JPH0982360A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0982360A
JPH0982360A JP7236676A JP23667695A JPH0982360A JP H0982360 A JPH0982360 A JP H0982360A JP 7236676 A JP7236676 A JP 7236676A JP 23667695 A JP23667695 A JP 23667695A JP H0982360 A JPH0982360 A JP H0982360A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
battery
electrode active
electrolyte layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7236676A
Other languages
Japanese (ja)
Inventor
Naoyuki Kato
尚之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP7236676A priority Critical patent/JPH0982360A/en
Publication of JPH0982360A publication Critical patent/JPH0982360A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To restrain the capacitive degradation caused when it is preserved in a high temperature environment or charge-discharge is repeated, and improve a high temperature characteristic by using an Li composite oxide where an Li ion conductive solid electrolyte layer is formed on a surface, as a positive electrode active material. SOLUTION: In a nonaqueous electrolyte secondary battery, an Li ion conductive solid electrolyte layer is formed on a surface of an Li composite oxide being a positive electrode active material, and a high temperature characteristic of a battery is improved thereby. For example, an ether type compound such as a polyethylene oxide and a polypropylene oxide, a polyimine type compound, a polyether derivative and the others are used as a material of this Li ion conductive solid electrolyte layer. Such Li ion conductive solid electrolyte may be used to directly cover a powder surface of the Li composite oxide before being formed as an electrode, and may be used to cover this electrode surface after the electrode is formed by using the Li composite oxide as a positive electrode active material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に関し、特に正極活物質の改良に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to improvement of a positive electrode active material.

【0002】[0002]

【従来の技術】近年、電子技術の進歩により電子機器の
高性能化、小型化、ポータブル化が進み、これら携帯用
電子機器に使用される電池に対しても高エネルギー密度
を有することが強く求められるようになっている。
2. Description of the Related Art In recent years, due to advances in electronic technology, high performance, miniaturization, and portability of electronic devices have advanced, and batteries used in these portable electronic devices are also strongly required to have high energy density. It is designed to be used.

【0003】従来、これらの電子機器に使用される二次
電池としては、ニッケル・カドミウム電池や鉛電池等が
挙げられるが、これらの電池は放電電位が低く、電池重
量及び電池体積が大きいため、上述のような高エネルギ
ー密度への要求には十分には応えられないのが実情であ
る。
Conventionally, nickel-cadmium batteries and lead batteries have been used as secondary batteries used in these electronic devices, but these batteries have a low discharge potential and a large battery weight and battery volume. The fact is that the demand for high energy density as described above cannot be fully met.

【0004】一方、最近、金属リチウムやリチウム合金
を負極活物質として用い、リチウム塩を非水溶媒に溶解
させたものを電解液として用いる非水電解液二次電池
が、これらの要求を満たす電池システムとして注目さ
れ、盛んに研究が行われている。
On the other hand, recently, a non-aqueous electrolyte secondary battery using metallic lithium or a lithium alloy as a negative electrode active material and using a lithium salt dissolved in a non-aqueous solvent as an electrolytic solution is a battery satisfying these requirements. It has attracted attention as a system and is being actively researched.

【0005】しかし、金属リチウムやリチウム合金を負
極とする非水電解液二次電池は、サイクル寿命、安全
性、急速充電性能等において問題点が認識されるように
なり、このことが実用化に対する大きな障害となってい
る。これらの問題点は、負極上で金属リチウムが溶解、
析出する際に生じるデンドライト状の結晶生成や負極の
微細化に起因するものと考えられ、この問題のため、こ
の金属リチウムやリチウム合金を負極とする電池系は、
一部コイン型として実用化されているに過ぎない。
However, non-aqueous electrolyte secondary batteries having metallic lithium or a lithium alloy as a negative electrode have come to recognize problems in cycle life, safety, rapid charging performance, etc. It is a big obstacle. These problems are caused by dissolution of metallic lithium on the negative electrode,
It is considered that this is due to the generation of dendrite-like crystals that occur during precipitation and the miniaturization of the negative electrode. Due to this problem, the battery system using this metallic lithium or lithium alloy as the negative electrode is
It is only put into practical use as a coin type.

【0006】そこで、これらの問題を解決するために、
炭素質材料のようなリチウムイオンをドープ且つ脱ドー
プすることが可能な物質を負極活物質とする非水電解液
二次電池の研究開発が盛んに行われている。
Therefore, in order to solve these problems,
BACKGROUND ART Research and development of non-aqueous electrolyte secondary batteries using a substance capable of doping and dedoping lithium ions, such as a carbonaceous material, as a negative electrode active material have been actively conducted.

【0007】この非水電解液二次電池では、リチウムが
金属状態で存在しないため、金属リチウムを用いること
に起因するサイクル劣化や安全性に関する問題がない。
また、ニッケル・カドミウム電池と比較して、自己放電
も少なく、メモリー効果もないというメリットも有して
いる。
In this non-aqueous electrolyte secondary battery, since lithium does not exist in a metallic state, there are no problems regarding cycle deterioration and safety due to the use of metallic lithium.
It also has the advantages of less self-discharge and no memory effect compared to nickel-cadmium batteries.

【0008】この非水電解液二次電池は、正極活物質に
酸化還元電位の高いリチウム複合酸化物を用いることに
より電池電圧が高くなり、平均作動電圧が3.6Vを示
すようになる。この平均作動電圧は、ニッケル・カドミ
ウム電池の3本分に相当し、高エネルギー密度が得られ
ることから、上記非水電解液二次電池は電子機器を設計
するユーザーから大いに期待されている二次電池であ
る。
In this non-aqueous electrolyte secondary battery, the lithium composite oxide having a high redox potential is used as the positive electrode active material, so that the battery voltage becomes high and the average operating voltage becomes 3.6V. This average operating voltage is equivalent to that of three nickel-cadmium batteries, and high energy density can be obtained. Therefore, the above non-aqueous electrolyte secondary battery is highly expected by users who design electronic devices. It is a battery.

【0009】[0009]

【発明が解決しようとする課題】ところで、携帯用電子
機器に使用される電源としては、いろいろな場所で使用
される機会が想定されることから、その環境変化に対応
して十分に電池性能が発揮できるような特性を有するこ
とが望まれる。特に、夏季の自勤車内での放置や、高温
多湿雰囲気である倉庫での使用等、高温雰囲気下での使
用においての信頼性が求められる。
By the way, since it is expected that the power source used in the portable electronic equipment will be used in various places, the battery performance is not enough to cope with the environmental changes. It is desired to have characteristics that can be exhibited. In particular, it is required to have reliability in use in a high temperature atmosphere, such as being left in a self-employed vehicle in the summer or used in a warehouse where the temperature and humidity are high.

【0010】しかしながら、上述の非水電解液二次電池
では、このような厳しい環境条件で使用されたり保存さ
れたりすると、電池性能が劣化する欠点がみられる。
However, the above-mentioned non-aqueous electrolyte secondary battery has a drawback that the battery performance is deteriorated when it is used or stored under such severe environmental conditions.

【0011】そこで、非水電解液二次電池では、電池材
料に関して高温保存性能の向上が多方面から検討されて
いる。中でも、電解液については、低温特性を損ねるこ
となく、高温でも安定な特性を示すような有機溶媒、溶
質の開発が積極的に進められている。
Therefore, in the non-aqueous electrolyte secondary battery, improvement of high temperature storage performance has been studied from various viewpoints with respect to the battery material. Among them, with respect to the electrolytic solution, the development of organic solvents and solutes that show stable characteristics at high temperatures without impairing the low-temperature characteristics is being actively pursued.

【0012】例えば、特開平4−184872号公報で
は、電解液の非水溶媒として、炭酸プロピレンと炭酸ジ
エチルとの混合溶媒が提案されている。この混合溶媒を
使用する電解液は、45℃程度の高温環境下において好
ましい特性を発揮する。しかしながら、この電解液を使
用する電池では、さらに60℃以上の高温の環境下で保
存されたり、使用されたりすると、電池性能が低下する
傾向が見られ、高温特性が十分に改善されているとは言
えない。
For example, Japanese Unexamined Patent Publication (Kokai) No. 4-184872 proposes a mixed solvent of propylene carbonate and diethyl carbonate as a non-aqueous solvent for the electrolytic solution. An electrolytic solution using this mixed solvent exhibits preferable characteristics in a high temperature environment of about 45 ° C. However, in a battery using this electrolytic solution, if it is further stored or used in a high temperature environment of 60 ° C. or higher, the battery performance tends to decrease, and the high temperature characteristics are sufficiently improved. I can't say.

【0013】また、Abstract No.19,P
33 in Extended Abstracts
of the 184th Electrochemi
cal Society,NewOrleans(l9
93)には、電解液に溶解させる電解質塩として、Li
C(SO2CF33,LiC(SO2CF32F,LiC
(SO2CF32SO2CH3等が提案されているが、こ
れらについては未検討な部分が多く残されており、実用
化には至っていない。
Further, the Abstract No. 19, P
33 in Extended Abstracts
of the 184th Electrochemi
cal Society, New Orleans (l9
93) contains Li as an electrolyte salt to be dissolved in an electrolytic solution.
C (SO 2 CF 3 ) 3 , LiC (SO 2 CF 3 ) 2 F, LiC
(SO 2 CF 3 ) 2 SO 2 CH 3 and the like have been proposed, but many of them have not been examined and they have not been put to practical use.

【0014】さらに、電解液に関する検討の他、正極活
物質についての改良も行われている。
Further, in addition to the study on the electrolytic solution, the positive electrode active material has been improved.

【0015】例えば、特開平5−l5l988号公報に
おいては、正極活物質の粒子径分布を特定することによ
り、電池の高温でのサイクル特性が改良されることが記
載されている。
For example, Japanese Patent Application Laid-Open No. 5-15988 discloses that the cycle characteristics of a battery at high temperature can be improved by specifying the particle size distribution of the positive electrode active material.

【0016】しかし、正極活物質を、粉砕によって所望
の粒度分布に調整するのは難しく、実用的な方法とは言
えない。
However, it is difficult to adjust the positive electrode active material to have a desired particle size distribution by pulverization, which is not a practical method.

【0017】このように、非水電解液二次電池について
は、高温特性を改善するための各種手法が提案されてい
るが、いずれも効果が小さく、高温での信頼性に不安を
残しているのが実情である。
As described above, various techniques have been proposed for improving the high temperature characteristics of the non-aqueous electrolyte secondary battery. However, all of them have a small effect and remain unreliable at high temperature. Is the reality.

【0018】そこで、本発明は、このような従来の実情
に鑑みて提案されたものであり、高温環境下で保存され
たり、充放電を繰り返した場合でも、高い容量が維持さ
れる非水電解液二次電池を提供することを目的とする。
Therefore, the present invention has been proposed in view of such conventional circumstances, and non-aqueous electrolysis that maintains a high capacity even when stored in a high temperature environment or repeatedly charged and discharged. An object is to provide a liquid secondary battery.

【0019】[0019]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明の非水電解液二次電池は、リチウム複合酸
化物を正極活物質とし、リチウム、リチウム合金または
リチウムをドープ且つ脱ドープし得る炭素質材料を負極
活物質とする非水電解液二次電池であって、正極活物質
となるリチウム複合酸化物の表面にリチウムイオン伝導
性固体電解質層が形成されていることを特徴とするもの
である。
In order to achieve the above object, the non-aqueous electrolyte secondary battery of the present invention uses a lithium composite oxide as a positive electrode active material and is doped with lithium, a lithium alloy or lithium and deoxidized. A non-aqueous electrolyte secondary battery using a carbonaceous material that can be doped as a negative electrode active material, characterized in that a lithium ion conductive solid electrolyte layer is formed on the surface of a lithium composite oxide that becomes a positive electrode active material. It is what

【0020】このリチウム複合酸化物の表面に形成する
リチウムイオン伝導性固体電解質層の厚さは、0.1〜
l0μmであることが望ましい。
The thickness of the lithium ion conductive solid electrolyte layer formed on the surface of the lithium composite oxide is 0.1 to 10.
10 μm is desirable.

【0021】[0021]

【発明の実施の形態】本発明の具体的な実施の形態につ
いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described.

【0022】本発明は、リチウム複合酸化物を正極活物
質とし、リチウム、リチウム合金またはリチウムをドー
プ且つ脱ドープし得る炭素質材料を負極活物質とする非
水電解液二次電池に適用される。
The present invention is applied to a non-aqueous electrolyte secondary battery using a lithium composite oxide as a positive electrode active material and lithium, a lithium alloy or a carbonaceous material capable of doping and dedoping lithium as a negative electrode active material. .

【0023】本発明では、このような非水電解液二次電
池において、正極活物質となるリチウム複合酸化物表面
にリチウムイオン伝導性固体電解質層を形成し、これに
よって電池の高温特性を改善することとする。
In the present invention, in such a non-aqueous electrolyte secondary battery, a lithium ion conductive solid electrolyte layer is formed on the surface of a lithium composite oxide serving as a positive electrode active material, thereby improving the high temperature characteristics of the battery. I will.

【0024】このリチウムイオン伝導性固体電解質層の
材料としては、例えば化1〜化9で表される高分子化合
物、すなわちポリエチレンオキシド(PEO),ポリプ
ロピレンオキシド(PPO)等のポリエーテル系化合
物、ポリエステル系化合物、ポリイミン系化合物、ポリ
エーテル誘導体、ポリアクリロニトリル(PAN)、ポ
リビニルスルホン(PVS)、ポリビニルクロライド
(PVC)等の高分子化合物が挙げられる。これら高分
子化合物には、LiClO4等、電池の電解液で使用さ
れる電解質塩を添加しても良い。
As the material of the lithium ion conductive solid electrolyte layer, for example, polymer compounds represented by Chemical formulas 1 to 9, that is, polyether compounds such as polyethylene oxide (PEO) and polypropylene oxide (PPO), polyesters Examples of the polymer compound include polyimine compounds, polyether derivatives, polyacrylonitrile (PAN), polyvinyl sulfone (PVS), and polyvinyl chloride (PVC). An electrolyte salt such as LiClO 4 used in a battery electrolyte may be added to these polymer compounds.

【0025】[0025]

【化1】 Embedded image

【0026】[0026]

【化2】 Embedded image

【0027】[0027]

【化3】 Embedded image

【0028】[0028]

【化4】 Embedded image

【0029】[0029]

【化5】 Embedded image

【0030】[0030]

【化6】 [Chemical 6]

【0031】[0031]

【化7】 [Chemical 7]

【0032】[0032]

【化8】 Embedded image

【0033】[0033]

【化9】 Embedded image

【0034】この他、LiI、Li3N、Li5Al
4、Li5FeO4、Li−Na−β−アルミナ、Li
AlSiO4、Li4Zn(GeO44、Lill3
2、Li6NBr3等の無機化合物も電解質層の材料と
して使用できる。
In addition, LiI, Li 3 N, Li 5 Al
O 4 , Li 5 FeO 4 , Li-Na-β-alumina, Li
AlSiO 4 , Li 4 Zn (GeO 4 ) 4 , Li ll N 3 C
Inorganic compounds such as l 2 and Li 6 NBr 3 can also be used as the material of the electrolyte layer.

【0035】このようなリチウムイオン伝導性固体電解
質層は、電極として形成する前のリチウム複合酸化物の
粉末表面に直接被覆させても良く、リチウム複合酸化物
を正極活物質として電極を形成した後、この電極表面に
被覆させても良い。具体的な被覆方法としては、次の方
法が挙げられる。
Such a lithium ion conductive solid electrolyte layer may be directly coated on the surface of the lithium composite oxide powder before being formed as an electrode, and after forming the electrode by using the lithium composite oxide as a positive electrode active material. The electrode surface may be covered. The following methods may be mentioned as specific coating methods.

【0036】まず、電解質層の材料を溶媒と混合し、こ
れを酸化物表面に付着させるか、電極表面に塗布する方
法がある。また、特に高分子化合物を電解質層の材料と
して用いる場合には、モノマーを電解重合させる電解析
出法や、加熱によって高分子材料を蒸発させ、電極表面
に付着させる蒸着法が用いられる。
First, there is a method in which the material of the electrolyte layer is mixed with a solvent, and this is attached to the oxide surface or applied to the electrode surface. Further, particularly when a polymer compound is used as a material for the electrolyte layer, an electrolytic deposition method in which a monomer is electrolytically polymerized or a vapor deposition method in which a polymer material is evaporated by heating and attached to the electrode surface is used.

【0037】このようにリチウムイオン伝導性固体電解
質層をリチウム複合酸化物の表面に形成することで、電
池の高温特性が改善される詳細な理由については不明で
あるが、以下のように考えられる。
Although the detailed reason why the high temperature characteristics of the battery are improved by forming the lithium ion conductive solid electrolyte layer on the surface of the lithium composite oxide in this manner is not clear, it is considered as follows. .

【0038】すなわち、正極活物質に酸化還元電位の高
いリチウム複合酸化物を使用すると、充電状態において
正極は高い電位に維持されるので、特に高温環境下で
は、電解液の有機溶媒や溶質が分解されやすくなる。電
解液は、文字どうり液体であるので、正極活物質との接
触面積が大きく、このような分解が起こり易い。電解液
の有機溶媒や溶質が分解すると、その分解生成物が正極
活物質表面に付着し、容量劣化を引き起こすことにな
る。
That is, when a lithium composite oxide having a high redox potential is used as the positive electrode active material, the positive electrode is maintained at a high potential in a charged state, so that the organic solvent or solute of the electrolytic solution is decomposed especially in a high temperature environment. It is easy to be done. Since the electrolytic solution is a liquid like a letter, it has a large contact area with the positive electrode active material, and such decomposition easily occurs. When the organic solvent or solute of the electrolytic solution is decomposed, the decomposition product adheres to the surface of the positive electrode active material and causes capacity deterioration.

【0039】これに対して、正極活物質の表面にリチウ
ムイオン伝導性固体電解質層が被覆されていると、正極
活物質が、直接液体状の電解液と接触することがなくな
るので、正極の高電位によって電解液の有機溶媒や溶質
が分解するのが回避される。したがって、これらの分解
生成物が正極活物質表面に付着することによる容量劣化
が抑えられ、電池の高温特性が改善されることになる。
On the other hand, when the surface of the positive electrode active material is coated with the lithium ion conductive solid electrolyte layer, the positive electrode active material does not come into direct contact with the liquid electrolytic solution, so that The potential avoids decomposition of the organic solvent or solute of the electrolyte. Therefore, capacity degradation due to these decomposition products adhering to the surface of the positive electrode active material is suppressed, and the high temperature characteristics of the battery are improved.

【0040】なお、このようなリチウムイオン伝導性固
体電解質層は、厚さが0.1〜10μmの範囲であるこ
とが望ましい。リチウムイオン伝導性固体電解質層の厚
さが0.1μm未満である場合には電解液の分解を完全
に抑制することができない。また、この厚さがl0μm
を越えると、電解液の分解は抑制できるものの、正極活
物質本来の充放電性能が損なわれ、電池容量の低下を招
来する。
The thickness of such a lithium ion conductive solid electrolyte layer is preferably in the range of 0.1 to 10 μm. When the thickness of the lithium ion conductive solid electrolyte layer is less than 0.1 μm, the decomposition of the electrolytic solution cannot be completely suppressed. In addition, this thickness is 10 μm
If it exceeds, the decomposition of the electrolytic solution can be suppressed, but the original charge / discharge performance of the positive electrode active material is impaired, and the battery capacity is reduced.

【0041】以上のように、本発明では、正極活物質と
なるリチウム複合酸化物の表面に、リチウムイオン伝導
性固体電解質層を被覆するが、このリチウム複合酸化物
としては、例えばLixMO2(但し、Mは1種類以上の
遷移金属、好ましくはCoまたはNiの少なくとも1種
を表し、0.05≦x≦1.10である。)が適してい
る。また、LiMn24等も使用可能である。これら複
合酸化物は、1種類を単独で用いても、複数種を組み合
わせて用いても良い。
As described above, in the present invention, the surface of the lithium composite oxide serving as the positive electrode active material is coated with the lithium ion conductive solid electrolyte layer. As the lithium composite oxide, for example, Li x MO 2 is used. (However, M represents one or more kinds of transition metals, preferably at least one kind of Co or Ni, and 0.05 ≦ x ≦ 1.10.) Is suitable. Also, LiMn 2 O 4 or the like can be used. These complex oxides may be used alone or in combination of two or more.

【0042】これら複合酸化物は、例えばリチウムおよ
び遷移金属の炭酸塩、硝酸塩、酸化物、水酸化物等を出
発原料として合成することが可能である。すなわち、こ
れらの塩類を所望のリチウム複合酸化物の組成に応じて
計量、混合し、酸素存在雰囲気下、600℃〜l000
℃の温度範囲で焼成することにより得られる。
These complex oxides can be synthesized, for example, by using carbonates, nitrates, oxides, hydroxides and the like of lithium and transition metals as starting materials. That is, these salts are weighed and mixed according to the composition of the desired lithium composite oxide, and 600 ° C. to 1000 ° C. in an atmosphere containing oxygen.
It is obtained by firing in a temperature range of ° C.

【0043】一方、この正極活物質と組み合わせて用い
る負極活物質,非水電解液としては、通常、この種の非
水電解液二次電池で用いられているものが使用できる。
On the other hand, as the negative electrode active material and the non-aqueous electrolyte used in combination with the positive electrode active material, those which are usually used in this type of non-aqueous electrolyte secondary battery can be used.

【0044】まず、負極活物質としては、リチウム金
属、リチウム合金あるいはリチウムをドープ且つ脱ドー
プし得る炭素質材料を用いることができ、特に炭素質材
料を使用するのが望ましい。
First, as the negative electrode active material, a lithium metal, a lithium alloy, or a carbonaceous material capable of doping and dedoping lithium can be used, and it is particularly preferable to use a carbonaceous material.

【0045】炭素質材料としては、熱分解炭素類、コー
クス類(ピッチコークス、ニードルコークス、石油コー
クス等)、黒鉛類、ガラス状炭素類、有機高分子化合物
焼成体(フラン樹脂等を適当な温度で焼成し炭素化した
もの)、炭素繊維、活性炭等が挙げられる。特に、(0
02)面の面間隔が3.70オングストローム以上、真
密度1.70g/cc未満であり、且つ空気気流中にお
ける示差熱分析で700℃以上に発熱ピークを有しない
難黒鉛化性炭素質材料が好適である。
As the carbonaceous material, pyrolytic carbons, cokes (pitch cokes, needle cokes, petroleum cokes, etc.), graphites, glassy carbons, organic polymer compound fired bodies (furan resin, etc.) are used at appropriate temperatures. Carbonized by firing in), carbon fiber, activated carbon and the like. In particular, (0
02) a non-graphitizable carbonaceous material having an interplanar spacing of 3.70 angstroms or more and a true density of less than 1.70 g / cc and having no exothermic peak at 700 ° C. or more in a differential thermal analysis in an air stream. It is suitable.

【0046】また、電解液としては、リチウム塩を支持
電解質とし、これを非水溶媒に溶解させた非水電解液が
用いられる。
As the electrolytic solution, a non-aqueous electrolytic solution prepared by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent is used.

【0047】ここで、非水溶媒としては、プロピレンカ
ーボネート、エチレンカーボネート、1,2−ジメトキ
シエタン、γ−ブチロラクトン、テトラヒドロフラン、
ジメチルカーボネート、ジエチルカーボネート、メチル
エチルカーボネート、ジプロピルカーボネート等が単独
もしくは2種類以上の混合溶媒として使用できる。
Here, as the non-aqueous solvent, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, γ-butyrolactone, tetrahydrofuran,
Dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, dipropyl carbonate and the like can be used alone or as a mixed solvent of two or more kinds.

【0048】また、電解質塩としては、一般に、リチウ
ム電池用とし使用されるリチウム塩、例えばLiClO
4,LiAsF6,LiPF6,LiBF4,LiCl,L
iBr,CH3SO3Li,CF3SO3Li等が単独もし
くは2種類以上を混合して使用される。
The electrolyte salt is generally a lithium salt used for lithium batteries, such as LiClO 2.
4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCl, L
iBr, CH 3 SO 3 Li, CF 3 SO 3 Li, etc. are used alone or in combination of two or more.

【0049】電池は、以上のような正極活物質よりなる
正極、負極活物質よりなる負極及び非水電解液を、例え
ば円筒型の鉄製の電池缶内に収納し、当該電池缶と電池
蓋をかしめ密閉して構成される。上記正極、負極はリー
ド部材によってそれぞれ電池蓋、電池缶に接続され、こ
の電池蓋あるいは電池缶とリード部材を介して外部から
通電されるようになされる。なお、このような電池で
は、過充電等の異常時に、電池の内圧上昇に応じて電池
系内での電流を遮断する、電流遮断機構を設け、安全性
の向上を図るようにしても良い。
In the battery, the positive electrode made of the positive electrode active material, the negative electrode made of the negative electrode active material, and the non-aqueous electrolyte are housed in, for example, a cylindrical iron battery can, and the battery can and the battery lid are closed. It is constructed by caulking and sealing. The positive electrode and the negative electrode are connected to the battery lid and the battery can by a lead member, respectively, and are energized from the outside through the battery lid and the battery can and the lead member. Note that such a battery may be provided with a current interrupting mechanism that interrupts the current in the battery system in response to an increase in the internal pressure of the battery when an abnormality such as overcharging occurs, thereby improving safety.

【0050】なお、電池は円筒型に限らず、角型、角筒
型、ボタン型、コイン型等、通常の電池の形状がいずれ
も採用可能である。
It should be noted that the battery is not limited to the cylindrical type, and any ordinary battery shape such as a square type, a square tube type, a button type and a coin type can be adopted.

【0051】[0051]

【実施例】以下、本発明の具体的な実施例について、実
験結果に基づいて説明する。
EXAMPLES Hereinafter, specific examples of the present invention will be described based on experimental results.

【0052】実施例1 本実施例で作製した円筒型非水電解液二次電池の構成を
図1に示す。このような電池を以下のようにして作製し
た。
Example 1 The structure of the cylindrical non-aqueous electrolyte secondary battery produced in this example is shown in FIG. Such a battery was produced as follows.

【0053】まず、正極2は次のようにして作製した。First, the positive electrode 2 was manufactured as follows.

【0054】リチウム塩として水酸化リチウム、ニッケ
ル塩として酸化ニッケル、コバルト塩として酸化コバル
トを用意し、これらをLi/Ni/Co(モル比)が1
/0.80/0.20となるように計量、混合し、酸素
雰囲気中、温度750℃で5時間焼成することで正極活
物質LiNi0.8Co0.22を合成した。
Lithium hydroxide was prepared as the lithium salt, nickel oxide was prepared as the nickel salt, and cobalt oxide was prepared as the cobalt salt, and these had a Li / Ni / Co (molar ratio) of 1
/0.80/0.20 was weighed and mixed, and the positive electrode active material LiNi 0.8 Co 0.2 O 2 was synthesized by firing in an oxygen atmosphere at a temperature of 750 ° C. for 5 hours.

【0055】次に、アセトニトリル溶媒に、ポリエチレ
ンオキシドとLiClO4を9:lなる重量比で溶解す
ることで電解質層用溶液を調製し、この電解質層用溶液
に、先に合成したLiNi0.8Co0.22を投入した。
そして、この状態で、l時間放置し、放置後、溶媒のア
セトニトリルを除去することで、LiNi0.8Co0.2
2の表面に、ポリエチレンオキシドよりなるリチウムイ
オン伝導性固体電解質層を形成した。なお、この表面に
被覆させた電解質層の厚さをESCA(X線電子分光
法)により分析したところ、0.lμmであった。
Next, a solution for an electrolyte layer was prepared by dissolving polyethylene oxide and LiClO 4 in a solvent of acetonitrile at a weight ratio of 9: 1, and the LiNi 0.8 Co 0.2 synthesized above was added to the solution for the electrolyte layer. O 2 was charged.
Then, in this state, it is left for 1 hour, and after leaving it, the solvent acetonitrile is removed to obtain LiNi 0.8 Co 0.2 O
A lithium ion conductive solid electrolyte layer made of polyethylene oxide was formed on the surface of 2 . When the thickness of the electrolyte layer coated on this surface was analyzed by ESCA (X-ray electron spectroscopy), it was found to be 0. It was 1 μm.

【0056】次に、この電解質層で被覆されたLiNi
0.8Co0.229l重量%、導電材としてグラファイト
6重量%、ポリフッ化ビニリデン3重量%を混合して正
極合剤を調製し、N−メチル−2−ピロリドンに分散さ
せることでスラリー状にした。そして、この正極合剤ス
ラリーを、正極集電体11であるアルミニウム箔に、塗
布、乾燥した後、ローラープレス機で圧縮成型を行うこ
とで正極2を作製した。
Next, LiNi coated with this electrolyte layer
A positive electrode mixture was prepared by mixing 9 l% by weight of 0.8 Co 0.2 O 2, 6% by weight of graphite as a conductive material, and 3% by weight of polyvinylidene fluoride, and was made into a slurry by dispersing it in N-methyl-2-pyrrolidone. . Then, the positive electrode mixture slurry was applied to an aluminum foil which is the positive electrode current collector 11 and dried, and then compression molding was carried out by a roller press machine to fabricate the positive electrode 2.

【0057】次に、負極1は次のようにして作製した。Next, the negative electrode 1 was manufactured as follows.

【0058】出発原料に石油ピッチを用い、これを酸素
を含む官能基を10〜20%導入(酸素架橋)した後、
不活性ガス中、温度l000℃で焼成することでガラス
状炭素材料に近い性質の難黒鉛化性炭素質材料(負極活
物質)を合成した。
Petroleum pitch was used as a starting material, and 10 to 20% of a functional group containing oxygen was introduced (oxygen cross-linking) into the pitch.
A non-graphitizable carbonaceous material (negative electrode active material) having properties close to those of a glassy carbon material was synthesized by firing at a temperature of 1000 ° C. in an inert gas.

【0059】このようにして得られた炭素質材料90重
量%、結着材としてポリフッ化ピニリデンl0重量%を
混合して負極合剤を調製し、N−メチル−2−ピロリド
ンに分散させることでスラリー状にした。そして、この
負極合剤スラリーを、負極集電体10である銅箔の両面
に、塗布、乾燥した後、ローラープレス機で圧縮成型を
行うことで負極1を作製した。
90% by weight of the carbonaceous material thus obtained and 10% by weight of polypyridinyl fluoride as a binder were mixed to prepare a negative electrode mixture, which was dispersed in N-methyl-2-pyrrolidone. It was made into a slurry. Then, the negative electrode mixture slurry was applied onto both surfaces of the copper foil which is the negative electrode current collector 10, dried, and then compression-molded by a roller press machine to prepare the negative electrode 1.

【0060】以上のようにして作製した帯状の負極1と
正極2を、厚さが25μmの微多孔性ポリプロピレンフ
ィルムからなるセパレーター3を介して、積層し、多数
巻回することで渦巻式電極体を作成した。
The strip-shaped negative electrode 1 and positive electrode 2 produced as described above are laminated with a separator 3 made of a microporous polypropylene film having a thickness of 25 μm interposed therebetween, and a large number of windings are performed to form a spiral electrode body. It was created.

【0061】次に、この渦巻式電極体を、ニッケル鍍金
を施した鉄製の電池缶5に収納し、渦巻式電極体の上下
両面に絶縁板4を配置した。そして、正極、負極の集電
を行なうために、アルムニウムリード13を正極集電体
1lから導出して、電流遮断装置8とPTC素子9を持
つ安全弁装置に溶接し、ニッケルリード12を負極集電
体10から導出して電池缶5に熔接した。その後、電池
缶5の中に、プロピレンカーボネート50容量%とジエ
チルカーボネート50容量%の混合溶媒に、LiClO
4を1モルなる濃度で溶解させた電解液を注入した。次
いで、アスファルトを塗布したガスケット6を介して電
池蓋7と電池缶5をかしめることで、電池蓋7を固定し
直径18mm、高さ65mmの円筒型電池を作成した。
Next, the spiral electrode body was housed in a nickel-plated iron battery can 5, and insulating plates 4 were arranged on both upper and lower surfaces of the spiral electrode body. Then, in order to collect the currents of the positive electrode and the negative electrode, the aluminum lead 13 is led out from the positive electrode current collector 11 and welded to the safety valve device having the current interrupting device 8 and the PTC element 9, and the nickel lead 12 is collected in the negative electrode. It was led out from the electric body 10 and welded to the battery can 5. Then, in the battery can 5, LiClO was added to a mixed solvent of 50% by volume of propylene carbonate and 50% by volume of diethyl carbonate.
An electrolyte solution in which 4 was dissolved at a concentration of 1 mol was injected. Then, the battery lid 7 and the battery can 5 were caulked via the gasket 6 coated with asphalt, thereby fixing the battery lid 7 and producing a cylindrical battery having a diameter of 18 mm and a height of 65 mm.

【0062】比較例1 リチウムイオン伝導性固体電解質層を被覆させていない
LiNi0.8Co0.22を正極活物質として用いること
以外は実施例1と同様にして円筒型電池を作製した。
Comparative Example 1 A cylindrical battery was produced in the same manner as in Example 1 except that LiNi 0.8 Co 0.2 O 2 which was not coated with the lithium ion conductive solid electrolyte layer was used as the positive electrode active material.

【0063】以上のようにして作製した電池について、
充電電圧4.20V、充電電流l000mA、充電時間
2.5時間の条件で充電を行なった後、放電電流500
mA、終止電圧2.75Vの条件で放電を行い、初期容
量を測定した。
Regarding the battery manufactured as described above,
After charging under conditions of a charging voltage of 4.20 V, a charging current of 1000 mA and a charging time of 2.5 hours, a discharging current of 500
The discharge was performed under the conditions of mA and final voltage of 2.75 V, and the initial capacity was measured.

【0064】次いで、温度60℃の高温環境雰囲気で、
先と同じ条件で充放電サイクルを繰り返し行い、2サイ
クル目に対する300サイクル目の容量維持率を求め
た。その結果を表1に示す。
Next, in a high temperature environment atmosphere of 60 ° C.,
The charge / discharge cycle was repeated under the same conditions as above, and the capacity retention ratio at the 300th cycle with respect to the second cycle was obtained. Table 1 shows the results.

【0065】[0065]

【表1】 [Table 1]

【0066】表1に示すように、正極活物質にリチウム
イオン伝導性固体電解質層を被覆させた実施例1の電池
は、正極活物質にこのような電解質層を被覆させていな
い比較例1の電池に比べて、高温環境下において大きな
容量維持率が得られ、また初期容量も遜色のないものに
なっている。
As shown in Table 1, the battery of Example 1 in which the positive electrode active material was coated with the lithium ion conductive solid electrolyte layer was the same as in Comparative Example 1 in which the positive electrode active material was not coated with such an electrolyte layer. Compared with batteries, a large capacity retention rate was obtained in a high temperature environment, and the initial capacity was comparable.

【0067】このことから、正極活物質表面にリチウム
イオン伝導性固体電解質層を被覆することは、電池の高
温特性を改善する上で有効であることがわかった。
From this, it was found that coating the surface of the positive electrode active material with the lithium ion conductive solid electrolyte layer is effective in improving the high temperature characteristics of the battery.

【0068】次に、正極活物質に被覆させるイオン固体
電解質層の厚さを検討した。
Next, the thickness of the ionic solid electrolyte layer coated on the positive electrode active material was examined.

【0069】実験例1〜実験例4 LiNi0.8Co0.22を電解質層用溶液中で放置する
時間を変えることで、リチウムイオン伝導性固体電解質
層の厚さを表2に示すように変えたこと以外は実施例1
と同様にして円筒型電池を作製した。
Experimental Examples 1 to 4 The thickness of the lithium ion conductive solid electrolyte layer was changed as shown in Table 2 by changing the time for which LiNi 0.8 Co 0.2 O 2 was left in the electrolyte layer solution. Example 1 except for the above
A cylindrical battery was produced in the same manner as in.

【0070】作製した電池について、上述と同様にして
初期容量及び高温環境下での容量維持率を求めた。その
結果を、リチウムイオン伝導性固体電解質層の厚さと併
せて表2に示す。
With respect to the manufactured battery, the initial capacity and the capacity retention rate under a high temperature environment were determined in the same manner as described above. The results are shown in Table 2 together with the thickness of the lithium ion conductive solid electrolyte layer.

【0071】[0071]

【表2】 [Table 2]

【0072】表2に示すように、正極活物質に被覆させ
た固体電解質層の厚さが0.1μm未満である実験例1
の電池では、先の比較例1の電池に比べれば、高温環境
下における容量維持率は改善されているものの、十分で
あるとは言えない。
As shown in Table 2, Experimental Example 1 in which the thickness of the solid electrolyte layer coated with the positive electrode active material was less than 0.1 μm
In comparison with the battery of Comparative Example 1 above, the battery of No. 1 has an improved capacity retention rate in a high temperature environment, but it cannot be said to be sufficient.

【0073】また、正極活物質に被覆させた固体電解質
層の厚さが10μmを越える実験例4の電池では、高温
環境下での容量維持率は十分に改善されているが、初期
容量が低い値になっている。
Further, in the battery of Experimental Example 4 in which the thickness of the solid electrolyte layer coated with the positive electrode active material exceeds 10 μm, the capacity retention rate under a high temperature environment is sufficiently improved, but the initial capacity is low. It is a value.

【0074】このことから、初期容量を維持しながら電
池の高温特性を改善するには、正極活物質に被覆させる
リチウムイオン伝導性固体電解質層の厚さは0.1〜1
0μmが適当であることがわかった。
From this, in order to improve the high temperature characteristics of the battery while maintaining the initial capacity, the thickness of the lithium ion conductive solid electrolyte layer coated on the positive electrode active material is 0.1 to 1
It has been found that 0 μm is suitable.

【0075】次に、リチウム複合酸化物の種類及びリチ
ウムイオン伝導性固体電解質層の組成を変えた場合につ
いての検討を行った。
Next, a study was carried out in the case where the type of lithium composite oxide and the composition of the lithium ion conductive solid electrolyte layer were changed.

【0076】実験例5 プロピレンカーボネート35体積%とエチレンカーボネ
ート35体積%の混合溶媒に、LiClO4を10重量
%溶解させた後、アクリロニトリルを20重量%をゆっ
くり加え、100℃前後で加熱することで電解質層用溶
液を調製した。この電解質層用溶液に、LiNi0.8
0.22を投入し、1時間混合攪拌することで、LiN
0.8Co0.22の表面に、ポリアクリロニトリルより
なるリチウムイオン伝導性固体電解質層を形成した。
Experimental Example 5 After 10% by weight of LiClO 4 was dissolved in a mixed solvent of 35% by volume of propylene carbonate and 35% by volume of ethylene carbonate, 20% by weight of acrylonitrile was slowly added and heated at about 100 ° C. A solution for the electrolyte layer was prepared. LiNi 0.8 C was added to this electrolyte layer solution.
By adding 0.2 O 2 and mixing and stirring for 1 hour, LiN
A lithium ion conductive solid electrolyte layer made of polyacrylonitrile was formed on the surface of i 0.8 Co 0.2 O 2 .

【0077】このリチウムイオン伝導性固体電解質層で
被覆されたLiNi0.8Co0.22を正極活物質として
用いること以外は実施例1と同様にして円筒型電池を作
製した。
A cylindrical battery was produced in the same manner as in Example 1 except that LiNi 0.8 Co 0.2 O 2 coated with this lithium ion conductive solid electrolyte layer was used as the positive electrode active material.

【0078】実験例6 プロピレンカーボネート35体積%とスルホラン35体
積%の混合溶媒に、LiClO4を10重量%溶解させ
た後、ビニルスルホンを20重量%をゆっくり加えるこ
とで電解質層用溶液を調製した。この電解質層用溶液
に、LiNi0.8Co0.22を投入し、1時間混合攪拌
することで、LiNi0.8Co0.22の表面に、ポリビ
ニルスルホンよりなるリチウムイオン伝導性固体電解質
層を形成した。
Experimental Example 6 A solution for electrolyte layer was prepared by dissolving 10% by weight of LiClO 4 in a mixed solvent of 35% by volume of propylene carbonate and 35% by volume of sulfolane, and then slowly adding 20% by weight of vinyl sulfone. . LiNi 0.8 Co 0.2 O 2 was added to this electrolyte layer solution and mixed and stirred for 1 hour to form a lithium ion conductive solid electrolyte layer made of polyvinyl sulfone on the surface of LiNi 0.8 Co 0.2 O 2 .

【0079】このリチウムイオン伝導性固体電解質層で
被覆されたLiNi0.8Co0.22を正極活物質として
用いること以外は実施例1と同様にして円筒型電池を作
製した。
A cylindrical battery was produced in the same manner as in Example 1 except that LiNi 0.8 Co 0.2 O 2 coated with this lithium ion conductive solid electrolyte layer was used as the positive electrode active material.

【0080】実験例7 リチウム塩として炭酸リチウム、マンガン塩として二酸
化マンガンを用意し、これらをLi/Mn(モル比)が
l/2となるように計量、混合し、酸素雰囲気中、温度
850℃で5時間焼成することでスピネル型正極活物質
LiMn24を合成した。そして、このLiMn2
4を、実施例1と同様の電解質層用溶液を用いてリチウ
ムイオン伝導性固体電解質層で被覆した。
Experimental Example 7 Lithium carbonate was prepared as the lithium salt, and manganese dioxide was prepared as the manganese salt. These were weighed and mixed so that the Li / Mn (molar ratio) was 1/2, and the temperature was 850 ° C. in an oxygen atmosphere. Then, the spinel type positive electrode active material LiMn 2 O 4 was synthesized by firing for 5 hours. And this LiMn 2 O
4 was coated with a lithium ion conductive solid electrolyte layer using the same electrolyte layer solution as in Example 1.

【0081】このリチウムイオン伝導性固体電解質層で
被覆されたLiMn24を正極活物質として用いること
以外は実施例1と同様にして円筒型電池を作製した。
A cylindrical battery was produced in the same manner as in Example 1 except that LiMn 2 O 4 coated with this lithium ion conductive solid electrolyte layer was used as the positive electrode active material.

【0082】実験例8 リチウム塩として炭酸リチウム、コバルト塩として炭酸
コバルトを用意し、これらをLi/Co(モル比)が1
/1となるように計量、混合し、酸素雰囲気中、温度9
00℃で5時間焼成することで正極活物質LiCoO2
を合成した。そして、このLiCoO2を、実施例1と
同様の電解質層用溶液を用いてリチウムイオン伝導性固
体電解質層で被覆した。
Experimental Example 8 Lithium carbonate was prepared as a lithium salt and cobalt carbonate was prepared as a cobalt salt, and these had a Li / Co (molar ratio) of 1
Weigh and mix so that it becomes 1/1, and in an oxygen atmosphere, temperature 9
By firing at 00 ° C. for 5 hours, the positive electrode active material LiCoO 2
Was synthesized. Then, this LiCoO 2 was coated with a lithium ion conductive solid electrolyte layer using the same electrolyte layer solution as in Example 1.

【0083】このリチウムイオン伝導性固体電解質層で
被覆されたLiCoO2を正極活物質として用いること
以外は実施例1と同様にして円筒型電池を作製した作製
した電池について、上述と同様にして高温環境下での容
量維持率を求めた。その結果を、リチウム複合酸化物の
種類及び固体電解質層の組成と併せて表3に示す。
A cylindrical battery was manufactured in the same manner as in Example 1 except that LiCoO 2 coated with this lithium ion conductive solid electrolyte layer was used as the positive electrode active material. The capacity retention rate under the environment was obtained. The results are shown in Table 3 together with the type of lithium composite oxide and the composition of the solid electrolyte layer.

【0084】[0084]

【表3】 [Table 3]

【0085】表3に示すように、リチウムイオン伝導性
固体電解質層で被覆された正極活物質を用いる実験例5
〜実験例8の電池は、いずれも高温環境下において大き
な容量維持率が得られる。
As shown in Table 3, Experimental Example 5 using a positive electrode active material coated with a lithium ion conductive solid electrolyte layer
The batteries of Experimental Example 8 all have a large capacity retention rate in a high temperature environment.

【0086】このことから、ポリアクリロニトリル、ポ
リビニルスルホン等よりなるリチウムイオン伝導性固体
電解質層もポリエチレンオキシドよりなるリチウムイオ
ン伝導性固体電解質層と同様に電池の高温環境下での容
量劣化を抑える効果を有することがわかった。また、そ
の効果は、LiNi0.8Co0.22に限らず、LiMn2
4,LiCoO2等をリチウム複合酸化物として用いた
場合でも同様に発揮されることがわかった。
Therefore, the lithium ion conductive solid electrolyte layer made of polyacrylonitrile, polyvinyl sulfone or the like has the same effect of suppressing the capacity deterioration of the battery in a high temperature environment as the lithium ion conductive solid electrolyte layer made of polyethylene oxide. Found to have. Moreover, the effect is not limited to LiNi 0.8 Co 0.2 O 2 , but LiMn 2
It was found that even when O 4 , LiCoO 2 or the like was used as the lithium composite oxide, the same effect was exhibited.

【0087】[0087]

【発明の効果】以上の説明からも明らかなように、本発
明の非水電解液二次電池では、表面にリチウムイオン伝
導性固体電解質層が形成されたリチウム複合酸化物を正
極活物質として用いるので、高温環境下で保存したり充
放電を繰り返した場合でも電池容量が高く維持され、良
好な性能を得ることができる。
As is apparent from the above description, in the non-aqueous electrolyte secondary battery of the present invention, the lithium composite oxide having the lithium ion conductive solid electrolyte layer formed on the surface is used as the positive electrode active material. Therefore, even when the battery is stored in a high temperature environment or repeatedly charged and discharged, the battery capacity is kept high and good performance can be obtained.

【0088】したがって、本発明によれば非水電解液二
次電池の実用性が大いに向上し、工業的価値は大きい。
Therefore, according to the present invention, the practicality of the non-aqueous electrolyte secondary battery is greatly improved and the industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した非水電解液二次電池の1構成
例を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing one structural example of a non-aqueous electrolyte secondary battery to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 負極 2 正極 1 negative electrode 2 positive electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウム複合酸化物を正極活物質とし、
リチウム、リチウム合金またはリチウムをドープ且つ脱
ドープし得る炭素質材料を負極活物質とする非水電解液
二次電池において、 正極活物質となるリチウム複合酸化物の表面にリチウム
イオン伝導性固体電解質層が形成されていることを特徴
とする非水電解液二次電池。
1. A lithium composite oxide as a positive electrode active material,
In a non-aqueous electrolyte secondary battery having a negative electrode active material of lithium, a lithium alloy, or a carbonaceous material capable of doping and dedoping lithium, a lithium ion conductive solid electrolyte layer is formed on the surface of a lithium composite oxide serving as a positive electrode active material. The non-aqueous electrolyte secondary battery is characterized in that:
【請求項2】 リチウムイオン伝導性固体電解質層の厚
さが、0.1〜l0μmであることを特徴とする請求項
1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the thickness of the lithium ion conductive solid electrolyte layer is 0.1 to 10 μm.
JP7236676A 1995-09-14 1995-09-14 Nonaqueous electrolyte secondary battery Withdrawn JPH0982360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7236676A JPH0982360A (en) 1995-09-14 1995-09-14 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7236676A JPH0982360A (en) 1995-09-14 1995-09-14 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH0982360A true JPH0982360A (en) 1997-03-28

Family

ID=17004138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7236676A Withdrawn JPH0982360A (en) 1995-09-14 1995-09-14 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0982360A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030709A (en) * 1998-07-15 2000-01-28 Nissan Motor Co Ltd Manganese-lithium ion battery
WO2006018921A1 (en) * 2004-08-18 2006-02-23 Central Research Institute Of Electric Power Industry Organic electrolyte battery, and process for producing positive electrode sheet for use therein
JP2006318815A (en) * 2005-05-13 2006-11-24 Nissan Motor Co Ltd Cathode material for nonaqueous electrolyte lithium ion battery, battery using same, and manufacturing method of cathode material for nonaqueous electrolyte lithium ion battery
JP2006344523A (en) * 2005-06-09 2006-12-21 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion battery, battery using the same, and method of manufacturing positive electrode material for nonaqueous electrolyte lithium ion battery
JP2007005267A (en) * 2005-06-27 2007-01-11 Central Res Inst Of Electric Power Ind Lithium ion secondary battery using ordinary temperature molten salt and its manufacturing method
JP2007048525A (en) * 2005-08-08 2007-02-22 Nissan Motor Co Ltd Cathode material for nonaqueous electrolyte lithium ion battery, and battery using the same
JP2007527603A (en) * 2004-08-17 2007-09-27 エルジー・ケム・リミテッド Lithium secondary battery with improved safety and performance
US7976988B2 (en) * 1999-07-13 2011-07-12 Ube Industries, Ltd. Non-aqueous electrolyte and lithium secondary battery using the same
JP2012084420A (en) * 2010-10-13 2012-04-26 Hitachi Maxell Energy Ltd Lithium secondary battery
JP2013045560A (en) * 2011-08-23 2013-03-04 Toyota Motor Corp Sintered type electrode and battery
WO2023137485A1 (en) * 2022-01-17 2023-07-20 Global Graphene Group, Inc. Inorganic-polymeric hybrid solid-state electrolytes, lithium batteries containing same, and production processes

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030709A (en) * 1998-07-15 2000-01-28 Nissan Motor Co Ltd Manganese-lithium ion battery
US7976988B2 (en) * 1999-07-13 2011-07-12 Ube Industries, Ltd. Non-aqueous electrolyte and lithium secondary battery using the same
JP4757861B2 (en) * 2004-08-17 2011-08-24 エルジー・ケム・リミテッド Lithium secondary battery with improved safety and performance
JP2007527603A (en) * 2004-08-17 2007-09-27 エルジー・ケム・リミテッド Lithium secondary battery with improved safety and performance
JPWO2006018921A1 (en) * 2004-08-18 2008-05-01 財団法人電力中央研究所 Polymer solid electrolyte battery and method for producing positive electrode sheet used therein
WO2006018921A1 (en) * 2004-08-18 2006-02-23 Central Research Institute Of Electric Power Industry Organic electrolyte battery, and process for producing positive electrode sheet for use therein
JP4997400B2 (en) * 2004-08-18 2012-08-08 一般財団法人電力中央研究所 Polymer solid electrolyte battery and method for producing positive electrode sheet used therefor
US8592090B2 (en) 2004-08-18 2013-11-26 Central Research Institute Of Electric Power Industry Solid polymer electrolyte battery and method for manufacturing positive electrode sheet used therein
JP2006318815A (en) * 2005-05-13 2006-11-24 Nissan Motor Co Ltd Cathode material for nonaqueous electrolyte lithium ion battery, battery using same, and manufacturing method of cathode material for nonaqueous electrolyte lithium ion battery
JP2006344523A (en) * 2005-06-09 2006-12-21 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion battery, battery using the same, and method of manufacturing positive electrode material for nonaqueous electrolyte lithium ion battery
JP2007005267A (en) * 2005-06-27 2007-01-11 Central Res Inst Of Electric Power Ind Lithium ion secondary battery using ordinary temperature molten salt and its manufacturing method
JP2007048525A (en) * 2005-08-08 2007-02-22 Nissan Motor Co Ltd Cathode material for nonaqueous electrolyte lithium ion battery, and battery using the same
JP2012084420A (en) * 2010-10-13 2012-04-26 Hitachi Maxell Energy Ltd Lithium secondary battery
JP2013045560A (en) * 2011-08-23 2013-03-04 Toyota Motor Corp Sintered type electrode and battery
WO2023137485A1 (en) * 2022-01-17 2023-07-20 Global Graphene Group, Inc. Inorganic-polymeric hybrid solid-state electrolytes, lithium batteries containing same, and production processes

Similar Documents

Publication Publication Date Title
EP1256995B1 (en) Nonaqueous electrolytic secondary battery
US5352548A (en) Secondary battery
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US7601462B2 (en) Cathode active material for lithium rechargeable battery and lithium rechargeable battery using the same
JPH08213015A (en) Positive active material for lithium secondary battery and lithium secondary battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JP3588885B2 (en) Non-aqueous electrolyte battery
JP3260282B2 (en) Non-aqueous electrolyte lithium secondary battery
JP3451763B2 (en) Manufacturing method of positive electrode active material
JP2003203631A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP3755506B2 (en) Anode material for secondary battery and secondary battery using the same
JPH0982360A (en) Nonaqueous electrolyte secondary battery
JP3564756B2 (en) Non-aqueous electrolyte secondary battery
JPH10208777A (en) Non-aqueous electrolyte secondary battery
JPH0684542A (en) Nonaqueous electrolytic solution secondary battery
JP2002025617A (en) Nonaqueous electrolyte secondary battery
JP2001057233A (en) Non-aqueous electrolyte secondary battery
JP3530174B2 (en) Positive electrode active material and lithium ion secondary battery
JP2003331840A (en) Positive pole active substance for lithium ion secondary battery and method of manufacturing the active substance, and lithium ion secondary battery
CN113363490B (en) Based on Li content2Lithium secondary battery with O anode and negative electrode without active material and preparation method thereof
JPH09199172A (en) Nonaqueous electrolyte secondary battery
JPH0487268A (en) Nonaqueous electrolyte secondary battery
JP2001052760A (en) Charging method of nonaqueous electrolyte secondary battery
JP2003217568A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203