JPH08169715A - Method for synthesizing fine compound oxide particles and fine compound oxide particles - Google Patents

Method for synthesizing fine compound oxide particles and fine compound oxide particles

Info

Publication number
JPH08169715A
JPH08169715A JP6317247A JP31724794A JPH08169715A JP H08169715 A JPH08169715 A JP H08169715A JP 6317247 A JP6317247 A JP 6317247A JP 31724794 A JP31724794 A JP 31724794A JP H08169715 A JPH08169715 A JP H08169715A
Authority
JP
Japan
Prior art keywords
fine particles
metal
nitrate
oxide fine
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6317247A
Other languages
Japanese (ja)
Inventor
Kiyoaki Shinohara
清晃 篠原
Akira Tanaka
彰 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6317247A priority Critical patent/JPH08169715A/en
Publication of JPH08169715A publication Critical patent/JPH08169715A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain fine compound oxide particles having a large surface area and a desired particle diameter by mixing fine metal oxide particles and an aq. metallic nitrate soln. contg. metal ions with fuel and allowing the resultant mixture to self-ignite. CONSTITUTION: Fine particles of one or more kinds of metal oxides contg. no nitrate and an aq. metallic nitrate soln. contg. ions of one or more kinds of metals and an excess of nitrate ions over the stoichiometric ratio to the metal ions are mixed with >=3C water-soluble amino acid as fuel so as to regulate the ratio of the amino acid to the metal ions to 2-4 and the ratio of the amino acid to the nitrate ions to 0.125-0.9 and the resultant mixture is allowed to self-ignite by heating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複合酸化物微粒子の合
成方法及びそれにより得られた複合酸化物微粒子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing fine composite oxide particles and fine composite oxide particles obtained thereby.

【0002】[0002]

【従来の技術】複合酸化物は元素及びその組み合わせに
より、様々な物性を持つことができる。その応用分野は
広く、例えば圧電性、焦電性あるいは強誘電性を示すこ
とによる電子機能材料への応用、超伝導材料、燃料電池
等のイオン伝導性材料、磁性材料、光学機能材料、その
ほか熱的・機械的特性を利用する等である。また、微粒
子はバルク固体を単に微細にしたという意味を持つもの
ではなく、バルク等では見られない、特異な物性を示す
として、新しい物体あるいは状態として注目、研究され
ている。
2. Description of the Related Art Composite oxides can have various physical properties depending on the elements and combinations thereof. Its fields of application are wide, such as application to electronic functional materials by exhibiting piezoelectricity, pyroelectricity or ferroelectricity, superconducting materials, ion conductive materials such as fuel cells, magnetic materials, optical functional materials, and other thermal materials. For example, to utilize physical and mechanical characteristics. Further, the fine particles do not mean that the bulk solid is simply made into fine particles, and are being researched by paying attention as a new object or state because they show unique physical properties not seen in the bulk and the like.

【0003】現在、複合酸化物微粒子の合成法として
は、出発原料の状態により分類すると気相から合成する
CVD法やスパッタ法等、液相からの合成法として共沈
法や、目的組成に調合した液体試料を高温加熱炉中に噴
霧することで瞬時に微粒子を作製する噴霧熱分解法等
が、さらに目的組成の各成分酸化物を調合、焼成するこ
とで複合酸化物微粒子を得る固相法等、様々なものがあ
る。
At present, as a method for synthesizing fine particles of complex oxide, a CVD method or a sputtering method, which are synthesized from a gas phase when classified according to a state of a starting material, such as a coprecipitation method as a synthesis method from a liquid phase or a desired composition is prepared. A spray pyrolysis method that instantly creates fine particles by spraying a prepared liquid sample into a high-temperature heating furnace is a solid-phase method that further prepares composite oxide particles by mixing and firing each component oxide of the target composition. Etc. There are various things.

【0004】その液相法の中の一つの方法として、グリ
シン−硝酸塩燃焼合成法(MATERIALES LETTERS Volume
10、 number 1,2、 September 1990)がある。この方法
は、目的とする複合酸化物微粒子を構成する各金属硝酸
塩水溶液を目的の組成比で混合し、グリシン及び硝酸ア
ンモニウムを所定の割合で加え、ホットプレート上で加
熱する。すると、自己発火が起こり、それと同時に複合
酸化物微粒子が生成するというものである。
As one of the liquid phase methods, glycine-nitrate combustion synthesis method (MATERIALES LETTERS Volume
10, number 1,2, September 1990). In this method, each metal nitrate aqueous solution constituting the target composite oxide fine particles is mixed at a target composition ratio, glycine and ammonium nitrate are added at a predetermined ratio, and the mixture is heated on a hot plate. Then, self-ignition occurs, and at the same time, fine particles of complex oxide are generated.

【0005】このグリシン−硝酸塩燃焼合成法は、一般
的に用いられている気相法のように大型の装置・設備が
不要であり、固相法のような焼成の過程がないため、短
時間で複合酸化物微粒子を合成することができる。しか
も高温にさらされている時間が非常に短いので、粒成長
がほとんど起こらず、その結果、グリシン−硝酸塩燃焼
合成法で合成した複合酸化物微粒子は、固相法で合成し
た複合酸化物微粒子と比較すると粒径は小さくなる。
This glycine-nitrate combustion synthesis method requires no large-scale equipment and facilities unlike the commonly used gas phase method, and does not have a firing process like the solid phase method, so that it can be performed in a short time. The composite oxide fine particles can be synthesized with. Moreover, since the time of exposure to high temperature is very short, almost no grain growth occurs, and as a result, the complex oxide fine particles synthesized by the glycine-nitrate combustion synthesis method are the same as the complex oxide fine particles synthesized by the solid phase method. The particle size becomes smaller by comparison.

【0006】ここで、グリシンは、自己発火する際の燃
料であり、同時に金属イオンと錯イオンを形成する。錯
イオンを形成することにより、燃焼反応の際に溶媒であ
る水が蒸発しても塩を析出することなく、複合酸化物微
粒子を合成することができる。
[0006] Here, glycine is a fuel at the time of self-ignition and simultaneously forms a complex ion with a metal ion. By forming the complex ions, it is possible to synthesize the composite oxide fine particles without depositing a salt even if water as a solvent evaporates during the combustion reaction.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、グリシ
ン−硝酸塩燃焼合成法により複合酸化物微粒子を合成す
る場合は、目的とする複合酸化物を構成する各金属硝酸
塩を用いなければならず、硝酸塩が存在しない金属を含
む複合酸化物微粒子の合成にはこの方法が適用できなか
った。それに対し、固相法ではあらゆる複合酸化物微粒
子の合成が可能であるが、原料となる酸化物微粒子の造
粒となり、粒径を小さくすることができなかった。
However, in the case of synthesizing composite oxide fine particles by the glycine-nitrate combustion synthesis method, it is necessary to use each metal nitrate constituting the target composite oxide, and the nitrate is present. This method could not be applied to the synthesis of complex oxide fine particles containing a non-metal. On the other hand, the solid-phase method can synthesize all kinds of composite oxide fine particles, but it cannot granulate the oxide fine particles as a raw material and cannot reduce the particle size.

【0008】本発明の目的は、上記問題の解決にある。An object of the present invention is to solve the above problems.

【0009】[0009]

【課題を解決するための手段】本発明者らは鋭意研究の
結果、目的とする複合酸化物微粒子を合成する原料とし
て金属酸化物微粒子と金属硝酸塩水溶液を共に用い、固
−液相合成法により複合酸化物微粒子が合成できること
を見い出し、「1つ以上の金属酸化物微粒子と1つ以上
の金属イオンを含む金属硝酸塩水溶液を燃料と共に自己
発火させることを特徴とする複合酸化物微粒子の合成法
(請求項1)」及びその合成法により得られた粒径の小
さい複合酸化物微粒子を提供する。
Means for Solving the Problems As a result of intensive studies, the present inventors have conducted a solid-liquid phase synthesis method using both metal oxide fine particles and a metal nitrate aqueous solution as a raw material for synthesizing desired composite oxide fine particles. It was found that composite oxide fine particles can be synthesized, and "a method for synthesizing composite oxide fine particles, characterized in that an aqueous solution of metal nitrate containing one or more metal oxide fine particles and one or more metal ions is self-ignited with a fuel ( Claim 1) "and composite oxide fine particles having a small particle size obtained by the synthesis method thereof.

【0010】[0010]

【作用】目的とする複合酸化物の原料が全て金属硝酸塩
であるグリシン−硝酸塩燃焼合成法において、自己発火
したときの温度は一瞬ではあるが1000℃以上である。こ
の温度は、原料に金属酸化物を共存させた場合でも発
火、燃焼の際に固溶体を形成するのに充分に高い温度で
ある。
In the glycine-nitrate combustion synthesis method in which all the raw materials of the target complex oxide are metal nitrates, the temperature at the time of self-ignition is 1000 ° C or more for a moment. This temperature is high enough to form a solid solution during ignition and combustion even when a metal oxide coexists in the raw material.

【0011】そこで、本発明者らは原料の一方を金属硝
酸塩水溶液、他方を金属酸化物微粒子とし、金属酸化物
微粒子−金属硝酸塩の組み合わせで自己発火による燃焼
合成を行った。その結果より、固相法において複合酸化
物微粒子の合成を行うと造粒作用が起こり粒径が増大し
てしまうが、原料の一方を液状とすることで、造粒作用
が抑制され、しかも高温に達するのが一瞬のため粒成長
が起こらず、粒径の小さい複合酸化物微粒子が得られる
ことを見い出した。
Therefore, the inventors of the present invention carried out combustion synthesis by self-ignition by using one of the raw materials as an aqueous solution of metal nitrate and the other as fine particles of metal oxide and combining the metal oxide fine particles and the metal nitrate. As a result, when the composite oxide fine particles are synthesized by the solid phase method, the granulation action occurs and the particle size increases, but by making one of the raw materials liquid, the granulation action is suppressed, and high temperature It has been found that the particle growth does not occur because it reaches the temperature for a short time, and the composite oxide fine particles having a small particle size can be obtained.

【0012】本発明は目的とする複合酸化物の原料の全
が金属硝酸塩である必要がないため、グリシン−硝酸塩
燃焼合成法が適応できない硝酸塩が存在しない金属、例
えばチタンやニオブ等を含む複合酸化物微粒子の合成に
対して有効である。本発明でいう「硝酸塩の存在しない
金属」とは、常温の大気中に塩が安定に存在しない金属
や、金属硝酸塩水溶液とした場合に水溶液中の硝酸イオ
ン及び金属イオンが安定に存在しない金属を指すもので
ある。
In the present invention, since it is not necessary that all the raw materials of the target complex oxide are metal nitrates, complex oxidation containing a metal in which no nitrate is present, such as titanium or niobium, which the glycine-nitrate combustion synthesis method cannot be applied to. It is effective for the synthesis of fine particles. In the present invention, "metal in the absence of nitrate" means a metal in which salt is not stably present in the atmosphere at room temperature, or a metal in which nitrate ion and metal ion in the aqueous solution of the metal nitrate are not stably present. It is a point.

【0013】このような性質をもつチタンやニオブ等を
含む工業的に有用な複合酸化物は多く、それらの微粒子
を得ることは幅広い応用が期待できる。燃料としては自
己発火の際に燃える有機物、かつ金属イオンと錯イオン
を形成する条件を満たす物質であれば良く、中でも水溶
性アミノ酸が適している。水溶性アミノ酸を燃料とする
場合は、燃焼反応を良好に進行させるために、アミノ酸
の量をアミノ酸と金属イオンの比が2から4、硝酸イオ
ンの量をアミノ酸と硝酸イオンの比を0.125から
0.9の範囲内に調整する。この際、硝酸イオンは目的
の複合酸化物に含まれる金属硝酸塩を用いる以外に金属
を含まない硝酸塩、例えば硝酸アンモニウムを加えるこ
とにより硝酸イオンの量を調整することもできる。これ
により、自己発火を促す硝酸イオンを金属イオンの化学
量論比以上加えることができる。
There are many industrially useful complex oxides containing titanium, niobium and the like having such properties, and it is expected that a wide range of applications can be obtained by obtaining fine particles thereof. As the fuel, any organic substance that burns upon self-ignition and a substance that satisfies the condition of forming a complex ion with a metal ion may be used, and among them, a water-soluble amino acid is suitable. When a water-soluble amino acid is used as a fuel, the amount of amino acid is 2 to 4 and the amount of nitrate ion is 0.125 in order to promote the combustion reaction favorably. To 0.9. At this time, as the nitrate ion, the amount of the nitrate ion can be adjusted by adding a metal-free nitrate, for example, ammonium nitrate, in addition to using the metal nitrate contained in the target composite oxide. This makes it possible to add nitrate ions that promote self-ignition in a stoichiometric ratio of metal ions or higher.

【0014】また、燃料のアミノ酸として、本発明者ら
が先に特願平6−233664号に開示したように、水
に対して溶解度の比較的大きい、炭素数が3以上の水溶
性アミノ酸を用いることで、さらに良好な燃焼反応が起
こり、粒径の小さい複合酸化物微粒子が得られる。
As the amino acid of the fuel, as disclosed by the present inventors in Japanese Patent Application No. 6-233664, a water-soluble amino acid having a relatively large solubility in water and having 3 or more carbon atoms is used. By using it, a more favorable combustion reaction occurs and composite oxide fine particles having a small particle size are obtained.

【0015】[0015]

【実施例】以下の実施例により本発明についてさらに詳
細に説明するが、本発明はこれに限られたものではな
い。原料の金属硝酸塩水溶液として硝酸バリウム水溶
液、金属酸化物として二酸化チタン微粒子(日本アエロ
ジル社製P−25)を用い、バリウム−チタン複合酸化
物微粒子(BaTiO3)の合成を行った。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. Barium-nitrate aqueous solution was used as a raw material metal nitrate aqueous solution, and titanium dioxide fine particles (P-25 manufactured by Nippon Aerosil Co., Ltd.) was used as a metal oxide to synthesize barium-titanium composite oxide fine particles (BaTiO 3 ).

【0016】まず、硝酸バリウム水溶液及び二酸化チタ
ン粉末をそれぞれ0.02molづつ採取した。次に燃料のグ
リシンをグリシン/金属イオンが2になるように採取し
た。金属イオン濃度は0.04molなのでグリシンの量は0.0
4×2=0.08molつまり6gとなる。また、硝酸イオンはグ
リシン/硝酸イオンが0.5になるように採取するが、金
属硝酸塩の硝酸イオンだけではこの割合にならないの
で、不足分を硝酸アンモニウムを加えることで補正す
る。今回の場合硝酸イオン濃度は0.08×2=0.16mol必要
であるが金属硝酸塩からは0.04molしか得られないの
で、0.12mol分の硝酸アンモニウム、つまり9.6gを採取
し補正した。
First, 0.02 mol of each of barium nitrate aqueous solution and titanium dioxide powder was sampled. Next, fuel glycine was sampled so that the glycine / metal ion was 2. Since the metal ion concentration is 0.04 mol, the amount of glycine is 0.0
4 x 2 = 0.08 mol, or 6 g. Nitrate ion is collected so that glycine / nitrate ion becomes 0.5. However, the nitrate ion of metal nitrate alone does not provide this ratio, so the shortage is corrected by adding ammonium nitrate. In this case, the nitrate ion concentration needs to be 0.08 × 2 = 0.16 mol, but only 0.04 mol can be obtained from metal nitrate, so 0.12 mol of ammonium nitrate, that is, 9.6 g, was collected and corrected.

【0017】これらを300mlなす型フラスコに入れ、ロ
ータリーエバポレータで水分を半分程度までに減らした
後、ビーカーに移し、ホットプレート上で加熱する。加
熱後約15分で自己発火が起こり、瞬時に反応が完了し、
灰白色の微粒子が得られた。この微粒子を粉末X線回折
で同定した結果、目的物質であるバリウム−チタン複合
酸化物微粒子であった。X線回折パターンを図1に示
す。
These are placed in a 300 ml eggplant-shaped flask, the water content is reduced to about half by a rotary evaporator, and then transferred to a beaker and heated on a hot plate. About 15 minutes after heating, self-ignition occurred, the reaction was completed instantly,
Off-white fine particles were obtained. As a result of identifying these fine particles by powder X-ray diffraction, they were barium-titanium composite oxide fine particles that were the target substance. The X-ray diffraction pattern is shown in FIG.

【0018】また、得られたバリウム−チタン複合酸化
物微粒子の粒度分布を調べたところ粒成長が殆ど起こっ
ていないことが確認できた。
Further, the grain size distribution of the obtained barium-titanium composite oxide fine particles was examined, and it was confirmed that grain growth hardly occurred.

【0019】[0019]

【発明の効果】以上の通り、本発明に従えば硝酸塩を作
らない金属でもその酸化物微粒子を金属硝酸塩水溶液と
混合し、所定の量のアミノ酸及び金属硝酸塩を加えれ
ば、自己発火による燃焼合成法で複合酸化物微粒子を合
成することが可能である。また、固相法で合成した場合
と比較して、表面積の大きな複合酸化物微粒子を得るこ
とが可能である。
As described above, according to the present invention, even if a metal which does not form a nitrate is mixed with the oxide fine particles thereof and an aqueous solution of a metal nitrate, a predetermined amount of amino acid and metal nitrate are added, a combustion synthesis method by self-ignition. It is possible to synthesize composite oxide fine particles with. Further, it is possible to obtain composite oxide fine particles having a large surface area as compared with the case where they are synthesized by the solid phase method.

【0020】さらに、原料として用いた金属酸化物微粒
子と反応後に生成した複合酸化物微粒子との間には大き
な粒径の変化は見られないことから、初期に用いた金属
酸化物を粒径成長させることなく、目的の複合酸化物微
粒子を得ることが可能である。 言い換えれば、原料と
して用いる酸化物微粒子の粒径を選べば、所望の粒径の
複合酸化物微粒子を得ることができる。
Further, since no large change in particle size is observed between the metal oxide fine particles used as the raw material and the composite oxide fine particles formed after the reaction, the metal oxide used in the initial stage is grown. It is possible to obtain the target composite oxide fine particles without performing the above. In other words, if the particle size of the oxide particles used as the raw material is selected, composite oxide particles having a desired particle size can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例で合成したバリウム−チタン
複合酸化物(BaTiO3)のX線回折パターンである。
FIG. 1 is an X-ray diffraction pattern of barium-titanium composite oxide (BaTiO 3 ) synthesized in an example of the present invention.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】一または二以上の金属酸化物微粒子と、一
または二以上の金属イオンを含む金属硝酸塩水溶液と
を、燃料と共に自己発火させることを特徴とする複合酸
化物微粒子の合成方法。
1. A method for synthesizing composite oxide fine particles, which comprises self-igniting one or more metal oxide fine particles and an aqueous metal nitrate solution containing one or more metal ions together with a fuel.
【請求項2】請求項1に記載の複合酸化物微粒子の合成
方法において、金属酸化物微粒子が硝酸塩の存在しない
金属酸化物からなることを特徴とする複合酸化物微粒子
の合成方法。
2. The method for synthesizing composite oxide fine particles according to claim 1, wherein the metal oxide fine particles are made of a metal oxide in the absence of nitrate.
【請求項3】請求項1または請求項2に記載の複合酸化
物微粒子の合成方法において、金属硝酸塩水溶液中の硝
酸イオンが、金属イオンの化学量論比より過剰であるこ
とを特徴とする複合酸化物微粒子の合成方法。
3. The method for synthesizing composite oxide fine particles according to claim 1 or 2, wherein the nitrate ion in the metal nitrate aqueous solution is in excess of the stoichiometric ratio of the metal ion. Method for synthesizing oxide fine particles.
【請求項4】請求項1または請求項2または請求項3に
記載の複合酸化物微粒子の合成方法において、燃料が水
溶性アミノ酸であることを特徴とする複合酸化物微粒子
の合成方法。
4. The method for synthesizing composite oxide fine particles according to claim 1, 2, or 3, wherein the fuel is a water-soluble amino acid.
【請求項5】一または二以上の金属酸化物微粒子と、一
または二以上の金属イオンを含む金属硝酸塩水溶液と
を、水溶性アミノ酸と共に自己発火させて得られる複合
酸化物微粒子。
5. Composite oxide fine particles obtained by self-igniting one or more metal oxide fine particles and an aqueous metal nitrate solution containing one or more metal ions together with a water-soluble amino acid.
【請求項6】二酸化チタン微粒子と、一または二以上の
金属イオンを含む金属硝酸塩水溶液とに、硝酸イオンを
添加し、水溶性アミノ酸と共に自己発火させることを特
徴とする複合酸化物微粒子の合成方法。
6. A method for synthesizing complex oxide fine particles, which comprises adding titanium dioxide fine particles and a metal nitrate aqueous solution containing one or more metal ions to which nitrate ions are added to cause self-ignition with water-soluble amino acids. .
【請求項7】五酸化ニオブ微粒子と、一または二以上の
金属イオンを含む金属硝酸塩水溶液とに、硝酸イオンを
添加し、水溶性アミノ酸と共に自己発火させることを特
徴とする複合酸化物微粒子の合成方法。
7. Synthesis of composite oxide fine particles, characterized in that nitric acid ions are added to niobium pentoxide fine particles and an aqueous metal nitrate solution containing one or more metal ions, and self-ignition is carried out together with a water-soluble amino acid. Method.
【請求項8】二酸化チタン微粒子と、一または二以上の
金属イオンを含む金属硝酸塩水溶液と、硝酸イオンと
を、水溶性アミノ酸と共に自己発火させて得られる複合
酸化物微粒子。
8. Composite oxide fine particles obtained by self-igniting titanium dioxide fine particles, an aqueous metal nitrate solution containing one or more metal ions, and nitrate ions together with a water-soluble amino acid.
【請求項9】五酸化ニオブ微粒子と、一または二以上の
金属イオンを含む金属硝酸塩水溶液と、硝酸イオンと
を、水溶性アミノ酸と共に自己発火させて得られる複合
酸化物微粒子。
9. Composite oxide particles obtained by self-igniting niobium pentoxide particles, an aqueous metal nitrate solution containing one or more metal ions, and nitrate ions together with a water-soluble amino acid.
JP6317247A 1994-12-20 1994-12-20 Method for synthesizing fine compound oxide particles and fine compound oxide particles Pending JPH08169715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6317247A JPH08169715A (en) 1994-12-20 1994-12-20 Method for synthesizing fine compound oxide particles and fine compound oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6317247A JPH08169715A (en) 1994-12-20 1994-12-20 Method for synthesizing fine compound oxide particles and fine compound oxide particles

Publications (1)

Publication Number Publication Date
JPH08169715A true JPH08169715A (en) 1996-07-02

Family

ID=18086126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6317247A Pending JPH08169715A (en) 1994-12-20 1994-12-20 Method for synthesizing fine compound oxide particles and fine compound oxide particles

Country Status (1)

Country Link
JP (1) JPH08169715A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007350A1 (en) * 2002-07-15 2004-01-22 Hanwha Chemical Corporation Process for preparing fine metal oxide particles
JP2005306728A (en) * 2004-03-25 2005-11-04 Showa Denko Kk Titanium-containing perovskite-type compound and manufacturing method therefor
JP2006032468A (en) * 2004-07-13 2006-02-02 Nec Tokin Corp Method of manufacturing oxide piezoelectric material
JP2006347817A (en) * 2005-06-16 2006-12-28 Ntn Corp Dielectric ceramic and method of manufacturing the same
JP2008529758A (en) * 2005-01-19 2008-08-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Method for producing mixed oxides by spray pyrolysis
KR101279640B1 (en) * 2011-06-16 2013-06-27 한국원자력연구원 Method for in-situ production of composite powders consist of nano-alloy powder and a metal oxides
JP2016172648A (en) * 2015-03-16 2016-09-29 国立大学法人北海道大学 Ltga, manufacturing method of ltga and piezoelectric element or sensor using ltga
CN113828299A (en) * 2021-04-28 2021-12-24 广东石油化工学院 Process for preparing high-dispersity multi-element nano inorganic metal oxide single-phase crystal structure by one-step thermal reaction

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004007350A1 (en) * 2002-07-15 2004-01-22 Hanwha Chemical Corporation Process for preparing fine metal oxide particles
US7235224B2 (en) * 2002-07-15 2007-06-26 Han-Wha Chemical Corporation Process for preparing fine metal oxide particles
JP2005306728A (en) * 2004-03-25 2005-11-04 Showa Denko Kk Titanium-containing perovskite-type compound and manufacturing method therefor
JP2006032468A (en) * 2004-07-13 2006-02-02 Nec Tokin Corp Method of manufacturing oxide piezoelectric material
JP2008529758A (en) * 2005-01-19 2008-08-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Method for producing mixed oxides by spray pyrolysis
JP2006347817A (en) * 2005-06-16 2006-12-28 Ntn Corp Dielectric ceramic and method of manufacturing the same
KR101279640B1 (en) * 2011-06-16 2013-06-27 한국원자력연구원 Method for in-situ production of composite powders consist of nano-alloy powder and a metal oxides
JP2016172648A (en) * 2015-03-16 2016-09-29 国立大学法人北海道大学 Ltga, manufacturing method of ltga and piezoelectric element or sensor using ltga
CN113828299A (en) * 2021-04-28 2021-12-24 广东石油化工学院 Process for preparing high-dispersity multi-element nano inorganic metal oxide single-phase crystal structure by one-step thermal reaction

Similar Documents

Publication Publication Date Title
Chick et al. Glycine-nitrate combustion synthesis of oxide ceramic powders
Guo et al. Synthesis of yttrium iron garnet (YIG) by citrate–nitrate gel combustion and precursor plasma spray processes
US6761866B1 (en) Single step process for the synthesis of nanoparticles of ceramic oxide powders
JP4240423B2 (en) Target material for forming metal oxide thin film, method for producing the same, and method for forming metal oxide thin film using the target material
JPH08169715A (en) Method for synthesizing fine compound oxide particles and fine compound oxide particles
Yoshimura et al. Low‐Temperature Synthesis of Cubic and Rhombohedral Y6WO12 by a Polymerized Complex Method
Devi et al. Comparison of citrate–nitrate gel combustion and precursor plasma spray processes for the synthesis of yttrium aluminum garnet
JPH04507230A (en) Ceramic powder and thin film of metal oxide and method for producing the ceramic powder and thin film
Galakhov et al. Synthesis of aluminum oxynitride from starter organic compounds
WO1999000326A1 (en) Method of preparing metal and mixed metal oxides
KR100411493B1 (en) A fine particles of Nickel and the method of processing thereof
JPH0572332B2 (en)
KR100210959B1 (en) Manufacturing method of yttrium oxide powder
Ganapathi et al. A study of MoO 3, WO 3, and their solid solutions prepared by topotactic dehydration of the monohydrates
RU2733966C1 (en) Method of producing composite oxide materials
US5482918A (en) Method for producing microcomposite powders using a soap solution
RU2300494C2 (en) Flame synthesis and non-vacuum physical spraying
JPH0328109A (en) Production of compound oxide powder
KR100277549B1 (en) Synthesis method of ceramic powder by spontaneous combustion
JPH0459609A (en) Production of aluminum nitride powder
JPH0193404A (en) Production of raw material powder of compound having garnet structure
JPH0891809A (en) Method for synthesizing fine oxide particle and fine oxide particles
JPH0255207A (en) Production of thin film of compound metallic oxide
RU2122521C1 (en) Method of preparing aluminium oxide
KR100906929B1 (en) Process for preparing crystalline metal oxide