JP3215277B2 - Method and apparatus for producing pure water or ultrapure water from which boron has been removed - Google Patents

Method and apparatus for producing pure water or ultrapure water from which boron has been removed

Info

Publication number
JP3215277B2
JP3215277B2 JP04313095A JP4313095A JP3215277B2 JP 3215277 B2 JP3215277 B2 JP 3215277B2 JP 04313095 A JP04313095 A JP 04313095A JP 4313095 A JP4313095 A JP 4313095A JP 3215277 B2 JP3215277 B2 JP 3215277B2
Authority
JP
Japan
Prior art keywords
boron
water
pure water
ultrapure water
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04313095A
Other languages
Japanese (ja)
Other versions
JPH08238478A (en
Inventor
円 田辺
栄 金子
郁夫 神藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP04313095A priority Critical patent/JP3215277B2/en
Publication of JPH08238478A publication Critical patent/JPH08238478A/en
Application granted granted Critical
Publication of JP3215277B2 publication Critical patent/JP3215277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、純水又は超純水の製造
方法及び製造装置に関し、例えば半導体製造などの電子
産業分野あるいはその関連分野等で有効なほう素濃度を
大幅に低減させた純水又は超純水の製造方法及び装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing pure water or ultrapure water, for example, in which the effective boron concentration in the electronics industry such as semiconductor manufacturing or related fields is greatly reduced. The present invention relates to a method and an apparatus for producing pure water or ultrapure water.

【0002】[0002]

【従来技術】[Prior art]

[発明の背景]従来から、例えば半導体製造の分野で
は、半導体デバイスの高集積度化に伴い、製造工程で用
いられる生産機械やガス,薬品等と共に、純水も大幅な
高純度化が要求され、超純水(場合により超々純水とも
称される)などの極めて高純度な用水も要求されてい
る。この用水高純度化の要求は今後も一層高まる傾向に
あると考えられ、このような過程で純水水質においてこ
れまでは注目されることのなかった極微細な微粒子、コ
ロイド状物質、超微量などの不純物が新たな除去対象物
質として注目されてきており、そのような物質の一つと
してほう素が挙げられる。
[Background of the Invention] Conventionally, for example, in the field of semiconductor manufacturing, with the increase in the degree of integration of semiconductor devices, it has been required to purify purified water as well as production machinery, gases, chemicals, etc. used in the manufacturing process. There is also a demand for extremely high-purity water, such as ultrapure water (sometimes referred to as ultra-pure water). It is thought that the demand for high-purity water will continue to increase in the future, and in this process, ultrafine particles, colloidal substances, ultra-trace amounts, etc., which have not been noticed in pure water quality in the past, have been noted. Is attracting attention as a new substance to be removed, and one of such substances is boron.

【0003】ほう素は微量測定の難しい元素であり、イ
オン,非イオン性物質の除去のために様々な装置を使用
して製造されている超純水中にこれが含まれているか否
かも従来は必ずしも明らかでなかったこともあって、超
純水の水質評価項目として注目されていなかった。しか
し測定技術の発達に伴って近時においてはpptレベル
で不純物の存在を検出することができるようになった結
果、利用する原水の水質や超純水等の製造装置の構成に
よっては、製造された超純水中にはほう素が含まれてい
ることが明らかとなった。
[0003] Boron is an element that is difficult to measure in trace amounts, and whether or not boron is contained in ultrapure water produced using various devices for the removal of ionic and nonionic substances has conventionally been determined. Because it was not always clear, it was not noted as a water quality evaluation item for ultrapure water. However, with the development of measurement technology, it has recently become possible to detect the presence of impurities at the ppt level. The ultrapure water was found to contain boron.

【0004】そしてこのほう素が超純水中に相当量含ま
れたまま例えば半導体デバイスの製造過程における洗浄
水として長期間に渡って使用される場合を考えると、ほ
う素がウエハ表面に高濃度に付着する結果として該半導
体デバイスの特性を損なう虞れが無視できないという問
題が新しい課題とされるようになった。
Considering a case where boron is used for a long time as a cleaning water in a process of manufacturing a semiconductor device while a considerable amount of boron is contained in ultrapure water, boron has a high concentration on the wafer surface. A new problem has arisen in that the risk of impairing the characteristics of the semiconductor device as a result of adhesion to the semiconductor device cannot be ignored.

【0005】上記課題として例えば、基盤上にnチャネ
ルトランジスタを形成させる場合にほう素の除去が十分
でない超純水を半導体デバイス製造用水として利用する
と、nチャネルトランジスタのしきい値電圧は基盤中の
ほう素濃度に依存するので製造工程中のほう素濃度の管
理が不安定である結果として製品の半導体デバイス特性
を著しく損なう可能性があることや、高集積度化が求め
られる近時において例えば微細なnチャネルMOSトラ
ンジスタを製造する場合を考えると、パンチスルー防止
の観点から基盤の深さ方向のほう素濃度分布を精密に制
御することが必要になる等のことが挙げられる。
For example, when ultrapure water from which boron is not sufficiently removed is used as water for manufacturing a semiconductor device when an n-channel transistor is formed on a substrate, the threshold voltage of the n-channel transistor is reduced. Because it depends on the boron concentration, the management of the boron concentration during the manufacturing process is unstable.As a result, the semiconductor device characteristics of the product may be significantly impaired. Considering the case of manufacturing a suitable n-channel MOS transistor, it is necessary to precisely control the boron concentration distribution in the depth direction of the substrate from the viewpoint of preventing punch-through.

【0006】[従来の技術]本出願人は、上記のような
課題を解決するために、既にほう素選択性イオン交換樹
脂を利用してほう素を除去した超純水を長期間安定して
製造することを可能とした技術を開発し提案した(特願
平6−240232号)。
[0006] In order to solve the above-mentioned problems, the applicant of the present invention has been able to stably supply ultrapure water from which boron has been removed using a boron-selective ion exchange resin for a long period of time. We have developed and proposed a technology that enables manufacturing (Japanese Patent Application No. 6-240232).

【0007】図1は、上記のほう素を除去した超純水の
長期間安定製造を可能とした本出願人の提案する一例的
な超純水製造装置の概要をフロー図で示したものであ
る。
FIG. 1 is a flow chart showing an outline of an exemplary ultrapure water production apparatus proposed by the present applicant, which enables long-term stable production of ultrapure water from which boron has been removed. is there.

【0008】この図1に基づいてほう素除去機能を有す
る超純水製造装置の概要を簡単に説明すると、工業用水
等の原水は、まず、懸濁物質と有機物の一部を前処理装
置1で除去した後、処理水はろ過水槽2を経て例えば2
床3塔式イオン交換装置である脱塩装置3に送られる。
この脱塩装置3で不純物イオンを除去した処理水は、脱
塩水槽4を経て逆浸透膜(RO)装置5に送られ、該処
理水中に残留する無機イオン、有機物、微粒子等の不純
物が除去される。次のこの微粒子等が除去された処理水
は、RO透過水槽6を経て真空脱気装置7で溶存酸素を
除去した後再生型混床式イオン交換装置8で高純度の一
次純水とされ、この一次純水は純水貯槽9に貯溜され
る。
An outline of an ultrapure water producing apparatus having a boron removing function will be briefly described with reference to FIG. 1. Raw water such as industrial water firstly includes a suspended substance and a part of organic substances in a pretreatment apparatus 1. , The treated water passes through the filtration tank 2
It is sent to a desalination unit 3 which is a three-bed ion exchange unit.
The treated water from which the impurity ions have been removed by the desalting device 3 is sent to a reverse osmosis membrane (RO) device 5 through a desalting water tank 4 to remove impurities such as inorganic ions, organic substances, and fine particles remaining in the treated water. Is done. Next, the treated water from which the fine particles and the like have been removed passes through an RO permeated water tank 6, and after removing dissolved oxygen by a vacuum deaerator 7, is converted into high-purity primary purified water by a regenerative mixed-bed ion exchanger 8. This primary pure water is stored in a pure water storage tank 9.

【0009】純水貯槽9の一次純水は次に二次純水処理
系に送られ、まず、紫外線酸化装置10での紫外線照射
により純水中の有機物を分解すると共にバクテリアの殺
菌が行なわれる。
[0009] The primary pure water in the pure water storage tank 9 is then sent to a secondary pure water treatment system, in which organic substances in the pure water are first decomposed by ultraviolet irradiation in an ultraviolet oxidizing device 10 and bacteria are sterilized. .

【0010】そしてほう素除去を行なわない従来一般的
な超純水製造装置(図3参照)では、カートリッジポリ
ッシャ12で更なるイオンの除去、次いで限外ろ過膜
(UF)装置13で更なる微粒子の除去を行なった後、
上記純水貯槽9に超純水を戻すように接続された二次純
水循環配管15の途中から分岐した送水配管を通して使
用場所14に超純水を給水するが、ほう素除去を行なう
図1の装置では、紫外線酸化装置10とカートリッジポ
リッシャ12の間にほう素除去塔11を設けて、これに
充填したほう素選択性イオン交換樹脂(例えばアンバー
ライト(登録商標、以下同様)IRA−743T)によ
り、処理水中に含まれるほう素が除去される。
In a conventional general ultrapure water producing apparatus which does not remove boron (see FIG. 3), further ions are removed by a cartridge polisher 12 and then further fine particles are removed by an ultrafiltration membrane (UF) apparatus 13. After removal of
Ultrapure water is supplied to the place of use 14 through a water supply pipe branched from the middle of the secondary pure water circulation pipe 15 connected to return the ultrapure water to the pure water storage tank 9, but boron is removed. In this apparatus, a boron removing tower 11 is provided between an ultraviolet oxidizing apparatus 10 and a cartridge polisher 12, and a boron-selective ion exchange resin (for example, Amberlite (registered trademark, hereinafter the same) IRA-743T) filled therein is provided. As a result, boron contained in the treated water is removed.

【0011】なお上記において純水貯槽9−紫外線照射
装置10−ほう素除去塔11−カートリッジポリッシャ
12−限外ろ過膜装置13−二次純水循環配管15の閉
ループで処理水を常に循環させる理由は、この閉ループ
を採用せずに使用場所14での使用,不使用に応じて装
置の運転を稼動させたり停止したりすると、停止時に配
管や各装置内で水が滞留することによるバクテリアの増
殖、イオン成分や有機物などの溶出が微量ながらも生じ
たり、停止後再稼動時のショックで各装置などから微粒
子が吐き出されて超純水の水質を劣化させる虞れがある
ことを考慮したためであり、上記のほう素除去のために
ほう素除去塔11を設けたこととの関連性は特にない。
In the above, the reason why the treated water is constantly circulated in the closed loop of the pure water storage tank 9, the ultraviolet irradiation device 10, the boron removal tower 11, the cartridge polisher 12, the ultrafiltration membrane device 13, and the secondary pure water circulation pipe 15. If the operation of the apparatus is started or stopped in accordance with use or non-use at the place of use 14 without adopting the closed loop, bacterial growth due to stagnation of water in pipes and each apparatus at the time of stoppage is considered. The reason is that there is a possibility that the elution of ionic components or organic substances may occur even in a very small amount, or fine particles may be discharged from each device due to a shock at the time of restarting after stopping, thereby deteriorating the quality of ultrapure water. There is no particular connection with the provision of the boron removal tower 11 for the above-described boron removal.

【0012】[0012]

【発明が解決しようとする課題】上記のほう素選択性イ
オン交換樹脂を用いてほう素を除去した超純水の製造を
行なうようにした提案が有用であるのは次の理由によ
る。すなわち、強塩基性陰イオン交換樹脂をイオン除去
のために用いている従来の装置であっても、再生直後の
比較的短い期間など、部分的,短期間的にはほう素を有
効に除去できると考えられるが、長期間に渡る安定した
ほう素の除去はできないので工業的な装置としては不十
分となるからである。
The proposal for producing ultrapure water from which boron has been removed using a boron-selective ion exchange resin is useful for the following reasons. That is, even in a conventional apparatus using a strongly basic anion exchange resin for ion removal, boron can be effectively removed in a partial or short period such as a relatively short period immediately after regeneration. However, boron cannot be removed stably over a long period of time, which is insufficient for an industrial apparatus.

【0013】ところで、ほう素選択性イオン交換樹脂は
ほう素除去のためにグルカミン交換基を有するものであ
って、その樹脂構造上の性質から通水した処理水中に有
機炭素が溶出すると考えられ、実際に上記図1の超純水
製造に適用した場合にほう素除去塔から出る処理水中の
全有機炭素(以下「TOC」という)濃度が高くなるこ
とが確認された。この場合のTOC溶出量は、他用途の
用水製造の場合には問題とならない量とも言えるが、本
発明が対象とするような例えば半導体製造などの電子産
業分野等に使用する純水や超純水等の用水では、上述の
ように半導体デバイスの信頼性低下や歩留まり低下につ
ながるため無視できない問題である。
By the way, the boron-selective ion exchange resin has a glucamine exchange group for removing boron, and it is considered that organic carbon is eluted in treated water passed through from the properties of the resin structure, It was confirmed that the concentration of total organic carbon (hereinafter referred to as “TOC”) in the treated water discharged from the boron removal tower was actually increased when applied to the production of ultrapure water shown in FIG. The TOC elution amount in this case can be said to be an amount that does not cause a problem in the case of producing water for other uses. However, pure water or ultrapure water used in the electronic industry field such as semiconductor production, which is a target of the present invention, is used. Water, such as water, is a problem that cannot be ignored because it leads to a decrease in the reliability and yield of the semiconductor device as described above.

【0014】そこで、上記のほう素選択性イオン交換樹
脂を使用する場合にTOC溶出が影響しない装置運用を
図るための工夫、例えば一般的なイオン交換樹脂につい
て知られているTOCの溶出を低減させる処理、具体的
には、装置稼動前のほう素除去塔に対して酸溶液とア
ルカリ溶液を交互に通液して洗浄する、温水を通水す
る、などによってTOC溶出の低減化を図ることが挙げ
られる。また別の工夫として、溶出したTOCの影響を
低減するためにこれを除去するのに有効な装置構成を採
用する、一例的に言えば再生型混床式イオン交換装置等
の前段にほう素除去塔を配置するという装置構成を採用
することが有利になると考えられる。
In view of the above, when the above boron-selective ion exchange resin is used, a device for operating the apparatus in which the TOC elution is not affected, for example, to reduce the elution of TOC known for general ion exchange resins. To reduce TOC elution by treatment, specifically, washing by passing an acid solution and an alkali solution alternately through the boron removal tower before operation of the apparatus, or by passing hot water through the apparatus. No. Further, as another contrivance, an apparatus configuration effective for removing the eluted TOC is adopted to reduce the influence of the eluted TOC. For example, boron is removed before the regenerative mixed-bed ion exchange apparatus. It would be advantageous to employ an arrangement of towers.

【0015】しかし、一般的イオン交換樹脂について知
られる上記,のTOC溶出低減法による効果は、ほ
う素選択性イオン交換樹脂においてはそれほど高くな
く、したがってある程度の効果を得るには前処理に長時
間を要することになってその負担が必ずしも小さくない
という問題がある。またほう素除去塔の配置を上述の配
置とすることで最終的に製造される超純水中のTOCを
低減させることはできるが、この場合でもTOC溶出が
再生型混床式イオン交換装置の再生サイクル期間への影
響を無視できないとか、装置構成のレイアウトが制約さ
れるなどの影響が避けられないという問題が残る。
However, the effect of the above-mentioned TOC elution reduction method, which is known for general ion exchange resins, is not so high for boron-selective ion exchange resins. Therefore, there is a problem that the burden is not always small. The TOC in the ultrapure water finally produced can be reduced by setting the arrangement of the boron removal tower to the above-described arrangement. There remains a problem that the influence on the reproduction cycle period cannot be neglected, and the influence that the layout of the device configuration is restricted is unavoidable.

【0016】本発明者等は、以上のような純水,超純水
という極めて高純度な水を製造するにあたって、更にこ
れに含まれるほう素を除去するために有用なほう素選択
性イオン交換樹脂を用いる場合の問題、すなわちこのほ
う素選択性イオン交換樹脂からTOCが溶出することの
影響をより有利に解決できる方法につき研究、開発を重
ね、本発明を完成するに至ったものである。
The present inventors have found that the boron-selective ion exchange useful for removing the boron contained therein in producing extremely high-purity water such as pure water and ultrapure water as described above. The present inventors have conducted research and development on a method for more advantageously solving the problem of using a resin, that is, the effect of elution of TOC from the boron-selective ion exchange resin, and have completed the present invention.

【0017】すなわち本発明の目的の一つは、ほう素濃
度が低減されかつTOC濃度も十分に小さい純水又は超
純水を製造するのに有効な方法及び装置を提供するとこ
ろにある。
That is, an object of the present invention is to provide a method and an apparatus effective for producing pure water or ultrapure water having a reduced boron concentration and a sufficiently low TOC concentration.

【0018】本発明の他の目的は、純水又は超純水製造
装置に組み込まれて使用されるほう素選択性イオン交換
樹脂からのTOC溶出量をできるだけ少なくするところ
にある。
Another object of the present invention is to minimize the amount of TOC eluted from a boron-selective ion-exchange resin used in a device for producing pure water or ultrapure water.

【0019】本発明の更に他の目的は、純水又は超純水
の製造装置内に設置するほう素除去塔に配置上の制約を
少なくできるように工夫された純水又は超純水の製造方
法及び装置を提供するところにある。
Still another object of the present invention is to produce pure water or ultrapure water which is devised so as to reduce restrictions on the arrangement of a boron removal tower installed in a pure water or ultrapure water production apparatus. Methods and apparatus are provided.

【0020】本発明の別の目的は、ほう素選択性イオン
交換樹脂からのTOC溶出の低減化を図る調製のための
前処理を容易かつ短時間に行なうことができるほう素選
択性イオン交換樹脂の調製方法を提供するところにあ
る。
Another object of the present invention is to provide a boron-selective ion-exchange resin which can easily and quickly perform a pretreatment for preparation for reducing TOC elution from the boron-selective ion-exchange resin. To provide a method for preparing

【0021】[0021]

【課題を解決するための手段】上記の目的を達成する本
発明の特徴の一つは、被処理水である純水又は超純水を
強塩基***換基及び弱塩基性であるグルカミン交換基を
有するほう素選択性イオン交換樹脂に接触させて、該被
処理水中のほう素イオンを除去した純水又は超純水を製
造する方法において、上記ほう素選択性イオン交換樹脂
の弱塩基***換基を遊離塩基形に調製しかつ強塩基***
換基を塩形に調製して用いるようにしたところにある。
One of the features of the present invention that achieves the above object is that pure water or ultrapure water to be treated is converted into a strongly basic exchange group and a weakly basic glucamine exchange group. Contacting with a boron-selective ion-exchange resin having water to remove the boron ions in the water to be treated to produce pure water or ultrapure water. The groups are prepared in free base form and the strongly basic exchange groups are prepared in salt form for use.

【0022】本発明において上記構成を採用した理由は
次のことによる。すなわち、グルカミン交換基を有する
ほう素選択性イオン交換樹脂に関するカタログやその他
の刊行物によれば、当該ほう素選択性イオン交換樹脂の
交換基は弱塩基***換基であるグルカミン交換基しか記
載されていないが、本発明者等は、純水又は超純水中に
含まれるほう素を除去する研究の過程において、上記ほ
う素選択性イオン交換樹脂には、強塩基***換基が混在
して含まれていて、TOCの溶出は主に、強塩基***換
基が一般的なイオン交換樹脂の再生処理の結果として水
酸化物イオン形となっていることに原因するという知見
の得られたことに注目した。そこで、強塩基***換基が
水酸化物イオン形である場合に比べて物理的な安定度の
高いイオン形とすることでTOC溶出を低減できると考
え、例えばほう素選択性イオン交換樹脂を塩酸や硫酸で
処理してCl形,SO4 形の塩形にする再生処理を行な
い、確認のために下記の通水試験を行なったところ、明
らかにTOCの溶出が低減することが確認された。
The reason for adopting the above configuration in the present invention is as follows. That is, according to catalogs and other publications on boron-selective ion exchange resins having a glucamine exchange group, the exchange groups of the boron-selective ion exchange resin are described only as glucamine exchange groups that are weakly basic exchange groups. Although not present, the present inventors, in the course of research to remove boron contained in pure water or ultrapure water, in the boron-selective ion exchange resin, strongly basic exchange groups are mixed. It was found that the elution of TOC was mainly due to the strong basic exchange groups being in the hydroxide ion form as a result of regeneration treatment of general ion exchange resins. We paid attention to. Therefore, it is considered that TOC elution can be reduced by using an ion form having a higher physical stability as compared with a case where the strongly basic exchange group is a hydroxide ion form. Regeneration treatment was performed to form Cl and SO 4 salt forms by treatment with sulfuric acid or sulfuric acid, and the following water flow test was performed for confirmation. As a result, it was confirmed that TOC elution was clearly reduced.

【0023】しかしながら、本発明が対象とする純水,
超純水という高純度な用水を製造する場合にあっては、
上記再生処理法を単純に採用しても必ずしも有利とは言
えないこともまた判明した。すなわち、上記処理を行な
うと、同様に塩形となった弱塩基***換基から加水分解
により多量のイオンリークを招く(例えば、抵抗率が
0.05MΩ・cm以下になる)結果となることが上述
の通水試験により明らかとなったからである。原水によ
り持ち込まれるイオン以外に系内の装置から多量のイオ
ンを新たに生じさせることは、イオン除去のための種々
の装置を組み込んで構成されている純水,超純水製造用
の装置において適当でないことは当然である。
However, pure water to which the present invention is directed,
When producing high-purity water called ultrapure water,
It has also been found that the simple adoption of the above regeneration process is not always advantageous. That is, when the above treatment is performed, a large amount of ion leak is caused by the hydrolysis from the weakly basic exchange group which is also in a salt form (for example, the resistivity becomes 0.05 MΩ · cm or less). This is because it became clear from the above-mentioned water flow test. Generating a large amount of ions newly from the equipment in the system other than the ions brought in by the raw water is suitable for an apparatus for producing pure water or ultrapure water which is constructed by incorporating various apparatuses for ion removal. Not surprisingly.

【0024】以上のようないくつかの知見に基づき、本
発明者は、強塩基***換基からのTOC溶出を低減させ
ながら、同時に弱塩基***換基からの加水分解による多
量のイオンリークを招くことがないようにした上記構成
の本発明をなすに至ったのである。
Based on the above findings, the inventor of the present invention has found that while reducing the TOC elution from a strongly basic exchange group, it also causes a large amount of ion leak due to hydrolysis from a weakly basic exchange group. Thus, the present invention having the above-described configuration in which no problem occurs is achieved.

【0025】以下本発明をより具体的に説明すると、上
記ほう素選択性イオン交換樹脂として用いられるものと
しては、例えば特開昭58−174241号で説明され
る樹脂等を用いることができ、より具体的には上述した
公知のアンバーライトIRA−743Tを挙げることが
できる。
The present invention will be described in more detail below. As the boron-selective ion-exchange resin, for example, the resins described in JP-A-58-174241 can be used. Specifically, the above-mentioned known Amberlite IRA-743T can be mentioned.

【0026】また上記において、ほう素選択性イオン交
換樹脂に含まれる弱塩基***換基を「遊離塩基形に調
製」というのは、グルカミン交換基が結合している三級
アミンを遊離塩基形に調製することを指し、例えば、ほ
う素選択性イオン交換樹脂に水酸化ナトリウム溶液を接
触させた後、通水に供する前に塩酸,硫酸等の鉱酸に接
触させないことをいう。なお弱塩基***換基は中性塩を
分解する能力がないので水酸化ナトリウム溶液を接触さ
せた後に塩化ナトリウム等の中性塩を接触させても、弱
塩基***換基は遊離塩基形に保つことができる。
In the above, the term “preparing a weakly basic exchange group contained in a boron-selective ion exchange resin in a free base form” means that a tertiary amine to which a glucamine exchange group is bonded is converted into a free base form. Preparation means that, for example, after a sodium hydroxide solution is brought into contact with a boron-selective ion exchange resin, it is not brought into contact with a mineral acid such as hydrochloric acid or sulfuric acid before being supplied with water. Since the weakly basic exchange group does not have the ability to decompose a neutral salt, the weakly basic exchange group is kept in a free base form even when a neutral salt such as sodium chloride is brought into contact after contact with a sodium hydroxide solution. be able to.

【0027】また上記において、ほう素選択性イオン交
換樹脂に含まれる強塩基***換基を「塩形に調製」とい
うのは、該強塩基***換基を炭酸水素イオン形,炭酸イ
オン形,塩化物イオン形,硫酸イオン形にすることをい
い、ほう素選択性イオン交換樹脂の弱塩基***換基を遊
離塩基形にし、かつ強塩基***換基を塩形に調製するた
めの手法は、後で詳しく説明する。
In the above description, the term “prepared into a salt form” for a strongly basic exchange group contained in a boron-selective ion exchange resin means that the strongly basic exchange group is a hydrogen carbonate ion form, a carbonate ion form, The method of preparing a weakly basic exchange group of a boron-selective ion exchange resin into a free base form and a method of preparing a strongly basic exchange group into a salt form are described later. This will be described in detail.

【0028】本発明が対象とする被処理水である「純
水」あるいは「超純水」というのは、これらの用語で示
されるものが一般に必ずしも明確に定義されているもの
ではなくまた両者の違いも明確なものではないが、本発
明においては、原水中に含まれる懸濁物質を除去するた
めの除濁手段を有する前処理手段と、この前処理手段か
らの処理水に含まれるイオン及びイオン性物質を除去す
る脱塩手段及び膜処理手段とにより水質を高純度にした
水を言う。これらの脱塩手段及び膜処理手段等の他に紫
外線照射装置,脱気装置等を必要に応じて更に付帯設備
したものであっても当然よいし、装置の配置関係,順序
等で限定されるものでもない。また、本発明の上記「被
処理水」には、上記前処理,脱塩処理,膜処理を経た後
であれば、種々の構成の純水,超純水製造プロセスの途
中段階の水であってもこれが含まれることは当然であ
る。
The term “pure water” or “ultrapure water”, which is the target water to be treated in the present invention, generally does not necessarily mean that the terms indicated by these terms are clearly defined. Although the difference is not clear, in the present invention, the pretreatment means having a turbidity means for removing suspended substances contained in raw water, the ions contained in the treated water from the pretreatment means and It refers to water whose water quality has been made high by a desalting means and a membrane treatment means for removing ionic substances. In addition to the desalting means and the membrane treatment means, etc., an ultraviolet irradiation device, a degassing device, etc. may be further provided as necessary, as a matter of course, or the arrangement and order of the devices are limited. Not even a thing. In addition, the “water to be treated” of the present invention may be water in the middle of the process of producing pure water or ultrapure water having various configurations as long as it has undergone the pretreatment, desalination, and membrane treatment. However, this is of course included.

【0029】上記のほう素選択性イオン交換樹脂の弱塩
基***換基を遊離塩基形に調製しかつ強塩基***換基を
塩形に調製するための方法としては、該ほう素選択性イ
オン交換樹脂の再生処理(新品樹脂を超純水製造装置等
に組み込んで稼動させる前に行なう前処理の場合を含
む)の最終段階で接触させる水酸化ナトリウム溶液に続
いて、炭酸水素ナトリウム溶液を接触させる操作を行な
う方法を挙げることができ、これにより弱塩基***換基
を遊離塩基形に調製し、かつ強塩基***換基は炭酸水素
イオン形に調製される。
The method for preparing the weakly basic exchange group of the above-mentioned boron-selective ion exchange resin into a free base form and preparing the strongly basic exchange group into a salt form includes the above-mentioned boron-selective ion exchange resin. The sodium hydroxide solution to be brought into contact at the final stage of the resin regeneration treatment (including the case of pretreatment before the new resin is installed in the ultrapure water production device or the like before operation), followed by the sodium hydrogen carbonate solution Methods of operation can be mentioned, whereby weakly basic exchange groups are prepared in free base form and strongly basic exchange groups are prepared in bicarbonate ion form.

【0030】また、同様の処理において上記炭酸水素ナ
トリウム溶液に代え炭酸ナトリウム溶液を接触させる操
作を行なうことで強塩基***換基は炭酸イオン形に調製
され、同様に、炭酸水素ナトリウム溶液に代えて塩化ナ
トリウム溶液を接触させる操作を行なうことで強塩基性
交換基は塩化物イオン形に調製され、硫酸ナトリウム溶
液を接触させる操作を行なうことで強塩基***換基は硫
酸イオン形に調製される。前述した如く、弱塩基***換
基は中性塩分解能力を有していないので、遊離塩基形に
なっている交換基に炭酸水素ナトリウム,炭酸ナトリウ
ム,塩化ナトリウム,硫酸ナトリウム等の溶液が接触し
てもそのイオン形は変化しない。
In the same treatment, a strong basic exchange group is prepared in the form of a carbonate ion by performing an operation of bringing the sodium bicarbonate solution into contact with the above-mentioned sodium bicarbonate solution, and similarly, replacing the sodium bicarbonate solution with the sodium bicarbonate solution The strongly basic exchange group is prepared in a chloride ion form by performing an operation of contacting with a sodium chloride solution, and the strongly basic exchange group is prepared in a sulfate ion form by performing an operation of contacting with a sodium sulfate solution. As described above, since a weakly basic exchange group does not have a neutral salt-decomposing ability, a solution of sodium hydrogen carbonate, sodium carbonate, sodium chloride, sodium sulfate, etc. comes into contact with the exchange group in a free base form. However, its ionic form does not change.

【0031】本発明のほう素選択性イオン交換樹脂を上
記イオン形とするには、上記のように再生処理の最終段
階において水酸化ナトリウム溶液に接触させることと、
これに続いて、炭酸水素ナトリウム溶液,炭酸ナトリウ
ム溶液,塩化ナトリウム溶液,硫酸ナトリウム溶液のい
ずれかの溶液に接触させることを行なえばよいものであ
り、これらの操作,処理を損なわない限り他の操作,処
理を併せて行うこともできる。例えば上記の水酸化ナト
リウム溶液に接触させる操作の前に、ほう素選択性イオ
ン交換樹脂を硫酸や塩酸等の酸水溶液に接触させるよう
にしてもよく、このようにすれば吸着したほう素をより
強力に脱着できるという利点が得られる。
In order to make the boron-selective ion exchange resin of the present invention into the above-mentioned ion form, the boron-selective resin is brought into contact with a sodium hydroxide solution at the final stage of the regeneration treatment as described above;
Subsequent to this, it is only necessary to make contact with any one of a sodium hydrogencarbonate solution, a sodium carbonate solution, a sodium chloride solution, and a sodium sulfate solution. , Processing can be performed together. For example, before the operation of contacting with the above-mentioned sodium hydroxide solution, the boron-selective ion exchange resin may be brought into contact with an aqueous acid solution such as sulfuric acid or hydrochloric acid. The advantage of being able to be strongly detached is obtained.

【0032】通水試験 強塩基***換基のイオン形を下記〜、及び比較のた
めにのように調製したほう素選択性イオン交換樹脂
(アンバーライトIRA−743T)をそれぞれ充填し
た各樹脂塔に、超純水(抵抗率;18.2MΩ・cm,
TOC;1.0ppb)を通水して、樹脂塔出口水のT
OC増加分(ΔTOC)と抵抗率を測定し、表1に示し
た。
Water flow test The ionic form of the strongly basic exchange group was determined as follows: and for each resin tower filled with a boron-selective ion exchange resin (Amberlite IRA-743T) prepared for comparison. , Ultrapure water (resistivity; 18.2 MΩ · cm,
TOC; 1.0 ppb), and the T
The OC increase (ΔTOC) and the resistivity were measured and are shown in Table 1.

【0033】:強塩基***換基を炭酸水素イオン形と
するために、1M水酸化ナトリウム溶液をほう素選択性
イオン交換樹脂に対して通水速度SV4で樹脂体積の8
倍量通液した後、超純水で20分間洗浄し、1M炭酸水
素ナトリウム溶液を通水速度SV4で樹脂体積の8倍量
通液し、24時間超純水で洗浄した。
In order to convert the strongly basic exchange group into a bicarbonate ion form, 1 M sodium hydroxide solution was passed through a boron-selective ion exchange resin at a water flow rate SV4 of 8 times the resin volume.
After passing twice the amount, the resin was washed with ultrapure water for 20 minutes, and a 1M sodium hydrogencarbonate solution was passed at an amount of 8 times the resin volume at a water flow rate of SV4, and washed with ultrapure water for 24 hours.

【0034】:強塩基***換基を炭酸イオン形とする
ために、1M水酸化ナトリウム溶液をほう素選択性イオ
ン交換樹脂に対して通水速度SV4で樹脂体積の8倍量
通液した後、超純水で20分間洗浄し、1M炭酸ナトリ
ウム溶液を通水速度SV4で樹脂体積の8倍量通液し、
24時間超純水で洗浄した。
In order to convert the strong basic exchange group into a carbonate ion form, a 1 M sodium hydroxide solution was passed through the boron-selective ion exchange resin at a flow rate of SV4 by an amount 8 times the resin volume. Washed with ultrapure water for 20 minutes, passed a 1 M sodium carbonate solution at a water flow rate of SV4, 8 times the resin volume,
Washed with ultrapure water for 24 hours.

【0035】:強塩基***換基を塩化物イオン形とす
るために、1M水酸化ナトリウム溶液をほう素選択性イ
オン交換樹脂に対して通水速度SV4で樹脂体積の8倍
量通液した後、超純水で20分間洗浄し、1M塩化ナト
リウム溶液を通水速度SV4で樹脂体積の8倍量通液
し、24時間超純水で洗浄した。
After passing a 1 M sodium hydroxide solution through a boron-selective ion exchange resin at a water flow rate of SV4, 8 times the resin volume in order to convert the strongly basic exchange group into a chloride ion form. After washing with ultrapure water for 20 minutes, a 1M sodium chloride solution was passed at a flow rate SV4 of 8 times the resin volume, and washed with ultrapure water for 24 hours.

【0036】:強塩基***換基を硫酸イオン形とする
ために、1M水酸化ナトリウム溶液をほう素選択性イオ
ン交換樹脂に対して通水速度SV4で樹脂体積の8倍量
通液した後、超純水で20分間洗浄し、1M硫酸ナトリ
ウム溶液を通水速度SV4で樹脂体積の8倍量通液し、
24時間超純水で洗浄した。
In order to convert the strongly basic exchange group into a sulfate ion form, a 1 M sodium hydroxide solution was passed through the boron-selective ion exchange resin at a flow rate of SV4 by an amount 8 times the resin volume. After washing with ultrapure water for 20 minutes, a 1 M sodium sulfate solution was passed at a flow rate SV4 of 8 times the resin volume,
Washed with ultrapure water for 24 hours.

【0037】なおこれらの〜の操作を行なうことに
よって、弱塩基***換基は遊離塩基形に調製された。
By performing the above operations, the weakly basic exchange group was prepared in a free base form.

【0038】:弱塩基***換基を遊離塩基系にすると
共に強塩基***換基を水酸化物イオン形とするために、
1M水酸化ナトリウム溶液をほう素選択性イオン交換樹
脂に対して通水速度SV4で樹脂体積の8倍量通液した
後、24時間超純水で洗浄した。
In order to make the weakly basic exchange group a free base system and to make the strongly basic exchange group a hydroxide ion form,
After a 1 M sodium hydroxide solution was passed through the boron-selective ion exchange resin at a water flow rate of SV4 by an amount 8 times the resin volume, the resultant was washed with ultrapure water for 24 hours.

【0039】[0039]

【表1】 [Table 1]

【0040】この表1の結果から、上記の弱塩基***
換基が遊離塩基形で、かつ強塩基***換基が水酸化物イ
オン形となっている場合にはΔTOCが大きい値を示し
ているのに比べて、〜の操作で弱塩基***換基を遊
離塩基形に強塩基***換基を塩形に調製した場合は、Δ
TOCは1/4〜1/10程度と大幅に減少した。
From the results in Table 1, ΔTOC shows a large value when the weakly basic exchange group is in a free base form and the strongly basic exchange group is in a hydroxide ion form. When the weakly basic exchange group was prepared in the free base form and the strongly basic exchange group was prepared in the salt form by the operation of Δ, Δ
The TOC was greatly reduced to about 1/4 to 1/10.

【0041】なお、ほう素選択性イオン交換樹脂を単に
塩酸や硫酸で処理(超純水による洗浄も実施)して、強
塩基***換基及び弱塩基***換基の双方のイオン形をC
l形,SO4 形の塩形にした場合についても同じ通水試
験を行なったところ、ΔTOCは上記〜と同等であ
ったが、抵抗率が0.05MΩ・cm以下となるような
塩形の弱塩基***換基の加水分解に起因する多量のイオ
ンリークを招いた。
The boron-selective ion exchange resin is simply treated with hydrochloric acid or sulfuric acid (washing with ultrapure water is also performed) to convert both the strongly basic exchange group and the weakly basic exchange group to C
When the same water permeability test was performed for the l-type and SO 4 -type salt forms, ΔTOC was equal to the above, but the salt form was such that the resistivity was 0.05 MΩ · cm or less. A large amount of ion leak was caused due to hydrolysis of the weakly basic exchange group.

【0042】[0042]

【作用】本発明によれば、ほう素を除去した純水,超純
水という高純度な水の製造を行うために有効に使用され
るほう素選択性イオン交換樹脂を、TOCの溶出が少な
くかつイオンのリークも少ない状態で効果的に使用でき
る。
According to the present invention, a boron-selective ion-exchange resin that is effectively used for producing high-purity water such as pure water from which boron has been removed and ultrapure water has a low TOC elution and It can be used effectively with little ion leakage.

【0043】[0043]

【実施例】以下、本発明を実施例にしたがって更に説明
する。
The present invention will be further described below with reference to examples.

【0044】実施例1 本発明の実施例1の超純水製造装置は、従来技術を説明
するために用いた図1の構成と各装置等の関連構成がそ
のフロー図においては同様のものとして説明される。
Embodiment 1 An ultrapure water production apparatus according to Embodiment 1 of the present invention has the same configuration as that of FIG. Explained.

【0045】すなわち、工業用水等の原水から懸濁物質
と有機物の一部を除去する前処理装置1、ろ過水槽2を
経てこの前処理装置1の処理水に含まれる不純物イオン
を除去する2床3塔式イオン交換装置等からなる脱塩装
置3、脱塩水槽4を経た脱塩装置3からの処理水中に残
留する無機イオン、有機物、微粒子等の不純物等を除去
する逆浸透膜(RO)装置5、RO透過水槽6を経た処
理水中から溶存酸素等の溶存気体を除去する真空脱気装
置7、そして更に残留するイオンを除去する再生型混床
式イオン交換装置8、の以上の各装置により一次純水処
理系が構成されて高純度の一次純水が製造され、この一
次純水は純水貯槽9に貯溜される。
That is, a pretreatment device 1 for removing suspended substances and a part of organic substances from raw water such as industrial water, and a two-bed for removing impurity ions contained in the treated water of the pretreatment device 1 through a filtration water tank 2. A reverse osmosis membrane (RO) for removing impurities such as inorganic ions, organic substances, and fine particles remaining in the treated water from the desalination apparatus 3 through a desalination water tank 4 and a desalination apparatus 3 including a three-tower ion exchange apparatus and the like. Apparatus 5, a vacuum deaerator 7 for removing dissolved gases such as dissolved oxygen from the treated water passing through the RO permeated water tank 6, and a regenerative mixed-bed ion exchanger 8 for further removing remaining ions. Constitutes a primary pure water treatment system to produce high-purity primary pure water, and this primary pure water is stored in a pure water storage tank 9.

【0046】次に純水貯槽9の一次純水は二次純水処理
系に送られ、紫外線酸化装置10での紫外線照射により
純水中の有機物を分解すると共にバクテリアの殺菌が行
なわれた後、ほう素除去塔11でほう素の除去が行なわ
れ、カートリッジポリッシャ12で更なるイオンの除
去、次いで限外ろ過膜(UF)装置13で更なる微粒子
の除去を行なった後、上記純水貯槽9に超純水を戻すよ
うに接続された二次純水循環配管15の途中から分岐し
た送水配管を通して使用場所14に超純水を給水する。
Next, the primary pure water in the pure water storage tank 9 is sent to a secondary pure water treatment system, where organic matter in the pure water is decomposed by ultraviolet irradiation in the ultraviolet oxidizer 10 and bacteria are sterilized. Then, boron is removed in the boron removal tower 11, further removal of ions is performed in the cartridge polisher 12, and further removal of fine particles is performed in the ultrafiltration membrane (UF) device 13. Ultrapure water is supplied to the place of use 14 through a water supply pipe branched from the middle of the secondary pure water circulation pipe 15 connected so as to return the ultrapure water to 9.

【0047】超純水製造試験 試験例1 以上の装置を用い、ほう素除去塔11に、ほう素選択性
イオン交換樹脂(アンバーライトIRA−743T:ロ
ームアンドハース社製)を上述した〜の処理を行な
ったものを夫々充填し、該ほう素除去塔11に通水速度
SV50(以下において同じ)で通水して超純水の製造
を行なった。そして、使用場所14においてほう素濃
度、TOCを測定し、結果を下記表2に示した。なおほ
う素濃度はICP−MS(横河電機(株)社製)により
測定し、TOCはオルガドック(オルガノ(株)社製)
により測定した(以下において同じ)。
Ultrapure Water Production Test Test Example 1 Using the above apparatus, a boron-selective ion exchange resin (Amberlite IRA-743T: manufactured by Rohm and Haas Co.) was applied to the boron removal tower 11 in the above-mentioned processes. , And then passed through the boron removal tower 11 at a flow rate of SV50 (the same applies hereinafter) to produce ultrapure water. Then, the boron concentration and TOC were measured at the place of use 14, and the results are shown in Table 2 below. The boron concentration is measured by ICP-MS (manufactured by Yokogawa Electric Corporation), and the TOC is determined by an organ dock (manufactured by Organo Corporation).
(The same applies hereinafter).

【0048】試験例2 上述したの処理を行なって強塩基***換基のイオン形
を水酸化物形としたほう素選択性イオン交換樹脂を充填
したほう素除去塔11を設けた装置により超純水の製造
を行ない、使用場所14においてのほう素濃度、TOC
を測定した。その結果を表2に示した。 試験例3 ほう素選択性イオン交換樹脂を使用しない場合として
ほう素除去塔11を除いた以外は図1と全く同じ構成の
図3に示す超純水製造装置(図1装置のほう素除去塔1
1にバイパス路を設けたものと同じ)を構成して、同じ
条件で超純水の製造を行ない、使用場所14においての
ほう素濃度、TOCを測定した。その結果ほう素濃度は
0.02〜1.5ppb、TOCは1.0ppbであっ
た。
Test Example 2 The above-described treatment was carried out, and the ultrapure water was purified using an apparatus provided with a boron removal column 11 packed with a boron-selective ion-exchange resin in which the ionic form of the strongly basic exchange group was a hydroxide form. Water production, boron concentration at the place of use 14, TOC
Was measured. The results are shown in Table 2 . Test Example 3 As a case where a boron selective ion exchange resin is not used,
The ultrapure water production apparatus shown in FIG. 3 having exactly the same configuration as that of FIG. 1 except that the boron removal tower 11 is removed (the boron removal tower 1 of the apparatus shown in FIG. 1).
1 was provided with a bypass passage), ultrapure water was produced under the same conditions, and the boron concentration and TOC at the place of use 14 were measured . As a result, the boron concentration
0.02-1.5 ppb, TOC is 1.0 ppb.
Was.

【0049】[0049]

【表2】 [Table 2]

【0050】この表2の結果から、強塩基***換基を塩
形に調製したうちでも、炭酸水素イオン形,炭酸イオン
形に調製した場合に比べて、塩化物イオン形,硫酸イオ
ン形に調製した場合はTOCの溶出がより少ないのでそ
の点からみた有効性は高いことが分かる。
[0050] From the results of Table 2, rainy Chidemo prepare strongly basic exchange groups into salt form, bicarbonate ion form, as compared with the case where the prepared carbonate ion form, a chloride ion form, sulfate ions form In this case, the elution of TOC is smaller, so that the effectiveness in this respect is high.

【0051】しかし、本例の構成ではほう素除去塔11
が設けられているのが二次純水処理系であって、しかも
万一にも、ほう素除去塔からリークする虞れのあるイオ
ン(Cl- ,SO4 2-)の影響を絶対的に忌避すべき要
求のある純水,超純水の製造装置、例えば半導体製造プ
ロセスでの用水製造用としては、TOC溶出低減に関し
効果が若干程度低いものの、上記万一のリークをも絶対
的に避けることができるように、強塩基***換基を炭酸
水素イオン形,炭酸イオン形とする構成を採用すること
が好ましい場合が多い。
However, in the configuration of this embodiment, the boron removal tower 11
Is provided in the secondary pure water treatment system, and the influence of ions (Cl , SO 4 2− ) that may leak from the boron removal tower should be absolutely eliminated. For pure water and ultrapure water production equipment with demands to be avoided, for example, for water production in the semiconductor production process, the effect of reducing TOC elution is somewhat low, but the above-mentioned leak is absolutely avoided. For this reason, it is often preferable to adopt a structure in which the strongly basic exchange group is a bicarbonate ion type or a carbonate ion type.

【0052】なおほう素除去塔11を設けない場合は、
使用場所14のほう素濃度は上述した如く最大1.5p
pbとなる。この理由はカートリッジポリッシャに一度
吸着したほう素イオンが他のイオンによって押し出され
ることによる。
When the boron removal tower 11 is not provided,
The boron concentration at the place of use 14 is 1.5 p at the maximum as described above.
pb. This is because boron ions once adsorbed on the cartridge polisher are pushed out by other ions.

【0053】実施例2 図2に示される本例は、実施例1では紫外線酸化装置1
0とカートリッジポリッシャ12の間にほう素除去塔を
設置していたが、これに代えて一次純水処理系の真空脱
気装置7と再生型混床式イオン交換装置8の間にほう素
除去塔11を設置したことを特徴とする超純水製造装置
を示すものである。それ以外の構成は実施例1と同じで
あるので、同一の装置等に同じ符号を付して詳細な説明
は省略する。
Embodiment 2 The present embodiment shown in FIG.
0 and a cartridge polisher 12, a boron removal tower was installed. Instead, a boron removal tower was provided between the vacuum deaerator 7 of the primary pure water treatment system and the regenerative mixed-bed ion exchanger 8. 1 shows an ultrapure water production apparatus in which a tower 11 is installed. Other configurations are the same as those of the first embodiment, and thus the same reference numerals are given to the same devices and the like, and detailed description is omitted.

【0054】本例の超純水製造装置によれば、実施例1
と同様のほう素除去の効果が得られると共に、ほう素選
択性イオン交換樹脂を充填したほう素除去塔11が一次
純水処理系に設けられ、かつ後段に機能的にTOC除去
能力が高い再生型混床式イオン交換装置8が設けられて
いるので、後述する超純水製造試験の結果からも分かる
ように、実施例1の場合に比べ、強塩基***換基が上記
〜のいずれのイオン形である場合であっても製造さ
れた超純水中に含まれるTOC濃度はより低減されると
いう効果が得られる。
According to the ultrapure water production apparatus of the present embodiment, the first embodiment
The same boron removal effect as described above can be obtained, and a boron removal tower 11 filled with a boron-selective ion exchange resin is provided in the primary pure water treatment system, and a regeneration having a functionally high TOC removal ability is provided at a later stage. Since the mixed-bed type ion exchange device 8 is provided, as can be seen from the results of the ultrapure water production test described later, the strongly basic exchange group Even in the case of the form, the effect that the TOC concentration contained in the produced ultrapure water is further reduced can be obtained.

【0055】超純水製造試験 実施例1と同様にして試験例4,5の超純水製造試験を
行なった。なお、ほう素除去塔11を除いた超純水製造
装置は実施例1で説明した図3の装置構成と同じで、試
験結果は試験例3で述べた通りである。
Ultrapure water production test In the same manner as in Example 1, ultrapure water production tests of Test Examples 4 and 5 were conducted. The ultrapure water production apparatus excluding the boron removal tower 11 is the same as the apparatus configuration in FIG. 3 described in Example 1, and the test results are as described in Test Example 3.

【0056】試験例4 図2の超純水製造装置のほう素除去塔11に、上記〜
の処理を行なったアンバーライトIRA−743Tを
夫々充填し、該ほう素除去塔11の通水速度をSV50
(以下において同じ)として超純水の製造を行ない、使
用場所14においてのほう素濃度、TOCを測定して、
結果を下記表3に示した。
Test Example 4 The boron removal tower 11 of the ultrapure water production apparatus shown in FIG.
The Amberlite IRA-743T, which has been subjected to the treatment described above, is filled, and the water flow rate of the boron removal tower 11 is set to SV50.
(The same applies to the following), ultrapure water is produced, and the boron concentration and TOC at the place of use 14 are measured.
The results are shown in Table 3 below.

【0057】試験例5 上述したの処理を行なって強塩基***換基のイオン形
を水酸化物形としたほう素選択性イオン交換樹脂を充填
したほう素除去塔11を設けた超純水製造装置により超
純水の製造を行ない、使用場所14においてのほう素濃
度、TOCを測定して、結果を下記表3に示した。
Test Example 5 Production of ultrapure water provided with a boron removal column 11 packed with a boron selective ion exchange resin in which the ionic form of the strongly basic exchange group was changed to the hydroxide form by performing the above-described treatment. Ultrapure water was produced by the apparatus, and the boron concentration and TOC at the place of use 14 were measured. The results are shown in Table 3 below.

【0058】[0058]

【表3】 [Table 3]

【0059】上述実施例1でも説明したように、またこ
の表3の結果からも明らかであるように、強塩基***換
基は、炭酸水素イオン形,炭酸イオン形とされた場合に
比べて塩化物イオン形,硫酸イオン形とされた場合にT
OCの溶出がより少ないことが分かる。
As explained in Example 1 above and as is clear from the results in Table 3, the strong basic exchange group is more chlorinated than in the case of the hydrogen carbonate ion form or the carbonate ion form. T when the product ion form and sulfate ion form
It can be seen that the elution of OC is less.

【0060】そして、上記実施例1の構成では、用途に
よって(Cl- ,SO4 2-)の万一のリークを考慮すべ
き事情のあることを説明したが、本例の構成にあって
は、ほう素除去塔11の後段に配置されている再生型混
床式イオン交換装置8によって、除去すべきイオン負荷
のレベルからすれば該ほう素除去塔から万一にも溶出す
ることがあってもそれにより増加するイオン負荷量は殆
ど無視できる程度であるから、むしろTOCの溶出低減
により有効な塩化物イオン形,硫酸イオン形に強塩基性
交換基を調製して超純水等の製造を行うことが好まし
い。
[0060] In the configuration of Example 1, some applications (Cl -, SO 4 2-) has been described that a situation should be considered unlikely event of a leak in, in the configuration of this embodiment Due to the level of the ion load to be removed, the boron may be eluted from the boron removal tower by the regenerative mixed-bed ion exchange device 8 disposed downstream of the boron removal tower 11. However, since the ion load increased by this is almost negligible, the production of ultrapure water or the like can be achieved by preparing a strong basic exchange group into a chloride ion form or a sulfate ion form which is more effective by reducing the elution of TOC. It is preferred to do so.

【0061】[0061]

【発明の効果】本発明によれば、ほう素濃度を十分に低
下させた純水や超純水を製造することができ、特に、半
導体製造分野やその関連分野において有効なほう素濃度
を十分に低減した各種用水を供給できるという効果があ
る。
According to the present invention, it is possible to produce pure water or ultrapure water in which the boron concentration is sufficiently reduced. There is an effect that it is possible to supply various types of water for use.

【0062】また本発明によれば、純水,超純水という
極めて高純度な水を製造する際にこれに含まれるほう素
をほう素選択性イオン交換樹脂を用いて除去するにあた
り、このほう素選択性イオン交換樹脂に含まれる強塩基
***換基を塩形とすることで、TOC溶出量を可及的に
少なくでき、したがって、ほう素が除去されかつTOC
濃度も十分に小さい純水又は超純水を製造できるという
効果が得られる。
Further, according to the present invention, when extremely high purity water such as pure water or ultrapure water is produced, boron contained in the water is removed by using a boron selective ion exchange resin. By converting the strong basic exchange group contained in the boron-selective ion exchange resin into a salt form, the elution amount of TOC can be reduced as much as possible, so that boron is removed and TOC is eliminated.
The effect is obtained that pure water or ultrapure water having a sufficiently low concentration can be produced.

【0063】また本発明によれば、ほう素選択性イオン
交換樹脂からのTOCの溶出が少ないだけでなく、弱塩
基***換基を遊離塩基形としたので、この弱塩基***換
基が塩形となっている場合に生ずる加水分解によるイオ
ンリークがないという効果が得られる。従って、例えば
純水又は超純水製造装置内のほう素除去塔の配置につい
ての制約が軽減されて設計の自由度が増すという効果が
併せて得られる。
According to the present invention, not only is the elution of TOC from the boron-selective ion exchange resin small, but also the weakly basic exchange group is in the free base form. Has the effect that there is no ion leak due to hydrolysis that occurs when Therefore, for example, the restriction on the arrangement of the boron removal tower in the pure water or ultrapure water production apparatus is reduced, and the effect of increasing the degree of freedom in design is also obtained.

【0064】更に本発明によれば、ほう素選択性イオン
交換樹脂からのTOC溶出量が少なくかつイオンリーク
も少ないので、再生型イオン交換装置の再生サイクルや
非再生型イオン交換装置の交換頻度を増加させることな
く、常に安定してほう素濃度を低く保つことができると
いう効果が得られる。
Further, according to the present invention, since the amount of TOC eluted from the boron-selective ion exchange resin is small and the ion leak is small, the regeneration cycle of the regenerative ion exchange apparatus and the exchange frequency of the non-regenerative ion exchange apparatus can be reduced. The effect is obtained that the boron concentration can always be stably kept low without increasing.

【0065】また更に、ほう素選択性イオン交換樹脂か
らのTOC溶出の低減化やイオンリークの防止を図るた
めに行なうほう素選択性イオン交換樹脂の再生処理操作
を、容易にしかも効率よく行なうことができるという効
果がある。
Further, the operation of regenerating the boron-selective ion-exchange resin in order to reduce the elution of TOC from the boron-selective ion-exchange resin and to prevent ion leakage is performed easily and efficiently. There is an effect that can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の超純水製造装置の構成概要
をフロー図で示した図。
FIG. 1 is a flowchart showing a schematic configuration of an ultrapure water production apparatus according to a first embodiment of the present invention.

【図2】本発明の実施例2の超純水製造装置の構成概要
をフロー図で示した図。
FIG. 2 is a flowchart showing a schematic configuration of an ultrapure water production apparatus according to a second embodiment of the present invention.

【図3】実施例1との比較のために用いた、図1の装置
に比べほう素除去塔を除いた構成の超純水製造装置の概
要をフロー図で示した図。
FIG. 3 is a flowchart showing an outline of an ultrapure water production apparatus having a configuration in which a boron removal tower is removed from the apparatus of FIG. 1 and used for comparison with Example 1.

【符号の説明】[Explanation of symbols]

1・・・前処理装置、2・・・ろ過水槽、3・・・脱塩
装置、4・・・脱塩水槽、5・・・逆浸透膜(RO)装
置、6・・・透過水槽、7・・・真空脱気装置、8・・
・再生型混床式イオン交換装置、9・・・純水貯槽、1
0・・・紫外線酸化装置、11・・・ほう素除去塔、1
2・・・カートリッジポリッシャ、13・・・限外ろ過
膜(UF)装置、14・・・使用場所、15・・・二次
純水循環配管。
DESCRIPTION OF SYMBOLS 1 ... Pre-processing apparatus, 2 ... Filtration water tank, 3 ... Demineralization apparatus, 4 ... Demineralization water tank, 5 ... Reverse osmosis membrane (RO) apparatus, 6 ... Permeate water tank, 7 ... Vacuum deaerator, 8 ...
・ Regeneration-type mixed-bed ion exchanger, 9 ・ ・ ・ Pure water storage tank, 1
0 ... ultraviolet oxidation device, 11 ... boron removal tower, 1
2 ... cartridge polisher, 13 ... ultrafiltration membrane (UF) device, 14 ... place of use, 15 ... secondary pure water circulation pipe.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特公 平4−70948(JP,B2) 特公 平4−1659(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C02F 1/42 B01J 39/00 - 49/02 ────────────────────────────────────────────────── ─── Continued on the front page (56) References JP 4-70948 (JP, B2) JP 4-1659 (JP, B2) (58) Fields surveyed (Int. Cl. 7 , DB name) C02F 1/42 B01J 39/00-49/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被処理水である純水又は超純水を、弱塩
基***換基であるグルカミン交換基及び強塩基***換基
を有するほう素選択性イオン交換樹脂に接触させて該被
処理水中のほう素イオンを除去した純水又は超純水を製
造する方法において、 上記ほう素選択性イオン交換樹脂の弱塩基***換基を遊
離塩基形に調製しかつ強塩基***換基を塩形に調製して
用いることを特徴とするほう素を除去した純水又は超純
水の製造方法。
1. A process according to claim 1, wherein pure water or ultrapure water to be treated is brought into contact with a boron-selective ion exchange resin having a glucamine exchange group and a strongly basic exchange group as weakly basic exchange groups. A method for producing pure water or ultrapure water from which boron ions in water have been removed, wherein the weakly basic exchange group of the boron-selective ion exchange resin is prepared in a free base form and the strongly basic exchange group is in a salt form. And a method for producing pure water or ultrapure water from which boron has been removed.
【請求項2】 請求項1において、強塩基***換基の塩
形が炭酸水素イオン形,炭酸イオン形,塩化物イオン
形,硫酸イオン形のいずれかであるほう素を除去した純
水又は超純水の製造方法。
2. The pure water or ultrapure water according to claim 1, wherein the salt of the strong basic exchange group is any one of a hydrogen carbonate ion form, a carbonate ion form, a chloride ion form and a sulfate ion form. Pure water production method.
【請求項3】 少なくとも原水中に含まれる懸濁物質を
除去する除濁手段を流水系中に有する前処理手段と、少
なくとも該前処理手段からの処理水に含まれるイオン及
びイオン性物質を除去する脱塩手段及び膜処理手段を有
する純水製造装置とを備えた純水又は超純水の製造装置
において、 上記脱塩手段及び/又は膜処理手段の後段に、弱塩基性
交換基を遊離塩基形に調製しかつ強塩基***換基を塩形
に調製したほう素選択性イオン交換樹脂を有するイオン
交換樹脂塔を設け、かつ該イオン交換樹脂塔の後段に強
酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂の混
床塔を設けたことを特徴とするほう素を除去した純水又
は超純水の製造装置。
3. A pretreatment means having a turbidity removing means for removing at least suspended substances contained in raw water in a flowing water system, and removing at least ions and ionic substances contained in treated water from the pretreatment means. A pure water or ultrapure water production apparatus comprising a desalination means and a pure water production apparatus having a membrane treatment means, wherein a weakly basic exchange group is released after the desalination means and / or the membrane treatment means. An ion exchange resin column having a boron-selective ion exchange resin prepared in a base form and a strongly basic exchange group prepared in a salt form is provided, and a strongly acidic cation exchange resin and a strong acid cation exchange resin are provided at a subsequent stage of the ion exchange resin column. An apparatus for producing pure water or ultrapure water from which boron has been removed, comprising a mixed bed tower of a basic anion exchange resin.
JP04313095A 1995-03-02 1995-03-02 Method and apparatus for producing pure water or ultrapure water from which boron has been removed Expired - Lifetime JP3215277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04313095A JP3215277B2 (en) 1995-03-02 1995-03-02 Method and apparatus for producing pure water or ultrapure water from which boron has been removed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04313095A JP3215277B2 (en) 1995-03-02 1995-03-02 Method and apparatus for producing pure water or ultrapure water from which boron has been removed

Publications (2)

Publication Number Publication Date
JPH08238478A JPH08238478A (en) 1996-09-17
JP3215277B2 true JP3215277B2 (en) 2001-10-02

Family

ID=12655272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04313095A Expired - Lifetime JP3215277B2 (en) 1995-03-02 1995-03-02 Method and apparatus for producing pure water or ultrapure water from which boron has been removed

Country Status (1)

Country Link
JP (1) JP3215277B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525635B1 (en) * 2007-11-06 2015-06-03 쿠리타 고교 가부시키가이샤 Process and apparatus for producing ultrapure water, and method and apparatus for cleaning electronic component members

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3426072B2 (en) * 1996-01-17 2003-07-14 オルガノ株式会社 Ultrapure water production equipment
JP5320723B2 (en) * 2007-11-06 2013-10-23 栗田工業株式会社 Ultrapure water manufacturing method and apparatus, and electronic component member cleaning method and apparatus
JP5081690B2 (en) * 2008-03-31 2012-11-28 オルガノ株式会社 Production method of ultra pure water
JP2023127080A (en) * 2022-03-01 2023-09-13 オルガノ株式会社 Ultrapure water production system and ultrapure water production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525635B1 (en) * 2007-11-06 2015-06-03 쿠리타 고교 가부시키가이샤 Process and apparatus for producing ultrapure water, and method and apparatus for cleaning electronic component members

Also Published As

Publication number Publication date
JPH08238478A (en) 1996-09-17

Similar Documents

Publication Publication Date Title
JP3200301B2 (en) Method and apparatus for producing pure or ultrapure water
JP3426072B2 (en) Ultrapure water production equipment
JP4648307B2 (en) Continuous electrodeionization apparatus and method
JP4480061B2 (en) Ultrapure water production apparatus and cleaning method for ultrapure water production and supply system in the apparatus
JP2008272713A (en) Method for producing ultrapure water, and production device therefor
JPH11244853A (en) Production of pure water
JP3646900B2 (en) Apparatus and method for treating boron-containing water
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
TWI808053B (en) Ultrapure water production system and ultrapure water production method
JP2000354729A5 (en)
JP3215277B2 (en) Method and apparatus for producing pure water or ultrapure water from which boron has been removed
JP3200314B2 (en) Organic wastewater treatment equipment
JPS62110795A (en) Device for producing high-purity water
JP3575260B2 (en) Pure water production equipment
TW202140384A (en) Pure water producing method, pure water producing system, ultrapure water producing method and ultrapure water producing system
JPH0649190B2 (en) High-purity water manufacturing equipment
JP3778158B2 (en) Ultrapure water production equipment
JP2009240943A (en) Conditioning method of ion-exchange resin
JP2514929B2 (en) Method for cleaning terminal reverse osmosis membrane device
JPH1080684A (en) Device and method for treating boron-containing water
JPH09253638A (en) Ultrapure water making apparatus
JP6924300B1 (en) Wastewater treatment method, ultrapure water production method and wastewater treatment equipment
JP3966482B2 (en) Method for adjusting specific resistance of ultrapure water and pure water production apparatus using the same
JPH0137997B2 (en)
JP2891790B2 (en) Regeneration method of anion exchange resin

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term