなる酸化性物
質除去装置を備えたものである。本発明装置は、酸化性
物質を含有する被処理水を酸化性物質除去装置に充填し
た亜硫酸(水素)イオン担持樹脂に接触させることによ
り、被処理水中に含まれる酸化性物質を除去することが
できる。この場合、亜硫酸(水素)イオン担持樹脂につ
いては前述したとおりである。
The apparatus for producing pure water with reduced oxidizing substance of the present invention comprises:
It is provided with an oxidizing substance removing device filled with a resin carrying a sulfurous acid (hydrogen) ion. The device of the present invention can remove the oxidizing substance contained in the water to be treated by bringing the water to be treated containing the oxidizing substance into contact with the sulfite (hydrogen) ion-carrying resin filled in the oxidizing substance removing apparatus. it can. In this case, the sulfite (hydrogen) ion-carrying resin is as described above.

【0022】また、本発明装置は、紫外線酸化装置と、
亜硫酸イオン及び/又は亜硫酸水素イオンを担持した陰
イオン交換樹脂を充填してなる酸化性物質除去装置と、
脱塩装置とを備え、一次純水をこの順に通水する構成と
することができる。さらに、上記酸化性物質除去装置と
脱塩装置との間に脱気装置を設けることもできる。
Further, the apparatus of the present invention comprises an ultraviolet oxidation apparatus,
An oxidizing substance removing device filled with an anion exchange resin carrying sulfite ions and / or hydrogen sulfite ions,
A desalination device may be provided, and primary pure water may be passed in this order. Further, a deaeration device may be provided between the oxidizing substance removing device and the desalination device.

【0023】すなわち、前述したように、二次純水系シ
ステムの紫外線酸化装置の処理水中に含まれる過酸化水
素は、特に通水初期に後段の脱塩装置で分解されて溶存
酸素を生成する。これに対し、上述した構成の本発明装
置では、脱塩装置の前段に設置した酸化性物質除去装置
で過酸化水素のような酸化性物質を除去し、しかも酸化
性物質の分解により溶存酸素が一部生成したとしても、
これを酸化性物質除去装置内で除去する。したがって、
上述した構成の本発明装置によれば、酸化性物質濃度及
び溶存酸素濃度が低減した水を脱塩装置に通水すること
ができるので、前述した問題を解消して、酸化性物質濃
度及び溶存酸素濃度がともに極めて低い純水を得ること
ができ、その結果、シリコンウエハ上の自然酸化膜の形
成を抑制することが可能である。この場合、酸化性物質
除去装置と脱塩装置との間に脱気装置を設けることで、
純水中の溶存酸素濃度をさらに低減させることができ
る。
That is, as described above, hydrogen peroxide contained in the treated water of the ultraviolet oxidizer of the secondary pure water system is decomposed by the subsequent desalter in the early stage of passing water, and produces dissolved oxygen. On the other hand, in the apparatus of the present invention having the above-described configuration, the oxidizing substance such as hydrogen peroxide is removed by the oxidizing substance removing apparatus installed in the preceding stage of the desalting apparatus, and the dissolved oxygen is reduced by the decomposition of the oxidizing substance. Even if it is partially generated,
This is removed in the oxidizing substance removing device. Therefore,
According to the apparatus of the present invention having the above-described configuration, water having a reduced oxidizing substance concentration and dissolved oxygen concentration can be passed through the desalination apparatus. Pure water having an extremely low oxygen concentration can be obtained, and as a result, formation of a natural oxide film on a silicon wafer can be suppressed. In this case, by providing a degassing device between the oxidizing substance removal device and the desalination device,
The dissolved oxygen concentration in the pure water can be further reduced.

【0024】前記紫外線酸化装置としては、被処理水に
紫外線を照射可能な紫外線ランプを備え、被処理水中の
有機物を分解可能なものであればよい。紫外線として
は、例えば、185nm付近の波長の紫外線や、254
nm付近の波長の紫外線を挙げることができる。ただ
し、254nm付近の波長の紫外線は185nm付近の
波長の紫外線より有機物分解能力が低いので、この点を
考慮すればよい。本発明において特に好ましいのは、有
機物を良好に分解できる点で、185nm及び254n
m付近の波長の紫外線をともに強く照射可能な紫外線酸
化装置を用いることである。紫外線酸化装置に用いる紫
外線ランプの種類に特に限定はないが、低圧水銀ランプ
が好ましい。また、紫外線酸化装置の形態としては例え
ば流通型、浸漬型等が挙げられるが、処理効率の点で流
通型が好適である。
The ultraviolet oxidizing device may be any device provided with an ultraviolet lamp capable of irradiating ultraviolet rays to the water to be treated and capable of decomposing organic substances in the water to be treated. As the ultraviolet ray, for example, an ultraviolet ray having a wavelength around 185 nm, or 254 nm
An ultraviolet ray having a wavelength near nm can be used. However, ultraviolet light having a wavelength of about 254 nm has a lower organic matter decomposing ability than ultraviolet light having a wavelength of about 185 nm, and this point may be taken into consideration. Particularly preferred in the present invention is that 185 nm and 254 n
In other words, an ultraviolet oxidizer capable of strongly irradiating ultraviolet light having a wavelength near m is used. There is no particular limitation on the type of ultraviolet lamp used in the ultraviolet oxidation apparatus, but a low-pressure mercury lamp is preferred. Examples of the form of the ultraviolet oxidation apparatus include a flow type and an immersion type, but a flow type is preferable in terms of processing efficiency.

【0025】前記脱塩装置としては、例えばイオン交換
装置を用いることができる。このイオン交換装置は、非
再生型イオン交換装置(カートリッジポリッシャ)であ
ることが好ましい。非再生型イオン交換装置としては、
例えば、強酸性陽イオン交換樹脂と強塩基性陰イオン交
換樹脂との混床によるイオン交換装置(混床1塔式)、
強塩基性陰イオン交換樹脂の単床によるイオン交換装
置、強塩基性陰イオン交換樹脂の単床層を入口側、強酸
性陽イオン交換樹脂と強塩基性陰イオン交換樹脂との混
床層を出口側に設けた複層式イオン交換装置(複層1塔
式)、強塩基性陰イオン交換樹脂の単床による樹脂塔を
前段側、強酸性陽イオン交換樹脂と強塩基性陰イオン交
換樹脂との混床による樹脂塔を後段側に設けたイオン交
換装置(2塔式)等が挙げられる。これらの中で、混床
1塔式のイオン交換装置を用いた場合には、混床層内の
いずれの位置においても水のpH変化がないため、効率
の良いイオン交換が行われるという利点がある。
As the desalting device, for example, an ion exchange device can be used. This ion exchange device is preferably a non-regenerative ion exchange device (cartridge polisher). As a non-regenerative ion exchange device,
For example, an ion exchange apparatus (mixed bed single column type) using a mixed bed of a strongly acidic cation exchange resin and a strongly basic anion exchange resin,
An ion exchange device using a single bed of strong basic anion exchange resin, a single bed layer of strong basic anion exchange resin on the inlet side, and a mixed bed layer of strong acidic cation exchange resin and strong basic anion exchange resin. A multi-layer ion exchange device (multi-layer one-column type) provided on the outlet side, a resin tower with a single bed of a strongly basic anion exchange resin in the front stage, a strongly acidic cation exchange resin and a strongly basic anion exchange resin And an ion exchange device (two-tower type) in which a resin tower formed by mixed bed is provided at the subsequent stage. Among them, the use of a single-bed mixed-bed ion exchanger has the advantage that efficient ion exchange is performed because there is no change in the pH of water at any position in the mixed-bed layer. is there.

【0026】前記脱気装置としては、被処理水中の溶存
酸素を除去できるものであればよい。脱気装置として
は、例えば、膜脱気装置、真空脱気装置、加熱脱気装置
等を挙げることができる。膜脱気装置は、気体分離膜で
仕切られた一方の室に被処理水を流すとともに、他方の
室を減圧することにより、被処理水中に含まれるガスを
気体分離膜を通して他方の室に移行させて除去する装置
である。これらの中で、膜脱気装置は、装置から水中に
不純物が混入したり、装置の充填物から水中に不純物が
溶出したりすることがなく、かつ装置が小型であるた
め、特に好適に使用することができる。
Any degassing device may be used as long as it can remove dissolved oxygen in the water to be treated. Examples of the deaerator include a membrane deaerator, a vacuum deaerator, and a heated deaerator. In the membrane degassing device, the water contained in the water to be treated is transferred to the other chamber through the gas separation membrane by flowing the water to be treated into one chamber partitioned by the gas separation membrane and depressurizing the other chamber. It is a device that removes it. Among these, the membrane deaerator is particularly preferably used because impurities are not mixed into water from the apparatus, impurities are not eluted into water from the packing of the apparatus, and the apparatus is compact. can do.

【0027】[0027]

【発明の実施の形態】次に、本発明の実施の形態を示す
が、本発明は下記例に限定されるものではない。図1は
本発明に係る酸化性物質低減純水製造装置の一例を示す
フロー図である。
Next, embodiments of the present invention will be described. However, the present invention is not limited to the following examples. FIG. 1 is a flow chart showing an example of the oxidizing substance reduced pure water producing apparatus according to the present invention.

【0028】本装置では、まず、原水貯槽2に貯留した
工業用水などの原水を前処理システム4に通水し、該前
処理システム4で原水中の懸濁物質及び有機物の一部を
除去した後、その処理水を濾過水槽6を経て一次系純水
システム8に供給する。一次系純水システム8は、水中
の不純物イオンの除去を行う脱塩装置12、水中の無機
イオン、有機物、微粒子などの除去を行なう逆浸透膜装
置14、水中の溶存酸素などの溶存ガス除去を行なう真
空脱気装置16、残存するイオンなどを除去して高純度
の水を得る再生型混床式脱塩装置18を順次備えてい
る。一次系純水システム8による処理によって一次純水
が得られるが、この一次純水のTOC濃度は通常2μg
/L以下であり、抵抗率は通常10MΩ・cm以上であ
る。
In this apparatus, first, raw water such as industrial water stored in the raw water storage tank 2 is passed through the pretreatment system 4, and the pretreatment system 4 removes a part of suspended substances and organic substances in the raw water. Thereafter, the treated water is supplied to the primary pure water system 8 through the filtration water tank 6. The primary pure water system 8 includes a desalination device 12 for removing impurity ions in water, a reverse osmosis membrane device 14 for removing inorganic ions, organic substances, and fine particles in water, and a removal of dissolved gases such as dissolved oxygen in water. The apparatus is provided with a vacuum deaerator 16 to be used, and a regenerative mixed-bed desalter 18 for removing high-purity water by removing remaining ions and the like. Primary pure water is obtained by the treatment with the primary pure water system 8, and the TOC concentration of the primary pure water is usually 2 μg.
/ L or less, and the resistivity is usually 10 MΩ · cm or more.

【0029】次に、一次純水は、二次系純水システム1
0の純水貯層20にいったん貯留された後、紫外線酸化
装置22に導入される。紫外線酸化装置22は、高い有
機物分解能力がある185nm付近の紫外線と、254
nm付近の波長の紫外線とをともに強く照射可能な低圧
水銀ランプを備えた紫外線酸化装置であり、水中の有機
物を炭酸や有機酸に分解するために設置されている。紫
外線酸化装置22の前後における水中の溶存酸素濃度を
測定したところ、該溶存酸素濃度が22μg/Lから6
μg/Lへと低減する現象が認められた。この現象は、
紫外線酸化装置22の被処理水中の溶存酸素が有機物の
酸化のための酸素源として消費されたり、紫外線と水と
の相互作用によるラジカル、オゾン、過酸化水素等の生
成によって消費されたりするために発生すると考えられ
る。したがって、紫外線酸化装置22の前後の過酸化水
素濃度は、通常、1μg/L以下から5〜50μg/L
へと増加する。
Next, the primary pure water is supplied to the secondary pure water system 1.
After being once stored in the pure water storage layer 20 of zero, it is introduced into the ultraviolet oxidation device 22. The ultraviolet oxidizer 22 has an ultraviolet ray near 185 nm, which has a high ability to decompose organic substances, and 254 nm.
This is an ultraviolet oxidation apparatus equipped with a low-pressure mercury lamp capable of strongly irradiating both ultraviolet rays having a wavelength of around nm and installed to decompose organic substances in water into carbonic acid and organic acids. When the dissolved oxygen concentration in the water before and after the ultraviolet oxidizer 22 was measured, the dissolved oxygen concentration was 22 μg / L to 6 μm.
A phenomenon of reduction to μg / L was observed. This phenomenon is
Dissolved oxygen in the water to be treated in the ultraviolet oxidizer 22 is consumed as an oxygen source for oxidizing organic substances, or is consumed by generation of radicals, ozone, hydrogen peroxide, and the like due to interaction between ultraviolet light and water. It is thought to occur. Therefore, the concentration of hydrogen peroxide before and after the ultraviolet oxidizing device 22 is usually 1 μg / L or less to 5 to 50 μg / L.
To increase.

【0030】次に、紫外線酸化装置22の処理水を、亜
硫酸(水素)イオン担持樹脂を充填した酸化性物質除去
装置24に通水して上記樹脂と接触させることにより、
被処理水中の過酸化水素を除去するとともに、同時に生
成する溶存酸素を除去する。この場合、亜硫酸(水素)
イオン担持樹脂に被処理水を接触させる方式に限定はな
いが、固定層方式で行なうことが過酸化水素の除去効率
の点で好ましい。固定層方式で被処理水を亜硫酸(水
素)イオン担持樹脂に接触させる場合、被処理水の線流
速は30〜600m/h、特に100〜300m/hと
することが適当である。線流速が600m/hを超える
と過酸化水素が十分に除去されないことがある。
Next, the treated water of the ultraviolet oxidizing device 22 is passed through an oxidizing substance removing device 24 filled with a resin carrying a sulfurous acid (hydrogen) ion, and brought into contact with the resin.
Hydrogen peroxide in the water to be treated is removed, and dissolved oxygen generated at the same time is removed. In this case, sulfurous acid (hydrogen)
Although there is no particular limitation on the method of bringing the water to be treated into contact with the ion-supporting resin, it is preferable to use a fixed bed method in terms of the efficiency of removing hydrogen peroxide. When the water to be treated is brought into contact with the sulfite (hydrogen) ion-carrying resin by the fixed bed method, the linear flow velocity of the water to be treated is preferably 30 to 600 m / h, particularly 100 to 300 m / h. If the linear flow rate exceeds 600 m / h, hydrogen peroxide may not be sufficiently removed.

【0031】その後、酸化性物質除去装置24の処理水
を膜脱気装置26に通水する。これにより、例えば、処
理水中の溶存酸素濃度を1μg/L以下、全溶存ガス濃
度を3000μg/L以下に低減することができる。
Thereafter, the treated water of the oxidizing substance removing device 24 is passed through the membrane deaerator 26. Thereby, for example, the dissolved oxygen concentration in the treated water can be reduced to 1 μg / L or less, and the total dissolved gas concentration can be reduced to 3000 μg / L or less.

【0032】次いで、膜脱気装置26の処理水を、非再
生型イオン交換装置であるカートリッジポリッシャ28
に通水する。これにより、膜脱気装置26の処理水中に
含まれる不純物イオンが除去される。このとき、酸化性
物質除去装置24から発生した溶出イオンも除去され
る。
Next, the treated water of the membrane deaerator 26 is supplied to a cartridge polisher 28 which is a non-regeneration type ion exchange device.
Water. Thereby, impurity ions contained in the treatment water of the membrane deaerator 26 are removed. At this time, the eluting ions generated from the oxidizing substance removing device 24 are also removed.

【0033】さらに、カートリッジポリッシャ28の処
理水は、限外濾過膜装置30に通水され、ここで水中の
残存微粒子等が除去され、二次純水(超純水)が得られ
る。この二次純水は使用場所32に供給される。なお、
図1において34は二次純水循環配管を示す。
Further, the treated water of the cartridge polisher 28 is passed through an ultrafiltration membrane device 30, where residual fine particles and the like in the water are removed, and secondary pure water (ultra pure water) is obtained. This secondary pure water is supplied to the use place 32. In addition,
In FIG. 1, reference numeral 34 denotes a secondary pure water circulation pipe.

【0034】[0034]

【実施例】以下、本発明を実施例によりさらに詳細に説
明する。 <実験>OH形強塩基性陰イオン交換樹脂(アンバーラ
イト(登録商標、以下同じ)IRA900)100mL
にNaHSO3の10g/L水溶液500mLをSV4
で通水した後、一次純水により樹脂を洗浄して亜硫酸水
素イオン担持樹脂を得た。次に、上記亜硫酸水素イオン
担持樹脂100mLを充填したカラム、及び、OH形強
塩基性陰イオン交換樹脂(同上)100mLを充填した
カラムをそれぞれ用意し、両カラムに実際の二次純水系
システムの紫外線酸化装置の処理水をSV200(20
L/h)で通水し、カラム入口及び出口における過酸化
水素濃度を測定した。結果を表1に示す。
The present invention will be described in more detail with reference to the following examples. <Experiment> OH type strong basic anion exchange resin (Amberlite (registered trademark, the same applies hereinafter) IRA900) 100 mL
500 mL of a 10 g / L aqueous solution of NaHSO 3 into SV4
Then, the resin was washed with primary pure water to obtain a bisulfite ion-carrying resin. Next, a column packed with 100 mL of the above-mentioned bisulfite ion-carrying resin and a column packed with 100 mL of the OH-type strongly basic anion exchange resin (same as above) were prepared, and both columns were used for the actual secondary pure water system. The treated water of the ultraviolet oxidizer is used for SV200 (20
(L / h), and the concentration of hydrogen peroxide at the inlet and outlet of the column was measured. Table 1 shows the results.

【0035】[0035]

【表1】 [Table 1]

【0036】表1より、亜硫酸水素イオン担持樹脂によ
れば、被処理水中の過酸化水素を十分に除去できること
が確認された。これに対し、OH形陰イオン交換樹脂で
は過酸化水素を除去することは困難であった。
From Table 1, it was confirmed that the hydrogen sulfite ion-carrying resin can sufficiently remove hydrogen peroxide from the water to be treated. On the other hand, it was difficult to remove hydrogen peroxide with an OH type anion exchange resin.

【0037】<実施例1>OH形強塩基性陰イオン交換
樹脂(アンバーライトIRA900)100mLにNa
2SO3の10g/L水溶液500mLをSV4で通水し
た後、一次純水により樹脂を洗浄して亜硫酸イオン担持
樹脂を得た。次いで、30μg/Lの過酸化水素、20
μg/Lの溶存酸素、1μg/LのTOCを含有する紫
外線酸化装置処理水を上記亜硫酸イオン担持樹脂を充填
したカラムにSV100で通水した。その流出水中の過
酸化水素濃度、溶存酸素濃度及びTOC濃度を測定した
ところ、表2のとおりであった。
Example 1 NaOH was added to 100 mL of OH type strong basic anion exchange resin (Amberlite IRA900).
After passing 500 mL of a 10 g / L aqueous solution of 2 SO 3 through SV4, the resin was washed with primary pure water to obtain a sulfite ion-carrying resin. Then, 30 μg / L of hydrogen peroxide, 20
Ultraviolet oxidizer-treated water containing 1 μg / L of dissolved oxygen and 1 μg / L of TOC was passed through the column filled with the above sulfite ion-supporting resin at SV100. The concentration of hydrogen peroxide, the concentration of dissolved oxygen and the concentration of TOC in the effluent were measured.

【0038】<実施例2>OH形強塩基性陰イオン交換
樹脂100mLにNaHSO3の10g/L水溶液50
0mLをSV4で通水した後、一次純水により樹脂を洗
浄して亜硫酸水素イオン担持樹脂を得た。次いで、30
μg/Lの過酸化水素、20μg/Lの溶存酸素、1μ
g/LのTOCを含有する紫外線酸化装置処理水を上記
亜硫酸イオン担持樹脂を充填したカラムにSV100で
通水した。その流出水中の過酸化水素濃度、溶存酸素濃
度及びTOC濃度を測定したところ、表2のとおりであ
った。
Example 2 50 g of a 10 g / L aqueous solution of NaHSO 3 was added to 100 mL of an OH type strongly basic anion exchange resin.
After passing 0 mL of water through SV4, the resin was washed with primary pure water to obtain a resin carrying hydrogen sulfite ions. Then 30
μg / L hydrogen peroxide, 20 μg / L dissolved oxygen, 1μ
Water treated with an ultraviolet oxidizer containing g / L TOC was passed through a column filled with the above sulfite ion-supporting resin at SV100. The concentration of hydrogen peroxide, the concentration of dissolved oxygen and the concentration of TOC in the effluent were measured.

【0039】[0039]

【表2】 [Table 2]

【0040】<実施例3>実施例1と同様の方法で作製
した亜硫酸イオン担持樹脂(32gSO3/L−樹脂)
を、図1に示した純水製造装置の二次純水系システムの
酸化性物質除去装置に充填して3ヶ月間使用した。その
後、製造された二次純水中の過酸化水素濃度、溶存酸素
濃度、抵抗率及びTOC濃度を測定したところ、表3の
とおりであった。
Example 3 Sulfite ion-carrying resin (32 g SO 3 / L-resin) prepared in the same manner as in Example 1.
Was charged into the oxidizing substance removing device of the secondary pure water system of the pure water producing device shown in FIG. 1 and used for 3 months. After that, the hydrogen peroxide concentration, dissolved oxygen concentration, resistivity, and TOC concentration in the produced secondary pure water were measured.

【0041】二次純水系システムの各装置としては下記
のものを用いた。 ・紫外線酸化装置22 低圧型TDFL−4(千代田工販社製)、紫外線照射量
0.3kW/h/m3 ・酸化性物質除去装置24 実施例1と同様の方法で作製した亜硫酸イオン担持樹脂
を充填した円筒状の充填塔(高さ90cm、内径30c
m)、SV200h-1 ・膜脱気装置26 MJ−520p(大日本インキ化学工業社製)、真空度
18Torr ・カートリッジポリッシャ28 強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂の
混床式イオン交換装置 、SV50h-1 ・限外濾過膜装置 FIT−3016型(旭化成工業社製)
The following devices were used as devices of the secondary pure water system. UV oxidizer 22 Low-pressure TDFL-4 (manufactured by Chiyoda Kosan Co., Ltd.), UV irradiation amount 0.3 kW / h / m 3. Oxidizing substance removing device 24 A sulfite ion-carrying resin produced in the same manner as in Example 1 was used. Packed cylindrical packed tower (height 90 cm, inner diameter 30 c
m), SV200h -1 · Membrane deaerator 26 MJ-520p (manufactured by Dainippon Ink & Chemicals, Inc.), vacuum degree 18 Torr · Cartridge polisher 28 Mixed bed type of strong acidic cation exchange resin and strong basic anion exchange resin Ion exchange device, SV50h- 1 / ultrafiltration membrane device FIT-3016 type (manufactured by Asahi Kasei Kogyo)

【0042】[0042]

【表3】 [Table 3]

【0043】[0043]

【発明の効果】以上のように、本発明の酸化性物質低減
純水製造方法及び装置は、純水の製造工程において、被
処理水中に含まれる過酸化水素のような酸化性物質を十
分に除去することができ、しかも酸化性物質除去手段か
ら処理水中に不純物が溶出しにくいものである。したが
って、本発明によれば、酸化性物質濃度及び溶存酸素濃
度がともに極めて低い純水を得ることができ、その結
果、シリコンウエハ上の自然酸化膜の形成を抑制するこ
とが可能である。
As described above, the method and apparatus for producing oxidized substance-reduced pure water according to the present invention sufficiently eliminates oxidizing substances such as hydrogen peroxide contained in the water to be treated in the step of producing pure water. It can be removed, and impurities are hardly eluted from the oxidizing substance removing means into the treated water. Therefore, according to the present invention, it is possible to obtain pure water in which both the oxidizing substance concentration and the dissolved oxygen concentration are extremely low, and as a result, it is possible to suppress the formation of a natural oxide film on a silicon wafer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る酸化性物質低減純水製造装置の一
例を示すフロー図である。
FIG. 1 is a flowchart showing an example of an apparatus for producing pure water with reduced oxidizing substances according to the present invention.

【符号の説明】[Explanation of symbols]

2 原水貯層 4 前処理システム 6 濾過水槽 8 一次系純水システム 10 二次系純水システム 12 脱塩装置 14 逆浸透装置 16 真空脱気装置 18 再生型混床式脱塩装置 20 純水貯槽 22 紫外線酸化装置 24 酸化性物質除去装置 26 膜脱気装置 28 カートリッジポリッシャ 30 限外濾過膜装置 32 使用場所 34 二次純水循環配管 2 Raw water reservoir 4 Pretreatment system 6 Filtration water tank 8 Primary pure water system 10 Secondary pure water system 12 Desalination device 14 Reverse osmosis device 16 Vacuum deaerator 18 Regenerating mixed-bed desalter 20 Pure water storage tank Reference Signs List 22 Ultraviolet oxidation device 24 Oxidizing substance removal device 26 Membrane deaerator 28 Cartridge polisher 30 Ultrafiltration membrane device 32 Place of use 34 Secondary pure water circulation pipe

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/20 C02F 1/20 A 1/32 1/32 1/44 1/44 J Fターム(参考) 4D006 GA03 GA32 PB62 PB70 PC02 4D011 AA12 AA17 AC10 AD10 4D025 AA04 AB32 AB33 BA09 BA14 BB03 CA05 CA10 DA01 DA04 DA10 4D037 AA03 AB02 AB11 BA18 BA23 BB07 CA03 CA15 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/20 C02F 1/20 A 1/32 1/32 1/44 1/44 JF Term (Reference) 4D006 GA03 GA32 PB62 PB70 PC02 4D011 AA12 AA17 AC10 AD10 4D025 AA04 AB32 AB33 BA09 BA14 BB03 CA05 CA10 DA01 DA04 DA10 4D037 AA03 AB02 AB11 BA18 BA23 BB07 CA03 CA15

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 純水製造工程において、酸化性物質を含
有する被処理水を亜硫酸イオン及び/又は亜硫酸水素イ
オンを担持した陰イオン交換樹脂に接触させることを特
徴とする酸化性物質低減純水製造方法。
In the pure water production process, treated water containing an oxidizing substance is brought into contact with an anion exchange resin carrying sulfite ions and / or hydrogen sulfite ions, wherein the purified water is reduced in oxidizing substance. Production method.
【請求項2】 酸化性物質を含有する被処理水が、一次
純水に紫外線を照射して酸化処理した水である請求項1
に記載の酸化性物質低減純水製造方法。
2. The water to be treated containing an oxidizing substance is water that has been oxidized by irradiating primary pure water with ultraviolet rays.
3. The method for producing pure water with reduced oxidizing substances according to item 1.
【請求項3】 酸化性物質が過酸化水素である請求項1
又は2に記載の酸化性物質低減純水製造方法。
3. The method according to claim 1, wherein the oxidizing substance is hydrogen peroxide.
Or the method for producing pure water with reduced oxidizing substance according to 2.
【請求項4】 亜硫酸イオン及び/又は亜硫酸水素イオ
ンを担持した陰イオン交換樹脂に接触させた後の水をさ
らに脱気処理する請求項1〜3のいずれか1項に記載の
酸化性物質低減純水製造方法。
4. The oxidizing substance reduction according to claim 1, wherein the water after contacting with an anion exchange resin carrying sulfite ions and / or hydrogen sulfite ions is further degassed. Pure water production method.
【請求項5】 純水製造装置において、亜硫酸イオン及
び/又は亜硫酸水素イオンを担持した陰イオン交換樹脂
を充填してなる酸化性物質除去装置を備えたことを特徴
とする酸化性物質低減純水製造装置。
5. An oxidizing substance-reducing pure water comprising an oxidizing substance removing apparatus filled with an anion exchange resin carrying sulfite ions and / or hydrogen sulfite ions in a pure water producing apparatus. manufacturing device.
【請求項6】 紫外線酸化装置と、亜硫酸イオン及び/
又は亜硫酸水素イオンを担持した陰イオン交換樹脂を充
填してなる酸化性物質除去装置と、脱塩装置とを備え、
一次純水をこの順に通水する請求項5に記載の酸化性物
質低減純水製造装置。
6. An ultraviolet oxidizing device, comprising a sulfite ion and / or
Or an oxidizing substance removal device filled with an anion exchange resin carrying hydrogen sulfite ions, and a desalination device,
The oxidizing substance reduced pure water producing apparatus according to claim 5, wherein the primary pure water is passed in this order.
【請求項7】 酸化性物質除去装置と脱塩装置との間に
脱気装置を設けた請求項6に記載の酸化性物質低減純水
製造装置。
7. The oxidizing substance reduced pure water producing apparatus according to claim 6, wherein a deaerator is provided between the oxidizing substance removing apparatus and the desalting apparatus.
JP36512799A 1999-12-22 1999-12-22 Method and apparatus for making pure water reduced in content of oxidizing substance Pending JP2001179252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36512799A JP2001179252A (en) 1999-12-22 1999-12-22 Method and apparatus for making pure water reduced in content of oxidizing substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36512799A JP2001179252A (en) 1999-12-22 1999-12-22 Method and apparatus for making pure water reduced in content of oxidizing substance

Publications (1)

Publication Number Publication Date
JP2001179252A true JP2001179252A (en) 2001-07-03

Family

ID=18483500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36512799A Pending JP2001179252A (en) 1999-12-22 1999-12-22 Method and apparatus for making pure water reduced in content of oxidizing substance

Country Status (1)

Country Link
JP (1) JP2001179252A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122884A1 (en) * 2008-03-31 2009-10-08 栗田工業株式会社 Method for producing pure water and pure water production system
JP2010022936A (en) * 2008-07-18 2010-02-04 Ube Ind Ltd Apparatus and method for producing ultrapure water
JP2010117403A (en) * 2008-11-11 2010-05-27 Shin-Etsu Chemical Co Ltd Method for cleaning photomask-related substrate
JP2011194402A (en) * 2004-03-31 2011-10-06 Kurita Water Ind Ltd Ultrapure water production plant
JP2011240225A (en) * 2010-05-14 2011-12-01 Nomura Micro Sci Co Ltd Method and apparatus for producing ultrapure water for immersion exposure
JP2014017533A (en) * 2003-07-09 2014-01-30 Nikon Corp Exposure device and device manufacturing method
JP2014140826A (en) * 2013-01-25 2014-08-07 Nomura Micro Sci Co Ltd Ultrapure water production method
JP2016203079A (en) * 2015-04-21 2016-12-08 三浦工業株式会社 Water treatment metho
WO2019188309A1 (en) * 2018-03-27 2019-10-03 野村マイクロ・サイエンス株式会社 Anion exchange resin and water treatment method using same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9977352B2 (en) 2003-07-09 2018-05-22 Nikon Corporation Exposure apparatus and device manufacturing method
JP2014017533A (en) * 2003-07-09 2014-01-30 Nikon Corp Exposure device and device manufacturing method
JP2011194402A (en) * 2004-03-31 2011-10-06 Kurita Water Ind Ltd Ultrapure water production plant
US8480906B2 (en) 2008-03-31 2013-07-09 Kurita Water Industries Ltd. Pure water manufacturing method and pure water manufacturing apparatus
JP5454468B2 (en) * 2008-03-31 2014-03-26 栗田工業株式会社 Pure water production method and pure water production apparatus
WO2009122884A1 (en) * 2008-03-31 2009-10-08 栗田工業株式会社 Method for producing pure water and pure water production system
JP2010022936A (en) * 2008-07-18 2010-02-04 Ube Ind Ltd Apparatus and method for producing ultrapure water
JP2010117403A (en) * 2008-11-11 2010-05-27 Shin-Etsu Chemical Co Ltd Method for cleaning photomask-related substrate
JP2011240225A (en) * 2010-05-14 2011-12-01 Nomura Micro Sci Co Ltd Method and apparatus for producing ultrapure water for immersion exposure
JP2014140826A (en) * 2013-01-25 2014-08-07 Nomura Micro Sci Co Ltd Ultrapure water production method
JP2016203079A (en) * 2015-04-21 2016-12-08 三浦工業株式会社 Water treatment metho
WO2019188309A1 (en) * 2018-03-27 2019-10-03 野村マイクロ・サイエンス株式会社 Anion exchange resin and water treatment method using same
KR20200136890A (en) * 2018-03-27 2020-12-08 노무라마이크로사이엔스가부시키가이샤 Anion exchange resin and water treatment method using the same
JPWO2019188309A1 (en) * 2018-03-27 2021-03-11 野村マイクロ・サイエンス株式会社 Anion exchange resin and water treatment method using it
JP7157142B2 (en) 2018-03-27 2022-10-19 野村マイクロ・サイエンス株式会社 Anion exchange resin and water treatment method using the same
KR102489442B1 (en) * 2018-03-27 2023-01-17 노무라마이크로사이엔스가부시키가이샤 Anion exchange resin and water treatment method using the same

Similar Documents

Publication Publication Date Title
JP5045099B2 (en) Ultrapure water production apparatus and operation method of ultrapure water production apparatus
US6464867B1 (en) Apparatus for producing water containing dissolved ozone
JP2677468B2 (en) Method and apparatus for producing pure water
KR101692212B1 (en) Process and equipment for the treatment of water containing organic matter
JP2003205299A (en) Hydrogen dissolved water manufacturing system
US5582741A (en) Method for treating polluted water
JP4920019B2 (en) Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method
JPH1199395A (en) Treatment of organic matter containing water
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
JP2001179252A (en) Method and apparatus for making pure water reduced in content of oxidizing substance
JP6228471B2 (en) To-be-treated water processing apparatus, pure water production apparatus and to-be-treated water processing method
JP4635827B2 (en) Ultrapure water production method and apparatus
WO2019116653A1 (en) Method and apparatus for removing hydrogen peroxide
JP5499433B2 (en) Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP2002210494A (en) Device for manufacturing extrapure water
JPH0638953B2 (en) High-purity water manufacturing equipment
JPH1199394A (en) Method for removing organic matter in water
WO2022024815A1 (en) Pure water production apparatus, ultrapure water production apparatus, pure water production method, and ultrapure water production method
JPH09253638A (en) Ultrapure water making apparatus
JP3867944B2 (en) Pure water production method and ultrapure water production apparatus with reduced oxidizing substances
JP2000308815A (en) Producing device of ozone dissolved water
JP3580648B2 (en) Ultrapure water production equipment
JPH09253639A (en) Ultrapure water making apparatus
WO2021261144A1 (en) Water treatment apparatus, ultrapure water production apparatus, and water treatment method
JPH09220560A (en) Ultrapure water making apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224