JPH08227709A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JPH08227709A
JPH08227709A JP7032334A JP3233495A JPH08227709A JP H08227709 A JPH08227709 A JP H08227709A JP 7032334 A JP7032334 A JP 7032334A JP 3233495 A JP3233495 A JP 3233495A JP H08227709 A JPH08227709 A JP H08227709A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
heat treatment
pore volume
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7032334A
Other languages
Japanese (ja)
Other versions
JP3540416B2 (en
Inventor
Mitsunori Hara
満紀 原
Keiichi Tsujioku
啓一 辻奥
Minoru Fujimoto
実 藤本
Yuji Yamamoto
祐司 山本
Nobuhiro Nishiguchi
信博 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP03233495A priority Critical patent/JP3540416B2/en
Publication of JPH08227709A publication Critical patent/JPH08227709A/en
Application granted granted Critical
Publication of JP3540416B2 publication Critical patent/JP3540416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To improve continuous charge performance and discharge performance of a nonaqueous electrolytic secondary battery. CONSTITUTION: A nonaqueous electrolytic secondary battery has a negative electrode using lithium as an active material, a positive electrode using a manganese oxide containing lithium and boron as an active material, and a nonaqueous electrolyte comprising a solvent and a solute. The pore volume of the manganese oxide is specified to be not less than 0.040cc/g.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム及びホウ素を
含有したマンガン酸化物を正極活物質とする非水電解液
二次電池における正極の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of a positive electrode in a non-aqueous electrolyte secondary battery using a manganese oxide containing lithium and boron as a positive electrode active material.

【0002】[0002]

【従来の技術】従来、正極活物質として二酸化マンガン
を使用した非水電解液二次電池が研究され、注目されて
いる。
2. Description of the Related Art Conventionally, non-aqueous electrolyte secondary batteries using manganese dioxide as a positive electrode active material have been studied and attracted attention.

【0003】しかしながら、二酸化マンガンを正極活物
質として使用した場合、通常の充電電圧を越える高電圧
を長時間印加し続けると、正極活物質である二酸化マン
ガンが分解して、電池の内部抵抗が上昇するという問題
点があった。
However, when manganese dioxide is used as the positive electrode active material, if a high voltage exceeding the normal charging voltage is continuously applied for a long time, the positive electrode active material manganese dioxide is decomposed and the internal resistance of the battery rises. There was a problem to do.

【0004】この問題点である二酸化マンガンの分解を
防止するために、正極活物質にホウ素(B)を添加する
ことが提案されている。(特願平6−37020号公
報) しかしながら、正極活物質にホウ素を添加すると正極活
物質の分解を防止することに関しては有効であるが、放
電電圧が低下するという新たな問題が生じ、特に高率放
電、低温放電での放電電圧低下が顕著に現れる。
In order to prevent the decomposition of manganese dioxide, which is the problem, it has been proposed to add boron (B) to the positive electrode active material. (Japanese Patent Application No. 6-37020) However, addition of boron to the positive electrode active material is effective in preventing decomposition of the positive electrode active material, but a new problem of a decrease in discharge voltage occurs, which is particularly high. The discharge voltage drops significantly in the rate discharge and the low temperature discharge.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
に二酸化マンガンを主とする正極活物質にホウ素を添加
した場合の高率及び低温放電特性の低下を防止し、優れ
た電池特性を有する非水電解液二次電池を提供すること
を目的とするものである。
DISCLOSURE OF THE INVENTION The present invention prevents the deterioration of high rate and low temperature discharge characteristics when boron is added to the positive electrode active material mainly containing manganese dioxide as described above, and has excellent battery characteristics. An object of the present invention is to provide a non-aqueous electrolyte secondary battery having the same.

【0006】[0006]

【課題を解決するための手段】本発明は、リチウムを活
物質とする負極と、リチウム及びホウ素を含有するマン
ガン酸化物を活物質とする正極と、溶質と溶媒とからな
る非水電解液とを備えた非水電解液二次電池において、
前記マンガン酸化物の空孔体積が0.040cc/g以上で
あることを特徴とする。
The present invention provides a negative electrode having lithium as an active material, a positive electrode having a manganese oxide containing lithium and boron as an active material, and a non-aqueous electrolyte containing a solute and a solvent. In a non-aqueous electrolyte secondary battery equipped with
The manganese oxide has a pore volume of 0.040 cc / g or more.

【0007】又、前記正極におけるマンガンとホウ素の
原子比B/Mnが0.01以上0.20以下であること
が好ましい。
Further, the atomic ratio B / Mn of manganese and boron in the positive electrode is preferably 0.01 or more and 0.20 or less.

【0008】[0008]

【作用】従来、正極活物質にホウ素(B)を添加するこ
とにより、連続充電時の正極活物質の分解を防止(ホウ
素添加による連続充電特性の向上の原因は明らかではな
いが)することができるが、ホウ素添加により、放電電
圧が低下し、特に高率及び低温での放電電圧低下が問題
となっていた。
In the past, by adding boron (B) to the positive electrode active material, it is possible to prevent decomposition of the positive electrode active material during continuous charging (although the cause of improvement of continuous charging characteristics by adding boron is not clear). However, the addition of boron lowers the discharge voltage, and there has been a problem that the discharge voltage is lowered at a high rate and a low temperature.

【0009】この理由としては後述するが、ホウ素添加
によりマンガン酸化物表面の空孔体積が減少し、反応面
積が低下することによるものと考えられる。
The reason for this is considered to be that the addition of boron reduces the void volume on the surface of the manganese oxide and reduces the reaction area, which will be described later.

【0010】本発明では、マンガン酸化物の粒子表面に
おける空孔(反応に関与するような)体積を0.04cc
/g以上にすることにより、ホウ素添加による熱処理後の
空孔体積の減少を抑え、放電電圧の低下を抑制すること
ができる。
In the present invention, the volume of voids (which are involved in the reaction) on the surface of manganese oxide particles is 0.04 cc.
By setting it to be / g or more, it is possible to suppress the decrease in the pore volume after the heat treatment due to the addition of boron and to suppress the decrease in the discharge voltage.

【0011】[0011]

【実施例】【Example】

[実施例1] 〔正極の作製〕水酸化リチウム(LiOH)、酸化ホウ
素(B23)及び電解二酸化マンガン(MnO2)を原
子比Li:B:Mn=0.505:0.01:1.00
となるように混合した後、空気中で、375℃、20時
間で熱処理を行い、リチウム及びホウ素を含有したマン
ガン酸化物粉末を得た。この粉末を正極活物質粉末とす
る。
[Example 1] [Production of positive electrode] Lithium hydroxide (LiOH), boron oxide (B 2 O 3 ) and electrolytic manganese dioxide (MnO 2 ) were used in an atomic ratio of Li: B: Mn = 0.505: 0.01: 1.00
After mixing so as to obtain a manganese oxide powder containing lithium and boron, heat treatment was performed in air at 375 ° C. for 20 hours. This powder is used as a positive electrode active material powder.

【0012】尚、熱処理前の電解二酸化マンガンの空孔
体積と、熱処理後の正極活物質粉末(マンガン酸化物)
の空孔体積は、マイクロメリティクス社製ASAP20
00を使用して、N2吸着時の空孔体積を測定した。そ
れぞれの空孔体積は、0.075(cc/g)、0.071
(cc/g)であった。
The pore volume of electrolytic manganese dioxide before heat treatment and the positive electrode active material powder (manganese oxide) after heat treatment
Micropore volume of ASAP20
00 was used to measure the pore volume during N 2 adsorption. The pore volume of each is 0.075 (cc / g), 0.071
It was (cc / g).

【0013】この正極活物質粉末と、導電剤としてのカ
ーボンブラックと、結着剤としてのフッ素樹脂をそれぞ
れ重量比率で85:10:5で十分混合して、正極合剤
とする。
The positive electrode active material powder, carbon black as a conductive agent, and fluororesin as a binder are sufficiently mixed at a weight ratio of 85: 10: 5 to prepare a positive electrode mixture.

【0014】この正極合剤を円盤状にプレス成形し、真
空中で250℃で2時間乾燥させて正極とした。これを
正極a1とする。
This positive electrode mixture was press-formed into a disk shape and dried in vacuum at 250 ° C. for 2 hours to obtain a positive electrode. This is the positive electrode a1.

【0015】尚、水酸化リチウム(LiOH)の代わり
に、炭酸リチウム(Li2CO3)、酸化リチウム(Li
2O)、硝酸リチウム(LiNO3)を使用しても良い。
Instead of lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ) and lithium oxide (Li
2 O) and lithium nitrate (LiNO 3 ) may be used.

【0016】さらに、酸化ホウ素(B23)の代わり
に、ホウ酸(H3BO3)、メタホウ酸(HBO2)を使
用しても良い。
Further, boric acid (H 3 BO 3 ) or metaboric acid (HBO 2 ) may be used instead of boron oxide (B 2 O 3 ).

【0017】〔負極の作製〕負極として、電気化学的に
作製したリチウム−アルミニウム合金を円盤状に打ち抜
き負極とした。
[Fabrication of Negative Electrode] As the negative electrode, an electrochemically fabricated lithium-aluminum alloy was punched into a disk shape to form a negative electrode.

【0018】〔電解液の調整〕1mol/dm3の濃度になる
ようにLiCF3SO3を溶質として、エチレンカーボネ
ート、ブチレンカーボネート、1,2−ジメトキシエタ
ンの体積比25:25:50である混合溶媒に溶解して
非水電解液を調整した。
[Preparation of Electrolyte Solution] A mixture of ethylene carbonate, butylene carbonate and 1,2-dimethoxyethane in a volume ratio of 25:25:50 using LiCF 3 SO 3 as a solute so as to have a concentration of 1 mol / dm 3. A non-aqueous electrolyte was prepared by dissolving in a solvent.

【0019】尚、溶質として、LiCF3SO3を使用し
たが、LiPF6、LiBF4、LiAsF6、LiCl
4、LiN(CF3SO22から選ばれた少なくとも1
種を使用しても良い。
Although LiCF 3 SO 3 was used as the solute, LiPF 6 , LiBF 4 , LiAsF 6 and LiCl were used.
At least 1 selected from O 4 and LiN (CF 3 SO 2 ) 2
Seeds may be used.

【0020】さらに、溶媒として、プロピレンカーボネ
ート、ジエチルカーボネート、ジメチルカーボネート、
メチルエチルカーボネート、γ−ブチロラクトン、テト
ラヒドロフラン、ジオキソランから選ばれた少なくとも
1種を使用しても良い。
Further, as a solvent, propylene carbonate, diethyl carbonate, dimethyl carbonate,
At least one selected from methyl ethyl carbonate, γ-butyrolactone, tetrahydrofuran and dioxolane may be used.

【0021】〔電池の作製〕図1に本発明の非水電解液
二次電池の断面図を示す。図中1はリチウム−アルミニ
ウム合金からなる負極であり、負極集電体3に負極1が
圧着され、負極缶2の内底面に固着されている。
[Production of Battery] FIG. 1 shows a cross-sectional view of a non-aqueous electrolyte secondary battery of the present invention. In the figure, 1 is a negative electrode made of a lithium-aluminum alloy, and the negative electrode 1 is pressure-bonded to the negative electrode current collector 3 and fixed to the inner bottom surface of the negative electrode can 2.

【0022】4は正極a1であり、正極缶5の内底面に
圧接された状態にある。6はポリプロピレン製セパレー
タであり、負極1と正極4との間に介挿されている。正
極缶5の周縁端部は、絶縁ガスケット7を介して、内側
にかしめ固定されている。
Reference numeral 4 denotes a positive electrode a1, which is in pressure contact with the inner bottom surface of the positive electrode can 5. A polypropylene separator 6 is interposed between the negative electrode 1 and the positive electrode 4. The peripheral edge of the positive electrode can 5 is caulked and fixed to the inside via an insulating gasket 7.

【0023】上記のようにして作製した電池を本発明電
池A1とする。本発明電池A1の寸法は、直径24m
m、高さ3mmである。
The battery manufactured as described above is referred to as Battery A1 of the invention. The battery A1 of the present invention has a diameter of 24 m.
m, height 3 mm.

【0024】[実施例2]正極活物質粉末として、水酸
化リチウム(LiOH)、酸化ホウ素(B23)及び電
解二酸化マンガン(MnO2)を原子比Li:B:Mn
=0.515:0.03:1.00となるように混合す
る以外は、実施例1と同様にして、正極a2を作製し
た。
Example 2 As the positive electrode active material powder, lithium hydroxide (LiOH), boron oxide (B 2 O 3 ) and electrolytic manganese dioxide (MnO 2 ) were used in the atomic ratio Li: B: Mn.
A positive electrode a2 was produced in the same manner as in Example 1 except that the mixing was performed so that the ratio was 0.515: 0.03: 1.00.

【0025】尚、熱処理前の電解二酸化マンガンの空孔
体積と、熱処理後の正極活物質粉末(マンガン酸化物)
の空孔体積は、それぞれ、0.075(cc/g)、0.0
70(cc/g)であった。
The pore volume of electrolytic manganese dioxide before heat treatment and the positive electrode active material powder (manganese oxide) after heat treatment
Pore volume of 0.075 (cc / g), 0.0
It was 70 (cc / g).

【0026】この正極a2を使用する以外は、実施例1
と同様にして、本発明電池A2を作製した。
Example 1 except that this positive electrode a2 was used
A battery A2 of the invention was produced in the same manner as in.

【0027】[実施例3]正極活物質粉末として、水酸
化リチウム(LiOH)、酸化ホウ素(B23)及び電
解二酸化マンガン(MnO2)を原子比Li:B:Mn
=0.525:0.05:1.00となるように混合す
る以外は、実施例1と同様にして、正極a3を作製し
た。
[Example 3] Lithium hydroxide (LiOH), boron oxide (B 2 O 3 ) and electrolytic manganese dioxide (MnO 2 ) were used as the positive electrode active material powder in the atomic ratio Li: B: Mn.
A positive electrode a3 was produced in the same manner as in Example 1 except that the mixture was carried out so that the ratio was 0.525: 0.05: 1.00.

【0028】尚、熱処理前の電解二酸化マンガンの空孔
体積と、熱処理後の正極活物質粉末(マンガン酸化物)
の空孔体積は、それぞれ、0.075(cc/g)、0.0
70(cc/g)であった。
The void volume of electrolytic manganese dioxide before heat treatment and the positive electrode active material powder (manganese oxide) after heat treatment
Pore volume of 0.075 (cc / g), 0.0
It was 70 (cc / g).

【0029】この正極a3を使用する以外は、実施例1
と同様にして、本発明電池A3を作製した。
Example 1 except that this positive electrode a3 was used
Battery A3 of the invention was produced in the same manner as in.

【0030】[実施例4]正極活物質粉末として、水酸
化リチウム(LiOH)、酸化ホウ素(B23)及び電
解二酸化マンガン(MnO2)を原子比Li:B:Mn
=0.550:0.10:1.00となるように混合す
る以外は、実施例1と同様にして、正極a4を作製し
た。
[Example 4] As the positive electrode active material powder, lithium hydroxide (LiOH), boron oxide (B 2 O 3 ) and electrolytic manganese dioxide (MnO 2 ) were used in an atomic ratio of Li: B: Mn.
A positive electrode a4 was produced in the same manner as in Example 1 except that the mixing was performed so that the ratio was 0.550: 0.10: 1.00.

【0031】尚、熱処理前の電解二酸化マンガンの空孔
体積と、熱処理後の正極活物質粉末(マンガン酸化物)
の空孔体積は、それぞれ、0.075(cc/g)、0.0
69(cc/g)であった。
The pore volume of electrolytic manganese dioxide before heat treatment and the positive electrode active material powder (manganese oxide) after heat treatment
Pore volume of 0.075 (cc / g), 0.0
It was 69 (cc / g).

【0032】この正極a4を使用する以外は、実施例1
と同様にして、本発明電池A4を作製した。
Example 1 except that this positive electrode a4 was used
Battery A4 of the invention was produced in the same manner as in.

【0033】[実施例5]正極活物質粉末として、水酸
化リチウム(LiOH)、酸化ホウ素(B23)及び電
解二酸化マンガン(MnO2)を原子比Li:B:Mn
=0.600:0.20:1.00となるように混合す
る以外は、実施例1と同様にして、正極a5を作製し
た。
Example 5 Lithium hydroxide (LiOH), boron oxide (B 2 O 3 ) and electrolytic manganese dioxide (MnO 2 ) were used as the positive electrode active material powder in the atomic ratio Li: B: Mn.
A positive electrode a5 was produced in the same manner as in Example 1 except that the mixture was carried out so that = 0.600: 0.20: 1.00.

【0034】尚、熱処理前の電解二酸化マンガンの空孔
体積と、熱処理後の正極活物質粉末(マンガン酸化物)
の空孔体積は、それぞれ、0.075(cc/g)、0.0
68(cc/g)であった。
The pore volume of electrolytic manganese dioxide before heat treatment and the positive electrode active material powder (manganese oxide) after heat treatment
Pore volume of 0.075 (cc / g), 0.0
It was 68 (cc / g).

【0035】この正極a5を使用する以外は、実施例1
と同様にして、本発明電池A5を作製した。
Example 1 except that this positive electrode a5 was used
Battery A5 of the invention was produced in the same manner as in.

【0036】[実施例6]正極活物質粉末として、水酸
化リチウム(LiOH)、酸化ホウ素(B23)及び電
解二酸化マンガン(MnO2)を原子比Li:B:Mn
=0.515:0.03:1.00となるように混合す
る以外は、実施例1と同様にして、正極a6を作製し
た。
[Example 6] As the positive electrode active material powder, lithium hydroxide (LiOH), boron oxide (B 2 O 3 ) and electrolytic manganese dioxide (MnO 2 ) were used in an atomic ratio of Li: B: Mn.
A positive electrode a6 was produced in the same manner as in Example 1 except that the mixing was performed so that the ratio was 0.515: 0.03: 1.00.

【0037】尚、熱処理前の電解二酸化マンガンの空孔
体積と、熱処理後の正極活物質粉末(マンガン酸化物)
の空孔体積は、それぞれ、0.061(cc/g)、0.0
55(cc/g)であった。
The pore volume of electrolytic manganese dioxide before heat treatment and the positive electrode active material powder (manganese oxide) after heat treatment
Pore volume of 0.061 (cc / g), 0.0
It was 55 (cc / g).

【0038】この正極a6を使用する以外は、実施例1
と同様にして、本発明電池A6を作製した。
Example 1 except that this positive electrode a6 was used
Battery A6 of the present invention was produced in the same manner as in.

【0039】[実施例7]正極活物質粉末として、水酸
化リチウム(LiOH)、酸化ホウ素(B23)及び電
解二酸化マンガン(MnO2)を原子比Li:B:Mn
=0.515:0.03:1.00となるように混合す
る以外は、実施例1と同様にして、正極a7を作製し
た。
Example 7 Lithium hydroxide (LiOH), boron oxide (B 2 O 3 ) and electrolytic manganese dioxide (MnO 2 ) were used as the positive electrode active material powder in an atomic ratio of Li: B: Mn.
A positive electrode a7 was produced in the same manner as in Example 1 except that the mixing was performed so that the ratio was 0.515: 0.03: 1.00.

【0040】尚、熱処理前の電解二酸化マンガンの空孔
体積と、熱処理後の正極活物質粉末(マンガン酸化物)
の空孔体積は、それぞれ、0.050(cc/g)、0.0
40(cc/g)であった。
The void volume of electrolytic manganese dioxide before heat treatment and the positive electrode active material powder (manganese oxide) after heat treatment
Pore volume of 0.050 (cc / g), 0.0
It was 40 (cc / g).

【0041】この正極a7を使用する以外は、実施例1
と同様にして、本発明電池A7を作製した。
Example 1 except that this positive electrode a7 was used
Battery A7 of the present invention was produced in the same manner as in.

【0042】[比較例1]正極活物質粉末として、水酸
化リチウム(LiOH)、酸化ホウ素(B23)及び電
解二酸化マンガン(MnO2)を原子比Li:B:Mn
=0.515:0.03:1.00となるように混合す
る以外は、実施例1と同様にして、正極x1を作製し
た。
Comparative Example 1 As the positive electrode active material powder, lithium hydroxide (LiOH), boron oxide (B 2 O 3 ) and electrolytic manganese dioxide (MnO 2 ) were used in an atomic ratio of Li: B: Mn.
A positive electrode x1 was produced in the same manner as in Example 1 except that the mixing was performed so that the ratio was 0.515: 0.03: 1.00.

【0043】尚、熱処理前の電解二酸化マンガンの空孔
体積と、熱処理後の正極活物質粉末(マンガン酸化物)
の空孔体積は、それぞれ、0.042(cc/g)、0.0
23(cc/g)であった。
The void volume of electrolytic manganese dioxide before heat treatment and the positive electrode active material powder (manganese oxide) after heat treatment
Pore volume of 0.042 (cc / g), 0.0
It was 23 (cc / g).

【0044】この正極x1を使用する以外は、実施例1
と同様にして、比較電池X1を作製した。
Example 1 except that this positive electrode x1 was used
Comparative battery X1 was prepared in the same manner as in.

【0045】[比較例2]正極活物質粉末として、水酸
化リチウム(LiOH)及び電解二酸化マンガン(Mn
2)を原子比Li:Mn=0.50:1.00となる
ように混合する以外は、実施例1と同様にして、正極y
1を作製した。
[Comparative Example 2] Lithium hydroxide (LiOH) and electrolytic manganese dioxide (Mn) were used as the positive electrode active material powder.
O 2 ) was mixed in the same manner as in Example 1 except that the atomic ratio Li: Mn = 0.50: 1.00 was mixed.
1 was produced.

【0046】尚、熱処理前の電解二酸化マンガンの空孔
体積と、熱処理後の正極活物質粉末(マンガン酸化物)
の空孔体積は、それぞれ、0.075(cc/g)、0.0
71(cc/g)であった。
The pore volume of electrolytic manganese dioxide before heat treatment and the positive electrode active material powder (manganese oxide) after heat treatment
Pore volume of 0.075 (cc / g), 0.0
It was 71 (cc / g).

【0047】この正極y1を使用する以外は、実施例1
と同様にして、比較電池Y1を作製した。
Example 1 except that this positive electrode y1 was used
Comparative battery Y1 was prepared in the same manner as in.

【0048】[比較例3]正極活物質粉末として、水酸
化リチウム(LiOH)及び電解二酸化マンガン(Mn
2)を原子比Li:Mn=0.50:1.00となる
ように混合する以外は、実施例1と同様にして、正極y
2を作製した。
Comparative Example 3 Lithium hydroxide (LiOH) and electrolytic manganese dioxide (Mn) were used as the positive electrode active material powder.
O 2 ) was mixed in the same manner as in Example 1 except that the atomic ratio Li: Mn = 0.50: 1.00 was mixed.
2 was produced.

【0049】尚、熱処理前の電解二酸化マンガンの空孔
体積と、熱処理後の正極活物質粉末(マンガン酸化物)
の空孔体積は、それぞれ、0.061(cc/g)、0.0
56(cc/g)であった。
The void volume of electrolytic manganese dioxide before heat treatment and the positive electrode active material powder (manganese oxide) after heat treatment
Pore volume of 0.061 (cc / g), 0.0
It was 56 (cc / g).

【0050】この正極y2を使用する以外は、実施例1
と同様にして、比較電池Y2を作製した。
Example 1 except that this positive electrode y2 was used
Comparative battery Y2 was prepared in the same manner as in.

【0051】[比較例4]正極活物質粉末として、水酸
化リチウム(LiOH)及び電解二酸化マンガン(Mn
2)を原子比Li:Mn=0.50:1.00となる
ように混合する以外は、実施例1と同様にして、正極y
3を作製した。
[Comparative Example 4] Lithium hydroxide (LiOH) and electrolytic manganese dioxide (Mn) were used as the positive electrode active material powder.
O 2 ) was mixed in the same manner as in Example 1 except that the atomic ratio Li: Mn = 0.50: 1.00 was mixed.
3 was produced.

【0052】尚、熱処理前の電解二酸化マンガンの空孔
体積と、熱処理後の正極活物質粉末(マンガン酸化物)
の空孔体積は、それぞれ、0.050(cc/g)、0.0
42(cc/g)であった。
The void volume of electrolytic manganese dioxide before heat treatment and the positive electrode active material powder (manganese oxide) after heat treatment
Pore volume of 0.050 (cc / g), 0.0
It was 42 (cc / g).

【0053】この正極y3を使用する以外は、実施例1
と同様にして、比較電池Y3を作製した。
Example 1 except that this positive electrode y3 was used
Comparative battery Y3 was prepared in the same manner as in.

【0054】[比較例5]正極活物質粉末として、水酸
化リチウム(LiOH)及び電解二酸化マンガン(Mn
2)を原子比Li:Mn=0.50:1.00となる
ように混合する以外は、実施例1と同様にして、正極y
4を作製した。
[Comparative Example 5] As positive electrode active material powder, lithium hydroxide (LiOH) and electrolytic manganese dioxide (Mn) were used.
O 2 ) was mixed in the same manner as in Example 1 except that the atomic ratio Li: Mn = 0.50: 1.00 was mixed.
4 was produced.

【0055】尚、熱処理前の電解二酸化マンガンの空孔
体積と、熱処理後の正極活物質粉末(マンガン酸化物)
の空孔体積は、それぞれ、0.042(cc/g)、0.0
35(cc/g)であった。
The void volume of electrolytic manganese dioxide before heat treatment and the positive electrode active material powder (manganese oxide) after heat treatment
Pore volume of 0.042 (cc / g), 0.0
It was 35 (cc / g).

【0056】この正極y4を使用する以外は、実施例1
と同様にして、比較電池Y4を作製した。
Example 1 except that this positive electrode y4 was used
Comparative battery Y4 was prepared in the same manner as in.

【0057】以上、本発明電池A1〜A7、比較電池X
1、Y1〜Y4の正極一覧表を表1に示す。
As described above, the batteries A1 to A7 of the present invention and the comparative battery X
Table 1 shows a list of positive electrodes of No. 1 and Y1 to Y4.

【0058】[0058]

【表1】 [Table 1]

【0059】〔実験1〕本発明電池A1〜A5(ホウ素
添加)、比較電池Y1(ホウ素無添加)について、各電
池に3.8Vの定電圧で連続充電を行い、20週間連続
充電した後、それぞれの電池の内部抵抗を測定した。
尚、各電池とも連続充電試験前の内部抵抗値は、いずれ
も10(Ω)であった。
[Experiment 1] The batteries A1 to A5 of the present invention (with boron added) and the comparative battery Y1 (without addition of boron) were continuously charged at a constant voltage of 3.8 V, and after continuously charging for 20 weeks, The internal resistance of each battery was measured.
The internal resistance of each battery before the continuous charging test was 10 (Ω).

【0060】さらに、上記電池の放電容量として、1k
Ωの負荷にて高率放電を行い、電池電圧が2.0Vに達
するまでの容量を測定した。図2に上記実験の結果によ
るホウ素添加量と内部抵抗値及び放電容量との関係を示
す。尚、放電容量は、ホウ素無添加の比較電池Y1の放
電容量を100とした時の相対値(%)で示している。
Furthermore, the discharge capacity of the battery is 1 k
High-rate discharge was performed under a load of Ω, and the capacity until the battery voltage reached 2.0 V was measured. FIG. 2 shows the relationship between the amount of boron added, the internal resistance value, and the discharge capacity as a result of the above experiment. The discharge capacity is shown as a relative value (%) when the discharge capacity of the comparative battery Y1 containing no boron is set to 100.

【0061】図2より、ホウ素を添加していない比較電
池Y1は、連続充電後、内部抵抗値が60(Ω)まで上
昇しているのに対して、ホウ素添加をしている本発明電
池A1〜A5は連続充電後も内部抵抗値は、ほとんど上
昇していない。
From FIG. 2, it can be seen that the comparative battery Y1 containing no boron has the internal resistance value increased to 60 (Ω) after continuous charging, while the battery A1 of the invention containing boron has been added. In A5, the internal resistance value hardly increased even after continuous charging.

【0062】このように、正極活物質にホウ素を添加す
ることによって、連続充電に対する内部抵抗の上昇を防
止することができる。しかしながら、ホウ素添加量が多
すぎると、正極におけるマンガンの相対比率が小さくな
り電池容量が小さくなるので、ホウ素添加量はB/Mn
の原子比で0.01〜0.20の範囲が好ましい。
As described above, by adding boron to the positive electrode active material, it is possible to prevent an increase in internal resistance due to continuous charging. However, if the amount of boron added is too large, the relative ratio of manganese in the positive electrode becomes small and the battery capacity becomes small.
The atomic ratio is preferably in the range of 0.01 to 0.20.

【0063】〔実験2〕次に、ホウ素添加量が同一で空
孔体積が異なる本発明電池A2、A6及びA7、比較電
池X1における熱処理後のマンガン酸化物の空孔体積と
電池放電容量の関係を図3に示す。尚、電池放電容量の
測定条件は、各電池に30kΩ(低率)、1kΩ、50
0Ω(高率)の負荷をかけた場合、電池電圧が2.0V
に達するまでの放電容量を測定し、本発明電池A2に3
0kΩの負荷をかけて放電した場合の値を100とする
相対値(%)で示している。
[Experiment 2] Next, the relationship between the pore volume of manganese oxide after the heat treatment and the battery discharge capacity in the present batteries A2, A6 and A7 and the comparative battery X1 having the same amount of added boron and different pore volumes. Is shown in FIG. The measurement conditions of the battery discharge capacity were 30 kΩ (low rate), 1 kΩ and 50 kΩ for each battery.
When a load of 0Ω (high rate) is applied, the battery voltage is 2.0V
The discharge capacity of the battery A2 of the present invention was measured to reach 3
It is shown as a relative value (%) with a value of 100 when a load of 0 kΩ is discharged.

【0064】図3から熱処理後のマンガン酸化物の空孔
体積が減少すれば、放電容量が低下していることが判
る。これは、空孔体積が減少すれば、電池としての反応
面積が減少するので、放電電圧が低下してその結果、放
電容量が低下するためと考えられる。
It can be seen from FIG. 3 that the discharge capacity decreases as the pore volume of the manganese oxide after heat treatment decreases. It is considered that this is because when the pore volume is reduced, the reaction area of the battery is reduced, so that the discharge voltage is reduced and, as a result, the discharge capacity is reduced.

【0065】しかしながら、熱処理後のマンガン酸化物
の空孔体積が0.040cc/g以上の本発明電池A2、A
6及びA7は、高率放電である500Ωの負荷における
放電においてもそれぞれ90%以上の放電容量を有して
おり、高率における放電特性の優れた電池であることが
判る。
However, the batteries A2 and A2 of the present invention in which the pore volume of manganese oxide after heat treatment is 0.040 cc / g or more
6 and A7 each have a discharge capacity of 90% or more even when discharged at a load of 500Ω, which is a high rate discharge, and it is understood that these are batteries having excellent discharge characteristics at a high rate.

【0066】これに対して、熱処理後の空孔体積が0.
023cc/gである比較電池X1は、500Ω負荷におけ
る放電時の放電容量は、70%以下となり、高率放電特
性が劣っていることが判る。
On the other hand, the pore volume after the heat treatment is 0.
The comparative battery X1 of 023 cc / g has a discharge capacity of 70% or less when discharged at a load of 500 Ω, which shows that the high rate discharge characteristics are inferior.

【0067】次に、熱処理前の二酸化マンガンの空孔体
積が同じである本発明電池A2と比較電池Y1(空孔体
積0.075cc/g)、本発明電池A6と比較電池Y2
(0.061cc/g)、本発明電池A7と比較電池Y3
(0.050cc/g)、比較電池X1と比較電池Y4
(0.042cc/g)の熱処理後のマンガン酸化物の空孔
体積の関係を図4に示す。尚、図4の○はホウ素添加の
本発明電池A2、A6、A7及び比較電池X1、●はホ
ウ素無添加の比較電池Y1、Y2、Y3、Y4を示す。
Next, the present invention battery A2 and the comparative battery Y1 (pore volume 0.075 cc / g), in which the manganese dioxide has the same pore volume before heat treatment, and the present invention battery A6 and the comparative battery Y2.
(0.061cc / g), battery A7 of the present invention and comparative battery Y3
(0.050cc / g), comparative battery X1 and comparative battery Y4
FIG. 4 shows the relationship between the pore volume of manganese oxide after the heat treatment of (0.042 cc / g). In FIG. 4, ◯ indicates the present invention batteries A2, A6, A7 containing boron, and comparative battery X1, and ● indicates the comparative batteries Y1, Y2, Y3, Y4 containing no boron.

【0068】図4から、熱処理後のマンガン酸化物の空
孔体積は、ホウ素が正極に添加されているほうが、小さ
くなる傾向にある。しかし、熱処理前の二酸化マンガン
の空孔体積が0.050cc/g以上であり、結果として、
熱処理後のマンガン酸化物の空孔体積が0.040cc/g
以上となる場合では、その差はごくわずかである。
From FIG. 4, the pore volume of the manganese oxide after heat treatment tends to be smaller when boron is added to the positive electrode. However, the pore volume of manganese dioxide before heat treatment is 0.050 cc / g or more, and as a result,
Pore volume of manganese oxide after heat treatment is 0.040cc / g
In the above cases, the difference is negligible.

【0069】これに対して、熱処理前の二酸化マンガン
の空孔体積が0.050cc/g以下であり、結果として、
熱処理後のマンガン酸化物の空孔体積が0.040cc/g
以下となる場合では、その差が大きくなっている。これ
は、熱処理前の二酸化マンガンの空孔体積が小さいとホ
ウ素を添加して熱処理する際にマンガン酸化物の空孔体
積が大きく減少することを意味する。これが、従来、正
極にホウ素を添加すると高率放電が悪くなる原因と考え
られる。
On the other hand, the pore volume of manganese dioxide before heat treatment was 0.050 cc / g or less, and as a result,
Pore volume of manganese oxide after heat treatment is 0.040cc / g
In the following cases, the difference is large. This means that if the pore volume of manganese dioxide before the heat treatment is small, the pore volume of the manganese oxide is greatly reduced when the heat treatment is performed by adding boron. This is considered to be the cause of deterioration of high rate discharge when boron is added to the positive electrode.

【0070】この理由は定かではないが、熱処理前の二
酸化マンガンの空孔体積が0.050cc/g以下の場合、
二酸化マンガン表面の空孔が小さいので、熱処理時にマ
ンガン酸化物の表面付近で小さな空孔をホウ素が完全に
塞いでしまうために、マンガン酸化物の空孔体積が大き
く減少すると考えられる。
The reason for this is not clear, but when the pore volume of manganese dioxide before heat treatment is 0.050 cc / g or less,
Since the pores on the surface of manganese dioxide are small, it is considered that the pores near the surface of the manganese oxide are completely filled with boron during the heat treatment, so that the pore volume of the manganese oxide is greatly reduced.

【0071】これに対して、二酸化マンガンの空孔が十
分に大きい場合、ホウ素はこの空孔の内部に進入して付
着するので、熱処理後も空孔体積としてはわずかに減少
するだけであると考えられる。
On the other hand, when the pores of manganese dioxide are sufficiently large, boron penetrates into and adheres to the inside of the pores, so that the pore volume only slightly decreases after the heat treatment. Conceivable.

【0072】従って、高率放電特性を向上させるために
は、ホウ素を添加した熱処理後のマンガン酸化物の空孔
体積が0.040cc/g以上を有することが必要である。
尚、熱処理後の空孔体積が0.040cc/g以上を有する
マンガン酸化物を得るためには、熱処理前の二酸化マン
ガンの空孔体積が0.050cc/g以上を有することが好
ましい。
Therefore, in order to improve the high rate discharge characteristics, it is necessary that the manganese oxide after the heat treatment with the addition of boron has a pore volume of 0.040 cc / g or more.
In order to obtain a manganese oxide having a pore volume after heat treatment of 0.040 cc / g or more, it is preferable that manganese dioxide before heat treatment has a pore volume of 0.050 cc / g or more.

【0073】[0073]

【発明の効果】本発明は、リチウム及びホウ素を含有す
るマンガン酸化物を正極活物質とし、この正極活物質の
空孔体積が0.040cc/g以上とすることにより、高
率、低温放電における放電電圧降下による容量低下を抑
制することができ、連続充電特性及び放電特性共に優れ
た非水電解液二次電池を提供することができる。
EFFECTS OF THE INVENTION The present invention uses a manganese oxide containing lithium and boron as a positive electrode active material and has a pore volume of 0.040 cc / g or more, so that high rate, low temperature discharge can be achieved. It is possible to suppress the capacity decrease due to the discharge voltage drop, and it is possible to provide a non-aqueous electrolyte secondary battery having excellent continuous charge characteristics and discharge characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明電池の断面図である。FIG. 1 is a sectional view of a battery of the present invention.

【図2】ホウ素添加量と連続充電後の内部抵抗値及び放
電容量との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the amount of boron added and the internal resistance value and discharge capacity after continuous charging.

【図3】熱処理後のマンガン酸化物の空孔体積と放電容
量の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the pore volume of manganese oxide after heat treatment and the discharge capacity.

【図4】熱処理前と後の空孔体積との関係を示す図であ
る。
FIG. 4 is a diagram showing a relationship between pore volume before and after heat treatment.

【符号の説明】[Explanation of symbols]

1・・・・・・・・・・・・負極 4・・・・・・・・・・・・正極 6・・・・・・・・・・・・セパレータ A1、A2、A3、A4、A5、A6、A7・・・・・
本発明電池 X1、Y1、Y2、Y3、Y4・・・・・・・・・・・
比較電池
1 --- Negative electrode 4 ...--- Positive electrode 6 ...--- Separator A1, A2, A3, A4, A5, A6, A7 ...
The present invention batteries X1, Y1, Y2, Y3, Y4 ...
Comparison battery

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 祐司 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西口 信博 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yuji Yamamoto 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Inventor Nobuhiro Nishiguchi 2-5 Keihan Hondori, Moriguchi City, Osaka Prefecture No. 5 Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを活物質とする負極と、リチウ
ム及びホウ素を含有するマンガン酸化物を活物質とする
正極と、溶質と溶媒とからなる非水電解液とを備えた非
水電解液二次電池において、前記マンガン酸化物の空孔
体積が0.040cc/g以上であることを特徴とする非水
電解液二次電池。
1. A non-aqueous electrolyte solution comprising a negative electrode containing lithium as an active material, a positive electrode containing a manganese oxide containing lithium and boron as an active material, and a non-aqueous electrolyte containing a solute and a solvent. In the secondary battery, a non-aqueous electrolyte secondary battery in which the pore volume of the manganese oxide is 0.040 cc / g or more.
【請求項2】 前記正極におけるマンガンとホウ素の原
子比B/Mnが0.01以上0.20以下であることを
特徴とする請求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein an atomic ratio B / Mn of manganese and boron in the positive electrode is 0.01 or more and 0.20 or less.
JP03233495A 1995-02-21 1995-02-21 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3540416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03233495A JP3540416B2 (en) 1995-02-21 1995-02-21 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03233495A JP3540416B2 (en) 1995-02-21 1995-02-21 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH08227709A true JPH08227709A (en) 1996-09-03
JP3540416B2 JP3540416B2 (en) 2004-07-07

Family

ID=12356062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03233495A Expired - Lifetime JP3540416B2 (en) 1995-02-21 1995-02-21 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3540416B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1032061A1 (en) * 1999-02-24 2000-08-30 Sony Corporation Non-aqueous electrolyte battery
WO2001007368A1 (en) * 1999-07-27 2001-02-01 Emtec Magnetics Gmbh Lithium oxide containing lithium intercalation compounds
JP2001052752A (en) * 1999-08-04 2001-02-23 Sanyo Electric Co Ltd Lithium secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1032061A1 (en) * 1999-02-24 2000-08-30 Sony Corporation Non-aqueous electrolyte battery
US6656638B1 (en) 1999-02-24 2003-12-02 Sony Corporation Non-aqueous electrolyte battery having a lithium manganese oxide electrode
WO2001007368A1 (en) * 1999-07-27 2001-02-01 Emtec Magnetics Gmbh Lithium oxide containing lithium intercalation compounds
JP2001052752A (en) * 1999-08-04 2001-02-23 Sanyo Electric Co Ltd Lithium secondary battery

Also Published As

Publication number Publication date
JP3540416B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
JP3600051B2 (en) Lithium secondary battery
KR101260159B1 (en) lithium ion secondary battery
US20040072080A1 (en) Nonaqueous electrolyte secondary cell
JPH11191417A (en) Nonaqueous electrolytic secondary battery and manufacture thereof
JP2009021134A (en) Nonaqueous electrolyte battery and battery pack
JP2003282055A (en) Non-aqueous electrolyte secondary battery
JPH10255807A (en) Lithium ion secondary battery
JP2005251684A (en) Nonaqueous electrolyte secondary battery
JP3609612B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2001126766A (en) Nonaqueous electrolyte secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
CN109792048B (en) Positive electrode for nonaqueous electrolyte secondary battery
JP2015082381A (en) Nonaqueous electrolyte secondary battery
JPH08250108A (en) Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JPH0982360A (en) Nonaqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JPH08227709A (en) Nonaqueous electrolytic secondary battery
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP2002110152A (en) Nonaqueous electrolyte secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP2006344395A (en) Cathode for lithium secondary battery and utilization and manufacturing method of the same
CN111902975A (en) Anode active material for lithium-sulfur secondary battery and method for preparing same
JP2005025963A (en) Nonaqueous electrolyte liquid secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term