JPH08222209A - Nonaqueous electrolyte battery and manufacture of its positive electrode - Google Patents

Nonaqueous electrolyte battery and manufacture of its positive electrode

Info

Publication number
JPH08222209A
JPH08222209A JP7028094A JP2809495A JPH08222209A JP H08222209 A JPH08222209 A JP H08222209A JP 7028094 A JP7028094 A JP 7028094A JP 2809495 A JP2809495 A JP 2809495A JP H08222209 A JPH08222209 A JP H08222209A
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
electrolyte battery
organic compound
polar organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7028094A
Other languages
Japanese (ja)
Inventor
Yukihiro Ogura
幸弘 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP7028094A priority Critical patent/JPH08222209A/en
Publication of JPH08222209A publication Critical patent/JPH08222209A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To stabilize discharging characteristics of a battery for a long period by forming a specific layer on the surface of a positive electrode constituent member in contact with electrolyte and thereby increasing corrosion resistance of the constituent member in a battery comprising a positive electrode, a negative electrode with Li, Na, etc., as the active material and nonaqueous electrolyte. CONSTITUTION: Polar organic compound corrosion solution having corrosion resistance to non-aqueous electrolyte 5 is applied to the surface of a positive electrode, 1, constituent member (e.g. stainless steel), at least, in contact with non-aqueous electrolyte 5 (e.g. lithium perchlorate dissolved in mixture solution of propylene carbonate and 1,2-dimethoxyethane), preferably heated at 50-100 deg.C, so that an adsorption layer 2 of polar organic compound is formed. As the polar organic compound, preferably, the following are selected; with group 5B, 6B or 7B of periodic table as the central atom, RCI, BBr, RI, R2 O, R2 S, R2 Se, R2 Te, R3 N, R3 P, R3 Sb (R is n-propyl).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム,ナトリウム
などの軽金属を活物質とする負極と、非水電解液と、金
属の酸化物,硫化物,ハロゲン化物などを活物質とする
正極とを備えた非水電解液電池に関するものである。
The present invention relates to a negative electrode using a light metal such as lithium or sodium as an active material, a non-aqueous electrolyte, and a positive electrode using a metal oxide, sulfide, halide or the like as an active material. The present invention relates to a provided non-aqueous electrolyte battery.

【0002】[0002]

【従来の技術】この種非水電解液電池において、正極活
物質と直接或いは間接的に電気接続された正極構成部
材、例えば正極缶や正極集電体の材料としてニッケル含
有量が約3〜20重量%のオーステナイト系ステンレス
鋼が一般に用いられているが、電池の保存中に正極構成
金属が電解液中に溶解し、負極上に析出して内部抵抗を
増大させるとか、また極端な場合には穴あき現象を生じ
ることがあった。この原因はステンレス鋼に含まれるニ
ッケル量に依存すると考えられ、ニッケル量が多いほど
顕著であった。
2. Description of the Related Art In this type of non-aqueous electrolyte battery, a nickel content of about 3 to 20 is used as a material for a positive electrode constituent member, such as a positive electrode can or a positive electrode current collector, which is directly or indirectly electrically connected to a positive electrode active material. Weight% austenitic stainless steel is generally used, but during storage of the battery, the positive electrode constituent metal dissolves in the electrolytic solution and precipitates on the negative electrode to increase the internal resistance, or in extreme cases. Occasionally, a perforation phenomenon occurred. It is considered that this cause depends on the amount of nickel contained in the stainless steel, and was more remarkable as the amount of nickel increased.

【0003】そこで、正極構成部材としてニッケルをほ
とんど含まず、応力下での割れ感受性の少ないフェライ
ト系ステンレス鋼を用いることが提案されたが、この場
合にも高温で長期間保存すると正極構成金属の溶解現象
が認められた。
Therefore, it has been proposed to use a ferritic stainless steel which contains almost no nickel and has little cracking susceptibility under stress as the positive electrode constituent member. A dissolution phenomenon was observed.

【0004】しかしながら、この種非水電解液電池は、
従来の銀電池,アルカリ電池に比べて負己放電が小さい
ため長期間の使用に耐えうるものであり、そのため最近
では使用機器側のエレクトロニクスの発展と相俟って微
少電流による長期に亘る放電特性の安定性が求められる
ようになってきた。ここで述べる微少電流とは高々数μ
Aであるが、このような微少電流放電下において長期間
安定した放電特性を得るためには特に電池自身の高信頼
性が重要である。
However, this type of non-aqueous electrolyte battery is
Compared to conventional silver batteries and alkaline batteries, the self-discharge is smaller, so it can withstand long-term use. Therefore, in recent years, along with the development of electronics on the equipment side, long-term discharge characteristics due to minute current flow have been achieved. The stability of has come to be demanded. The minute current described here is at most a few μ
However, in order to obtain stable discharge characteristics for a long period of time under such a minute current discharge, high reliability of the battery itself is particularly important.

【0005】[0005]

【発明が解決しようとする課題】また、近年においては
非水電解液電池の二次系も開発が活発化している。例え
ば、充電時に高電圧となると正極構成部材が腐蝕をう
け、溶解した金属イオンが負極表面に析出して不働態皮
膜を形成し電池寿命が短かくなる、という問題があるの
で、二次電池系においては高温保存時に加え充電時の観
点からも正極構成部材は耐蝕性に優れたものの開発が要
望されていた。
Further, in recent years, the development of secondary systems for non-aqueous electrolyte batteries has become active. For example, when a high voltage is applied during charging, the positive electrode component is corroded, and dissolved metal ions are deposited on the negative electrode surface to form a passive film, which shortens the battery life. In the above, there has been a demand for development of a positive electrode constituent member having excellent corrosion resistance not only during storage at high temperature but also during charging.

【0006】本発明は上記事情に鑑みてなされたもの
で、その目的は、高温保存時或いは充電時における正極
構成部材の溶解を因とする電池特性の劣化を抑制した非
水電解液電池を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a non-aqueous electrolyte battery which suppresses deterioration of battery characteristics due to dissolution of a positive electrode constituent member during high temperature storage or charging. To do.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の非水電解液電池正極の製造方法
は、非水電解液に対して耐蝕性を有する極性有機化合物
腐食溶液を正極構成部材の少なくとも電解液と接する表
面に塗布し、加熱処理して前記極性有機化合物による吸
着層を形成したことを特徴とする。
In order to achieve the above object, the method for producing a positive electrode for a non-aqueous electrolyte battery according to claim 1 of the present invention is directed to corrosion of a polar organic compound having corrosion resistance to a non-aqueous electrolyte solution. The solution is applied to at least the surface of the positive electrode constituent member that is in contact with the electrolytic solution, and heat-treated to form an adsorption layer of the polar organic compound.

【0008】本発明の請求項2は、請求項1記載の非水
電解液電池正極の製造方法において、前記加熱処理温度
は、50〜100℃であることを特徴とする。本発明の
請求項3は、請求項1記載の非水電解液電池の製造方法
において、前記極性有機化合物は、周期率表の5B,6
B及び7B族を中心原子とするRCl,RBr,BI,
2 O,R2 S,R2 Se,R2 Te,R3 N,R
3 P,R3Sb(Rはn−プロピル基)であることを特
徴とする。
According to a second aspect of the present invention, in the method for producing a positive electrode for a non-aqueous electrolyte battery according to the first aspect, the heat treatment temperature is 50 to 100 ° C. A third aspect of the present invention is the method for producing a non-aqueous electrolyte battery according to the first aspect, wherein the polar organic compound is 5B or 6 in the periodic table.
RCl, RBr, BI having B and 7B groups as central atoms
R 2 O, R 2 S, R 2 Se, R 2 Te, R 3 N, R
3 P, R 3 Sb (R is an n-propyl group).

【0009】本発明の請求項4の非水電解液電池は、請
求項1,請求項2または請求項3記載で製作された非水
電解液電池正極と、リチウム,ナトリウムなどの軽金属
を活物質とする負極と、非水電解液とを備えたことを特
徴とする。
The non-aqueous electrolyte battery according to claim 4 of the present invention is the non-aqueous electrolyte battery positive electrode manufactured according to claim 1, claim 2 or claim 3, and a light metal such as lithium or sodium as an active material. And a non-aqueous electrolyte solution.

【0010】[0010]

【作用】本発明者は種々研究を重ねた結果、正極構成部
材の少なくとも電解液と接する面に極性有機化合物の腐
食溶液を塗布し、50〜100℃で加熱処理することで
液の蒸発とともに極性有機化合物による均一な吸着層が
形成され、この吸着層は非水電解液に対して溶出される
ことなく、かつこの吸着層は非水電解液に対する腐蝕性
に対しても良好な効果を発揮するので、よって耐蝕性の
良好な正極構成部材が得られ故に長期に亘る放電特性が
安定で高信頼性をもつ、有機電解液電池が容易に得られ
ることが分かった。
As a result of various studies, the present inventor applied a corrosive solution of a polar organic compound to at least the surface of the positive electrode constituent member in contact with the electrolytic solution, and heat-treated at 50 to 100 ° C. A uniform adsorption layer is formed by the organic compound, this adsorption layer is not eluted into the non-aqueous electrolyte, and this adsorption layer also exhibits a good effect on the corrosiveness to the non-aqueous electrolyte. Therefore, it was found that an organic electrolyte battery having stable discharge characteristics over a long period of time and high reliability was easily obtained because a positive electrode constituent member having good corrosion resistance was obtained.

【0011】このように加熱処理溶液を前記のように5
0〜100℃としたのは、処理温度が100℃より高い
場合は、正極構成部材の少なくとも電解液と接する表面
に水溶液からつけた極性有機化合物の吸着層が耐蝕性を
示さなくなるからである。
In this way, the heat treatment solution was added as described above.
The reason for setting the temperature to 0 to 100 ° C. is that, when the treatment temperature is higher than 100 ° C., the adsorption layer of the polar organic compound applied from the aqueous solution to at least the surface of the positive electrode constituent member in contact with the electrolytic solution does not show corrosion resistance.

【0012】また極性有機化合物Rn X:がインヒビタ
ーとして金属Mに化学吸着するとき、極性基の非共有電
子対を金属の空のオービタルへ供与することで吸着結合
を生じる。従ってインヒビターはルイス塩基、金属はル
イス酸として作用し、吸着結合の安定性は硬い及び軟か
い酸塩基の法則(HSAB則)と関係する。不働態のよ
うに金属表面が酸化物が被われている場合、酸化物表面
の金属イオンMm+がインヒビターの吸着点となり得る。
When the polar organic compound Rn X: is chemically adsorbed on the metal M as an inhibitor, an unfavorable electron pair of the polar group is donated to an empty orbital of the metal to cause an adsorptive bond. Therefore, the inhibitor acts as a Lewis base and the metal acts as a Lewis acid, and the stability of the adsorptive bond is related to the hard and soft acid-base law (HSAB law). When the metal surface is covered with an oxide as in the passive state, the metal ion M m + on the oxide surface can be the adsorption point of the inhibitor.

【0013】さらに、多価の金属イオンは硬い酸に属す
るので、硬い塩基であるインヒビターほど安定な吸着結
合を作り、吸着量は増加し、正極構成部材の不働態酸化
被膜の表面にRn X:Mm+の吸着結合の形で吸着層を形
成することで不働態酸化被膜を吸着層が保護し不働態酸
化被膜を溶出させたり、あるいは破壊させるような環境
での局部腐蝕、例えば孔食,隙間腐蝕を防止することが
できるので正極構成部材の腐蝕も抑制され内部抵抗の上
昇を抑える事が可能となる。
Further, since the polyvalent metal ion belongs to a hard acid, the more stable the base, the more stable the adsorptive bond is formed, and the more the adsorption amount is increased, the Rn X: is formed on the surface of the passive oxide film of the positive electrode constituent member. By forming an adsorption layer in the form of M m + adsorption bond, the adsorption layer protects the passive oxide film and elutes or destroys the passive oxide film. Local corrosion such as pitting or crevice. Since it is possible to prevent corrosion, it is possible to suppress corrosion of the positive electrode constituent member and suppress an increase in internal resistance.

【0014】また、酸化物で被われていない金属の場合
でも、金属は軟らかい酸であるので、軟らかい塩基であ
るインヒビターほど安定な吸着結合を作り吸着量は増加
し、正極構成部材の表面にRn X:Mの吸着結合の形で
吸着層を形成することで、金属の表面を吸着層が保護
し、その結果、金属の腐蝕反応は抑制される。
Further, even in the case of a metal which is not covered with an oxide, since the metal is a soft acid, a more stable adsorption bond is formed as the inhibitor is a soft base, and the adsorption amount increases, and Rn is formed on the surface of the positive electrode constituent member. By forming the adsorption layer in the form of an X: M adsorption bond, the surface of the metal is protected by the adsorption layer, and as a result, the corrosion reaction of the metal is suppressed.

【0015】[0015]

【実施例】以下、本発明の実施例を図を参照して説明す
る。図1は本発明の一実施例の縦断面図である。まず、
陽極缶を水平に回転させながら、その側面と底面との角
部に濃度5%のトリプロピルアンチモンを3.0MHC
lO4 及び0.15MH3 BO3 −0.0357MNa
2 4 7 緩衝溶液(pH8.45)の腐蝕溶液に溶解
した溶液を12μlを注入し、回転による遠心力を利用
して陽極缶の側面と底面とにトリプロピルアンチモンの
腐蝕溶液を塗布し、次にこれを真空乾燥機に入れ減圧し
ながら80℃で5分間加熱処理してトリプロピルアンチ
モンの均一な吸着層を形成させた。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a vertical sectional view of an embodiment of the present invention. First,
While rotating the anode can horizontally, 3.0 MHC of 5% concentration of tripropylantimony was added to the corners of the side and bottom.
lO 4 and 0.15MH 3 BO 3 -0.0357MNa
Inject 12 μl of a solution prepared by dissolving 2 B 4 O 7 buffer solution (pH 8.45) in a corrosive solution, and apply the tripropylantimony corrosive solution to the side surface and the bottom surface of the anode can by using centrifugal force by rotation. Then, this was placed in a vacuum dryer and heat-treated at 80 ° C. for 5 minutes under reduced pressure to form a uniform adsorption layer of tripropylantimony.

【0016】この陽極缶を用い、次に示すようにして図
1及び図2に示す有機電解液電池を組立てた。これらの
図において、1はステンレス鋼(SUS304 )製の正極
端子を兼ねる陽極缶、3はステンレス鋼(SUS304 )
製の陰極缶である。また、2はトリプロピルアンチモン
の吸着層、4は負極活物質としてのリチウム負極、5は
電解液、6はポリプロピレン製のセパレータで,厚さ
0.025mmの微孔性フィルム、7は正極活物質とし
ての二酸化マンガンと導電材と結着材とからなる正極合
剤、8は電解液を保持した導電材の多孔性メタルとして
SUS304 製の金属焼結体である。この金属焼結体8は
オーステナイトステンレス(SUS304 )の粉末を成型
焼結して多孔性メタルとしたものである。9はポリプロ
ピレン製パッキングである。
Using this anode can, the organic electrolyte battery shown in FIGS. 1 and 2 was assembled as follows. In these figures, 1 is an anode can made of stainless steel (SUS304) that also serves as a positive electrode terminal, and 3 is stainless steel (SUS304)
It is a cathode can made of. Further, 2 is an adsorption layer of tripropylantimony, 4 is a lithium negative electrode as a negative electrode active material, 5 is an electrolytic solution, 6 is a polypropylene separator, a microporous film having a thickness of 0.025 mm, and 7 is a positive electrode active material. Is a positive electrode mixture composed of manganese dioxide, a conductive material, and a binder, and 8 is a metal sintered body made of SUS304 as a porous metal of the conductive material holding an electrolytic solution. The metal sintered body 8 is obtained by molding and sintering powder of austenitic stainless steel (SUS304) into a porous metal. 9 is a polypropylene packing.

【0017】上記の電解液5はプロピレンカーボネイト
と1,2−ジメトキシエタンとの混合溶媒に過塩素酸リ
チウムを溶解させたものを使用し、250mgを電池内
に注液し図1及び図2に示すような直径20mm、高さ
3、2mmの有機電解液電池Aを組み立てた。表1は5
B族元素を中心原子とする化合物(5B族インヒビタ
ー)を示す。
As the above-mentioned electrolyte solution 5, a solution obtained by dissolving lithium perchlorate in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane is used. An organic electrolyte solution battery A having a diameter of 20 mm and a height of 3 and 2 mm as shown was assembled. Table 1 is 5
A compound containing a Group B element as a central atom (Group 5B inhibitor) is shown.

【0018】ここでRはn−プロピル基である。Here, R is an n-propyl group.

【0019】[0019]

【表1】 [Table 1]

【0020】この電池Aを60℃で100日間貯蔵し、
腐蝕発生個数を調べたところ試験に供した100個の電
池はいずれも腐蝕を発生しなかった。比較のため陽極缶
への腐蝕溶液の塗布を行なわなかった外は前記電池Bを
60℃で100日間貯蔵した腐蝕発生個数を調べたとこ
ろ試験に供した100個の電池のうち14個のものに腐
蝕が発生した。以上の結果を表2にまとめた。
This battery A was stored at 60 ° C. for 100 days,
When the number of corroded cells was examined, none of the 100 cells used in the test corroded. For comparison, except that the corrosion solution was not applied to the anode can, the number of corrosion occurrences of the battery B stored at 60 ° C. for 100 days was examined. As a result, it was found that 14 batteries out of 100 batteries were subjected to the test. Corrosion occurred. Table 2 summarizes the above results.

【0021】[0021]

【表2】 [Table 2]

【0022】表2に示すように、本発明で製造された電
池Aは腐蝕発生がなく、従来方法で製造された電池Bに
比べて腐蝕性がすぐれている。
As shown in Table 2, the battery A manufactured according to the present invention does not corrode and is superior in corrosion property to the battery B manufactured by the conventional method.

【0023】次に、トリプロピルアンチモンの腐蝕溶液
の塗布後の加熱処理温度が耐腐蝕性に与える影響につい
て調べた結果を示す。陽極缶1を水平に回転させながら
その側面と底面との角部に濃度5%のトリプロピルアン
チモンを3.0MHClO4 及び0.15MH3 BO3
−0.035MNa2 4 7 緩衝溶液(pH8.4
5)の腐蝕溶液に溶解した溶液12μlを注入し、回転
による遠心力を利用して陽極缶1の側面と底面とにトリ
プロピルアンチモンの腐蝕溶液を塗布し、この陽極缶1
を真空乾燥機に入れ、減圧しながら温度を後記表3に示
すように45℃,50℃,70℃,90℃及び105℃
と変え、それぞれ別々に5時間ずつ加熱処理して塗布面
にトリプロピルアンチモンの吸着層を形成させた。
Next, the results of examining the effect of the heat treatment temperature after the application of the corrosion solution of tripropylantimony on the corrosion resistance will be shown. While the anode can 1 is rotated horizontally, tripropyl antimony with a concentration of 5% is added to the corners of the side surface and the bottom surface of 3.0 M HClO 4 and 0.15 MH 3 BO 3.
-0.035MNa 2 B 4 O 7 buffer solution (pH 8.4
12 μl of a solution dissolved in the corrosion solution of 5) was injected, and the corrosion solution of tripropylantimony was applied to the side surface and the bottom surface of the anode can 1 by utilizing the centrifugal force due to the rotation.
Was placed in a vacuum dryer and the temperature was reduced to 45 ° C., 50 ° C., 70 ° C., 90 ° C. and 105 ° C. while reducing the pressure.
Instead, each was heat-treated separately for 5 hours to form an adsorption layer of tripropylantimony on the coated surface.

【0024】上記のように加熱処理温度を変えてトリプ
ロピルアンチモンの吸着層を陽極缶と電解液と接する表
面に形成した5種類の陽極缶1を用いそれぞれ前記と同
様にして有機電解液電池C,D,E,FおよびGを組み
立て、それらの電池C〜Gを各100個づつ60℃で1
00日間貯蔵し腐蝕発生個数を調べた。その結果を表3
に示す。
As described above, the organic electrolytic solution battery C was used in the same manner as above using the five kinds of anode cans 1 each having the adsorption layer of tripropylantimony formed on the surface in contact with the anode can and the electrolyte by changing the heat treatment temperature as described above. , D, E, F and G are assembled and 100 of each of those batteries C to G are made at 60 ° C.
It was stored for 00 days and the number of corrosion occurrences was examined. The results are shown in Table 3.
Shown in

【0025】[0025]

【表3】 [Table 3]

【0026】表3に示すように、50℃で加熱処理した
場合、80℃で加熱処理した場合及び100℃で加熱処
理した場合は腐蝕発生はなかった。
As shown in Table 3, no corrosion occurred when heat-treated at 50 ° C., heat-treated at 80 ° C. or heat-treated at 100 ° C.

【0027】次に、トリプロピルアンチモンの腐蝕液の
濃度,塗布量及び加熱処理の時間を変えてトリプロピル
アンチモンの吸着層を形成した場合について示す。陽極
缶1を水平に回転させながら、その側面と底面との角部
に後記の表4に示す濃度のトリプロピルアンチモンの腐
蝕溶液をそれぞれ表4に示す塗布量となるように注入
し、回転による遠心力を利用した陽極缶1の側面と底面
とにトリプロピルアンチモンの腐蝕溶液を塗布し、この
陽極缶1を真空乾燥機に入れ減圧しながらそれぞれ表4
に示す濃度及び時間で加熱処理して塗布面にトリプロピ
ルアンチモンの吸着層を形成させた。
Next, the case where an adsorbed layer of tripropylantimony is formed by changing the concentration of the tripropylantimony etchant, the coating amount, and the heat treatment time will be described. While the anode can 1 is rotated horizontally, a corrosive solution of tripropylantimony having a concentration shown in Table 4 described below is injected into the corners of the side surface and the bottom surface so that the coating amounts are respectively shown in Table 4, and A corrosion solution of tripropylantimony was applied to the side surface and the bottom surface of the anode can 1 using centrifugal force, and the anode can 1 was placed in a vacuum dryer and depressurized, respectively.
Heat treatment was performed at the concentration and time shown in (3) to form an adsorption layer of tripropylantimony on the coated surface.

【0028】上記のようにトリプロピルアンチモンの腐
蝕溶液の濃度,塗布量及び加熱処理の時間などを変えて
トリプロピルアンチモンの吸着層を形成した陽極缶1を
用い、それぞれ前記と同様にして有機電解液電池H,
I,J,K及びLを組み立てそれらの電池H〜Lを各1
00個づつ60℃で100日間貯蔵し腐蝕発生個数を調
べた。その結果を表4に示す。
As described above, the anode can 1 having the adsorbed layer of tripropylantimony formed by changing the concentration of the corrosive solution of tripropylantimony, the coating amount, the time of the heat treatment, etc. was used, and organic electrolysis was performed in the same manner as described above. Liquid battery H,
I, J, K, and L are assembled, and each of those batteries H to L is assembled.
Each piece was stored for 100 days at 60 ° C. for 100 days, and the number of corrosion occurrences was examined. The results are shown in Table 4.

【0029】[0029]

【表4】 [Table 4]

【0030】表4に示すように、トリプロピルアンチモ
ンの腐蝕溶液の濃度,塗布量及び加熱処理の時間を変え
てトリプロピルアンチモンの吸着層を形成した場合も腐
蝕発生が全くなかった。以上説明したように、本発明に
よれば耐蝕性の良好な有機電解液電池を提供することが
できる。
As shown in Table 4, even when the tripropylantimony corrosion solution concentration, coating amount and heat treatment time were changed to form a tripropylantimony adsorption layer, no corrosion occurred. As described above, according to the present invention, it is possible to provide an organic electrolyte battery having good corrosion resistance.

【0031】[0031]

【発明の効果】以上説明したように、本発明によると、
正極構成部材の電解液に接する表面には極性有機化合物
による均一な吸着層が形成され、この吸着層は電解液に
よって溶出されることなく、かつこの吸着層は非水電解
液に対する腐蝕性に対しても良好な効果を発揮するの
で、耐蝕性の良好な正極構成部材が得られる。したがっ
て、長期に亘る放電特性が安定で高信頼性をもつ有機電
解液電池が容易に得られる。
As described above, according to the present invention,
A uniform adsorption layer of a polar organic compound is formed on the surface of the positive electrode constituent member in contact with the electrolytic solution, the adsorption layer is not eluted by the electrolytic solution, and the adsorption layer is corrosive to the non-aqueous electrolytic solution. However, since the good effect is exhibited, the positive electrode constituent member having good corrosion resistance can be obtained. Therefore, it is possible to easily obtain an organic electrolyte battery having stable discharge characteristics over a long period of time and high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の縦断面図。FIG. 1 is a vertical sectional view of an embodiment of the present invention.

【図2】図1の要部拡大図。FIG. 2 is an enlarged view of a main part of FIG.

【符号の説明】[Explanation of symbols]

1…陽極缶、2…トリプロピルアンチモンの吸着層、3
…陰極缶、4…負極活物質、5…電解液、6…セパレー
タ、7…正極合剤、8…金属焼結体、9…パッキング。
1 ... Anode can, 2 ... Tripropylantimony adsorption layer, 3
... Cathode can, 4 ... Negative electrode active material, 5 ... Electrolyte solution, 6 ... Separator, 7 ... Positive electrode mixture, 8 ... Metal sintered body, 9 ... Packing.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非水電解液に対して耐蝕性を有する極性
有機化合物腐食溶液を正極構成部材の少なくとも電解液
と接する表面に塗布し、加熱処理して前記極性有機化合
物による吸着層を形成したことを特徴とする非水電解液
電池正極の製造方法。
1. A polar organic compound corrosive solution having corrosion resistance to a non-aqueous electrolytic solution is applied to at least a surface of a positive electrode constituent member which is in contact with the electrolytic solution and heat-treated to form an adsorption layer of the polar organic compound. A method for producing a positive electrode for a non-aqueous electrolyte battery, comprising:
【請求項2】 前記加熱処理温度は、50〜100℃で
あることを特徴とする請求項1記載の非水電解液電池正
極の製造方法。
2. The method for producing a non-aqueous electrolyte battery positive electrode according to claim 1, wherein the heat treatment temperature is 50 to 100 ° C.
【請求項3】 前記極性有機化合物は、周期率表の5
B,6B及び7B族を中心原子とするRCl,RBr,
BI,R2 O,R2 S,R2 Se,R2 Te,R3 N,
3 P,R3 Sb(Rはn−プロピル基)であることを
特徴とする請求項1記載の非水電解液電池の製造方法。
3. The polar organic compound is 5 of the periodic table.
RCl, RBr having central atoms in the B, 6B and 7B groups,
BI, R 2 O, R 2 S, R 2 Se, R 2 Te, R 3 N,
The method for producing a non-aqueous electrolyte battery according to claim 1, wherein R 3 P and R 3 Sb (R is an n-propyl group).
【請求項4】 請求項1,請求項2または請求項3記載
の非水電解液電池正極の製造方法で製作された正極と、
リチウム,ナトリウムなどの軽金属を活物質とする負極
と、非水電解液とを備えたことを特徴とする非水電解液
電池。
4. A positive electrode manufactured by the method for manufacturing a non-aqueous electrolyte battery positive electrode according to claim 1, claim 2, or claim 3,
A non-aqueous electrolyte battery comprising a negative electrode using a light metal such as lithium or sodium as an active material and a non-aqueous electrolyte.
JP7028094A 1995-02-16 1995-02-16 Nonaqueous electrolyte battery and manufacture of its positive electrode Pending JPH08222209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7028094A JPH08222209A (en) 1995-02-16 1995-02-16 Nonaqueous electrolyte battery and manufacture of its positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7028094A JPH08222209A (en) 1995-02-16 1995-02-16 Nonaqueous electrolyte battery and manufacture of its positive electrode

Publications (1)

Publication Number Publication Date
JPH08222209A true JPH08222209A (en) 1996-08-30

Family

ID=12239208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7028094A Pending JPH08222209A (en) 1995-02-16 1995-02-16 Nonaqueous electrolyte battery and manufacture of its positive electrode

Country Status (1)

Country Link
JP (1) JPH08222209A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030718A (en) * 1998-05-01 2000-01-28 Toshiba Battery Co Ltd Flat type nonaqueous electrolyte battery
WO2000013251A1 (en) * 1998-08-31 2000-03-09 Hitachi, Ltd. Lithium secondary cell and device
CN107785603A (en) * 2017-09-12 2018-03-09 深圳启辰新能源科技有限公司 Lithium-sulfur cell electrolyte and preparation method thereof and the battery using the electrolyte
CN113594454A (en) * 2020-04-30 2021-11-02 中南大学 Lithium-sulfur battery composite positive electrode active material, positive electrode and preparation of positive electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030718A (en) * 1998-05-01 2000-01-28 Toshiba Battery Co Ltd Flat type nonaqueous electrolyte battery
WO2000013251A1 (en) * 1998-08-31 2000-03-09 Hitachi, Ltd. Lithium secondary cell and device
CN107785603A (en) * 2017-09-12 2018-03-09 深圳启辰新能源科技有限公司 Lithium-sulfur cell electrolyte and preparation method thereof and the battery using the electrolyte
CN113594454A (en) * 2020-04-30 2021-11-02 中南大学 Lithium-sulfur battery composite positive electrode active material, positive electrode and preparation of positive electrode

Similar Documents

Publication Publication Date Title
US4085259A (en) Light metal galvanic element
US4658498A (en) Process for producing rechargeable electrochemical device
JPH05101846A (en) Non-aqueous electrolytic secondary battery
EP1988590A1 (en) Alkaline battery
JP2735842B2 (en) Non-aqueous electrolyte secondary battery
JPH08222209A (en) Nonaqueous electrolyte battery and manufacture of its positive electrode
JPS60198055A (en) Manufacture of plate for lead storage battery
US2814664A (en) Electric current producing cell
JP2752361B2 (en) Sealed non-aqueous battery with positive terminal pin and perchlorate electrolyte
JPH0425676B2 (en)
JP4877678B2 (en) Flat non-aqueous electrolyte secondary battery
JP2002298862A (en) Aluminum battery
JPH0588506B2 (en)
JP2002216772A (en) Alkaline storage battery
JP2000048828A (en) Nonaqueous electrolyte battery
JP2964802B2 (en) Glue-type manganese dry battery
JPH0652848A (en) Nonaqueous electrolytic secondary battery
JPS62274556A (en) Nonaqueous electrolyte battery
JPS59134567A (en) Organic electrolytic battery
JPH0763016B2 (en) Organic electrolyte battery
JP2953156B2 (en) Stacked manganese dry battery
JPS6228545B2 (en)
JPS62272458A (en) Non-aqueous electrolytic solution cell
JP2001028269A (en) Layered manganese dry battery
JPH0374061A (en) Nonaqueous electrolyte secondary battery