JPH0891809A - Method for synthesizing fine oxide particle and fine oxide particles - Google Patents

Method for synthesizing fine oxide particle and fine oxide particles

Info

Publication number
JPH0891809A
JPH0891809A JP6233664A JP23366494A JPH0891809A JP H0891809 A JPH0891809 A JP H0891809A JP 6233664 A JP6233664 A JP 6233664A JP 23366494 A JP23366494 A JP 23366494A JP H0891809 A JPH0891809 A JP H0891809A
Authority
JP
Japan
Prior art keywords
fine particles
fuel
synthesizing
oxide fine
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6233664A
Other languages
Japanese (ja)
Inventor
Kiyoaki Shinohara
清晃 篠原
Akira Tanaka
彰 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6233664A priority Critical patent/JPH0891809A/en
Publication of JPH0891809A publication Critical patent/JPH0891809A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE: To obtain fine oxide particles having a small particle diameter and a large surface area by bringing an aq. metallic nitrate soln. contg. metal ions and specified fuel into self-ignition. CONSTITUTION: A 3-5C water-soluble amino acid is added as fuel to an aq. metallic nitrate soln. contg. one or more kinds of metal ions and the resultant soln. is concd. and brought into self-ignition by heating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液相法による酸化物微粒
子、特に微細な微粒子の合成方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for synthesizing oxide fine particles, particularly fine fine particles, by a liquid phase method.

【0002】[0002]

【従来の技術】複合酸化物を含めた広義の酸化物は元素
及びその組み合わせにより、様々な物性を持つことがで
きる。その応用分野は広く、例えば圧電性、焦電性ある
いは強誘電性を示すことによる電子機能材料への応用、
超伝導材料、燃料電池等のイオン伝導性材料、磁性材
料、光学機能材料、そのほか熱的・機械的特性を利用す
る等である。また、微粒子はバルク固体を単に微細にし
たという意味を持つものではなく、バルク等では見られ
ない、特異な物性を示すとして、新しい物体あるいは状
態として注目、研究されている。
2. Description of the Related Art Oxides in a broad sense including complex oxides can have various physical properties depending on elements and combinations thereof. Its application fields are wide, for example, application to electronic functional materials by exhibiting piezoelectricity, pyroelectricity or ferroelectricity,
For example, superconducting materials, ion-conducting materials for fuel cells, magnetic materials, optical functional materials, and other thermal and mechanical properties are used. Further, the fine particles do not mean that the bulk solid is simply made into fine particles, and are being researched by paying attention as a new object or state because they show unique physical properties not seen in the bulk and the like.

【0003】現在、酸化物微粒子の合成法としては、出
発原料の状態により分類すると気相から合成するCVD
法やスパッタ法等、液相からの合成法として共沈法や、
目的組成に調合した液体試料を高温加熱炉中に噴霧する
ことで瞬時に微粒子を合成する噴霧熱分解法等が、さら
に目的組成の各成分酸化物を調合、焼成することで酸化
物微粒子を得る固相法等、様々なものがある。
At present, as a method for synthesizing oxide fine particles, CVD is performed in the gas phase when classified according to the state of the starting material.
Method, co-precipitation method, etc.
A spray pyrolysis method that synthesizes fine particles instantly by spraying a liquid sample prepared to the target composition into a high-temperature heating furnace, and further prepares oxide fine particles by preparing and firing each component oxide of the target composition. There are various methods such as the solid phase method.

【0004】その液相法の中の一つの方法として、グリ
シン−硝酸塩燃焼合成法(MATERIALES LETTERS Volume
10、 number 1,2、 September 1990)がある。この方法
は、目的とする酸化物を構成する金属硝酸塩水溶液を目
的の組成比で混合し、グリシン及び硝酸アンモニウムを
所定の割合で加え、ホットプレート上で加熱する。する
と、自己発火が起こり、それと同時に酸化物微粒子が生
成するというものである。
As one of the liquid phase methods, glycine-nitrate combustion synthesis method (MATERIALES LETTERS Volume
10, number 1,2, September 1990). In this method, an aqueous metal nitrate solution that forms the target oxide is mixed at a target composition ratio, glycine and ammonium nitrate are added at a predetermined ratio, and the mixture is heated on a hot plate. Then, self-ignition occurs, and at the same time, oxide fine particles are generated.

【0005】このグリシン−硝酸塩燃焼合成法は、一般
的に用いられている気相法のように大型の装置・設備が
不要であり、固相法のような焼成の過程がないため、短
時間で酸化物微粒子を合成することができる。しかも高
温にさらされている時間が非常に短いので、粒成長がほ
とんど起こらず、その結果、グリシン−硝酸塩燃焼合成
法で合成した酸化物微粒子は、固相法で合成した酸化物
微粒子と比較すると粒径は小さくなる。
This glycine-nitrate combustion synthesis method requires no large-scale equipment and facilities unlike the commonly used gas phase method, and does not have a firing process like the solid phase method, so that it can be performed in a short time. The oxide fine particles can be synthesized with. Moreover, since the time of exposure to high temperature is very short, almost no grain growth occurs, and as a result, the oxide fine particles synthesized by the glycine-nitrate combustion synthesis method are compared with the oxide fine particles synthesized by the solid phase method. The particle size becomes smaller.

【0006】ここで、グリシンは自己発火する際の燃料
であり、同時に金属イオンと錯イオンを形成する。金属
イオンと錯イオンを形成することにより、燃焼反応の際
に溶媒である水が蒸発しても塩を析出することなく、酸
化物微粒子を合成することができる。
[0006] Here, glycine is a fuel for self-ignition, and simultaneously forms metal ions and complex ions. By forming a complex ion with a metal ion, oxide fine particles can be synthesized without depositing a salt even when water as a solvent evaporates during the combustion reaction.

【0007】[0007]

【本発明が解決しようとする課題】このようにグリシン
−硝酸塩燃焼合成法により粒径の小さい、つまり表面積
の大きな粉体を得ることが可能である。しかしながら、
BET比表面積が最大でも10m2/g程度のものしか得る
ことができなかった。BET比表面積とは、表面単分子
層にあたる吸着分子数を求め、これに吸着分子の断面積
をかけて算出される表面積である。通常は、77Kにお
けるN2の吸着が最も利用されている。現在、この方法
が表面積の測定方法として最も正確であるとされてい
る。
As described above, it is possible to obtain a powder having a small particle size, that is, a large surface area by the glycine-nitrate combustion synthesis method. However,
Only a BET specific surface area of about 10 m 2 / g could be obtained. The BET specific surface area is a surface area calculated by calculating the number of adsorbed molecules corresponding to the surface monolayer and multiplying this by the cross-sectional area of the adsorbed molecules. Adsorption of N 2 at 77K is usually the most utilized. Currently, this method is said to be the most accurate method for measuring surface area.

【0008】[0008]

【課題を解決するための手段】そこで、本発明者らは微
粒子を合成する方法である燃焼合成法において、燃焼時
に得られる起爆力について鋭意研究を行った。本発明
は、「一または二以上の金属イオンを含む金属硝酸塩水
溶液を燃料と共に自己発火させて酸化物微粒子を合成す
る方法において、燃料が炭素数3以上の水溶性アミノ酸
であることを特徴とする酸化物微粒子の合成方法(請求
項1)」を提供する。
Therefore, the inventors of the present invention have made earnest studies on the detonation force obtained during combustion in the combustion synthesis method, which is a method for synthesizing fine particles. The present invention provides a method for synthesizing oxide fine particles by self-igniting an aqueous metal nitrate solution containing one or more metal ions together with a fuel, wherein the fuel is a water-soluble amino acid having 3 or more carbon atoms. A method for synthesizing oxide fine particles (claim 1) "is provided.

【0009】[0009]

【作用】グリシン−硝酸塩燃焼合成法における金属錯イ
オンはグリシンのアミノ基及びカルボキシル基の配位結
合により形成される。そこで、金属イオンと配位する能
力を有する水溶性のアミノ酸を燃料とする。また、燃焼
合成法により微粒子を合成する場合、合成時の温度が高
ければ高い程、固溶温度の高い酸化物微粒子の合成が可
能となり、また合成時間が短ければ短い程、問題となる
粒成長を抑えることができる。そこで本発明者らは燃料
の炭素数の増加させることにより、粒成長を抑えること
ができることを見い出した。
The metal complex ion in the glycine-nitrate combustion synthesis method is formed by the coordinate bond between the amino group and the carboxyl group of glycine. Therefore, a water-soluble amino acid having the ability to coordinate with a metal ion is used as a fuel. Also, when synthesizing fine particles by the combustion synthesis method, the higher the temperature during synthesis, the more possible the synthesis of oxide fine particles having a high solid solution temperature, and the shorter the synthesis time, the more problematic grain growth. Can be suppressed. Therefore, the present inventors have found that grain growth can be suppressed by increasing the carbon number of the fuel.

【0010】燃料の炭素数の増加に伴い、燃焼時におけ
る起爆力(合成時の炎の強さ)が増加し、温度が上昇す
る。一方、燃料の官能基同士が近くなると金属イオンが
配位し難くなるため、直鎖状で且つ炭素鎖が長いほうが
好ましい。したがって、本発明の燃焼合成法における燃
料は、炭素数3以上のアミノ酸であればいかなるアミノ
酸であっても良いが、炭素数の増加と共にアミノ酸の水
に対する溶解度が減少する傾向があるため、アミノ酸の
水に対する溶解度を考慮すると炭素数3または4または
5のアミノ酸であるアラニン、アミノ酪酸、イソロイシ
ン、バリン等のアミノ酸が好ましい。さらに最も好まし
くは、炭素数4のγ−アミノ−n−酪酸を燃料として用
いた場合であり、表面積の大きな酸化物微粒子が合成さ
れる。
As the carbon number of the fuel increases, the detonating force at the time of combustion (the strength of the flame at the time of synthesis) increases and the temperature rises. On the other hand, when the functional groups of the fuel are close to each other, it becomes difficult for the metal ions to coordinate with each other. Therefore, a linear and long carbon chain is preferable. Therefore, the fuel in the combustion synthesis method of the present invention may be any amino acid as long as it is an amino acid having 3 or more carbon atoms, but the solubility of the amino acid in water tends to decrease as the carbon number increases, so Considering the solubility in water, amino acids having 3 or 4 or 5 carbon atoms such as alanine, aminobutyric acid, isoleucine and valine are preferable. Most preferably, γ-amino-n-butyric acid having 4 carbon atoms is used as a fuel, and oxide fine particles having a large surface area are synthesized.

【0011】[0011]

【実施例】以下、実施例により本発明についてさらに詳
細説明するが、本発明はこれに限られたものではない。
グリシン及びγ−アミノ−n−酪酸を燃料として用い
て、ランタン−鉄複合酸化物(LaFeO3)を燃焼合
成した。さらに、各アミノ酸で合成したLaFeO3
BET比表面積の測定し、その結果を比較した。 [LaFeO3の合成方法]原料として硝酸ランタン水
溶液及び硝酸鉄(III)水溶液を用いた。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
Glycine and γ- amino -n- acid used as fuel, lanthanum - iron composite oxide (LaFeO 3) were combustion synthesis. Furthermore, the BET specific surface area of LaFeO 3 synthesized with each amino acid was measured, and the results were compared. [Synthesis method of LaFeO 3 ] A lanthanum nitrate aqueous solution and an iron (III) nitrate aqueous solution were used as raw materials.

【0012】まず、硝酸ランタン1mol/l標準溶
液、及び硝酸鉄(III)1mol/l標準溶液からそれ
ぞれ10mlづつ採集し、ナス型フラスコに入れ、燃料
としてグリシンまたはγ−アミノ−n−酪酸をそれぞれ
等しく、0.04mol、グリシン=3gまたはγ−ア
ミノ−n−酪酸=4.12gを添加した。また、燃焼反
応を良好に行うためにそれぞれに硝酸アンモニウム0.
02molを添加した。
First, 10 ml each of lanthanum nitrate 1 mol / l standard solution and iron nitrate (III) 1 mol / l standard solution were collected and placed in an eggplant-shaped flask, and glycine or γ-amino-n-butyric acid was used as fuel, respectively. Equally, 0.04 mol, glycine = 3 g or γ-amino-n-butyric acid = 4.12 g was added. Further, in order to carry out the combustion reaction favorably, ammonium nitrate 0.
02 mol was added.

【0013】燃料のアミノ酸を攪拌により完全に溶解さ
せた後、ロータリーエバポレーターで、溶液が半分程度
になるまで濃縮した。得られた濃縮溶液をビーカーに移
し、ホットプレート上で加熱した。加熱後、約15分で
自己発火が起こり、それと同時にオレンジ色の微粒子が
生成した。 [合成された微粒子の評価]上記微粒子を粉末X線回折
装置で同定した結果、グリシンあるいはγ−アミノ−n
−酪酸のいずれを燃料とした場合でも目的物であるLa
FeO3が合成されていることが確認できた。グリシン
を燃料として用いて合成した時のLaFeO 3のX線回
折パターンを図1に、γ−アミノ−n−酪酸を燃料とし
て用いて合成した時のLaFeO3のX線回折パターン
を図2に示す。
The fuel amino acid was completely dissolved by stirring.
After applying the solution, use a rotary evaporator to
Concentrated until. Transfer the resulting concentrated solution to a beaker.
And heated on a hot plate. About 15 minutes after heating
Self-ignition occurred, and at the same time, orange particles
Generated. [Evaluation of synthesized fine particles] Powder X-ray diffraction of the above fine particles
As a result of identification by a device, glycine or γ-amino-n
-La, which is the target product when either butyric acid is used as the fuel
FeO3It was confirmed that was synthesized. glycine
LaFeO when synthesized by using as a fuel 3X-ray times
The folding pattern is shown in Fig. 1, using γ-amino-n-butyric acid as fuel.
LaFeO when used and synthesized3X-ray diffraction pattern
Is shown in FIG.

【0014】また、BET比表面積測定装置でそれぞれ
のアミノ酸を用いて合成したLaFeO3のBET比表
面積の測定を行った。その結果を以下に示す。
The BET specific surface area of LaFeO 3 synthesized by using each amino acid was measured with a BET specific surface area measuring device. The results are shown below.

【0015】[0015]

【表1】 [Table 1]

【0016】以上の通り、炭素数3のγ−アミノ−n−
酪酸を用いて燃焼合成した結果、燃焼時の起爆力がグリ
シンの場合に比べ増加し、表面積の大きい酸化物微粒子
を合成することができた。また、一般的な合成法である
固相法で合成した比表面積がせいぜい1m2/g程度である
ことを考えると、グリシン及びγ−アミノ−n−酪酸で
合成した試料の表面積の差は有意差であり、得られた酸
化物微粒子を触媒に用いた場合、固相法で合成したもの
と比べて反応活性点を数倍に増加させることができる。
As described above, γ-amino-n- having 3 carbon atoms
As a result of combustion synthesis using butyric acid, the detonation force at the time of combustion increased compared with the case of glycine, and it was possible to synthesize oxide fine particles with a large surface area. Also, considering that the specific surface area synthesized by the solid phase method, which is a general synthesis method, is at most about 1 m 2 / g, the difference in surface area between the samples synthesized with glycine and γ-amino-n-butyric acid is significant. This is a difference, and when the obtained oxide fine particles are used as a catalyst, the reaction active points can be increased several times as compared with those synthesized by the solid phase method.

【0017】[0017]

【発明の効果】本発明に従えば、炭素数3以上のアミノ
酸を用いて燃焼合成することにより、燃焼時の起爆力が
増加し、表面積の大きい酸化物微粒子を合成することが
可能となる。また、合成時の起爆力が高いため燃焼時の
温度がグリシンと比較して高くなり、グリシンを用いた
ときには合成できないような固溶温度の高い酸化物微粒
子でも合成が可能である。
According to the present invention, by combusting and synthesizing using an amino acid having 3 or more carbon atoms, the detoning force at the time of combustion is increased, and it becomes possible to synthesize oxide fine particles having a large surface area. Further, since the detonation force during synthesis is high, the temperature during combustion is higher than that of glycine, and it is possible to synthesize even fine oxide particles having a high solid solution temperature that cannot be synthesized when glycine is used.

【0018】さらに、合成時の温度が高いため、結晶性
の良い酸化物微粒子を得ることが可能である。
Further, since the temperature during synthesis is high, it is possible to obtain oxide fine particles having good crystallinity.

【図面の簡単な説明】[Brief description of drawings]

【図1】 グリシンを燃料として用いて得られたランタ
ン−鉄複合酸化物(LaFeO3)のX線回折チャート
である。
FIG. 1 is an X-ray diffraction chart of a lanthanum-iron composite oxide (LaFeO 3 ) obtained by using glycine as a fuel.

【図2】 本発明のγ−アミノ−n−酪酸を燃料として
用いて得られたランタン−鉄複合酸化物(LaFe
3)のX線回折チャートである。
FIG. 2 is a lanthanum-iron composite oxide (LaFe) obtained by using γ-amino-n-butyric acid of the present invention as a fuel.
It is an X-ray diffraction chart of O 3 ).

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】一または二以上の金属イオンを含む金属硝
酸塩水溶液を燃料と共に自己発火させ酸化物微粒子を合
成する方法において、燃料が炭素数3以上の水溶性アミ
ノ酸であることを特徴とする酸化物微粒子の合成方法。
1. A method for synthesizing oxide fine particles by self-igniting an aqueous metal nitrate solution containing one or more metal ions together with a fuel, wherein the fuel is a water-soluble amino acid having 3 or more carbon atoms. Method for synthesizing fine particles.
【請求項2】請求項1に記載の酸化物微粒子の合成方法
において、前記燃料の炭素数が3以上5以下であること
を特徴とする酸化物微粒子の合成方法。
2. The method for synthesizing oxide fine particles according to claim 1, wherein the fuel has a carbon number of 3 or more and 5 or less.
【請求項3】一または二以上の金属イオンを含む金属硝
酸塩水溶液を炭素数3以上の水溶性アミノ酸と共に自己
発火させて得られる酸化物微粒子。
3. Oxide fine particles obtained by self-igniting an aqueous metal nitrate solution containing one or more metal ions together with a water-soluble amino acid having 3 or more carbon atoms.
【請求項4】請求項3に記載の酸化物微粒子において、
BET比表面積が10m2/g以上であることを特徴とする
酸化物微粒子。
4. The oxide fine particles according to claim 3, wherein
Oxide fine particles having a BET specific surface area of 10 m 2 / g or more.
【請求項5】一または二以上の金属イオンを含む金属硝
酸塩水溶液を燃料と共に自己発火させて酸化物微粒子を
合成する方法において、燃料がγ−アミノ−n−酪酸で
あることを特徴とする酸化物微粒子の合成方法。
5. A method for synthesizing fine oxide particles by self-igniting an aqueous metal nitrate solution containing one or more metal ions together with a fuel, wherein the fuel is γ-amino-n-butyric acid. Method for synthesizing fine particles.
【請求項6】一または二以上の金属イオンを含む金属硝
酸塩水溶液をγ−アミノ−n−酪酸と共に自己発火させ
て得られる酸化物微粒子。
6. Oxide fine particles obtained by self-igniting an aqueous metal nitrate solution containing one or more metal ions together with γ-amino-n-butyric acid.
JP6233664A 1994-09-28 1994-09-28 Method for synthesizing fine oxide particle and fine oxide particles Pending JPH0891809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6233664A JPH0891809A (en) 1994-09-28 1994-09-28 Method for synthesizing fine oxide particle and fine oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6233664A JPH0891809A (en) 1994-09-28 1994-09-28 Method for synthesizing fine oxide particle and fine oxide particles

Publications (1)

Publication Number Publication Date
JPH0891809A true JPH0891809A (en) 1996-04-09

Family

ID=16958600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6233664A Pending JPH0891809A (en) 1994-09-28 1994-09-28 Method for synthesizing fine oxide particle and fine oxide particles

Country Status (1)

Country Link
JP (1) JPH0891809A (en)

Similar Documents

Publication Publication Date Title
Chick et al. Glycine-nitrate combustion synthesis of oxide ceramic powders
Wang et al. Experimental study on preparation of LaMO3 (M= Fe, Co, Ni) nanocrystals and their catalytic activity
Sordelet et al. Synthesis of yttrium aluminum garnet precursor powders by homogeneous precipitation
Jung et al. Quantitative effects of fuel on the synthesis of Ni/NiO particles using a microwave-induced solution combustion synthesis in air atmosphere
Grossin et al. Synthesis of fine La0. 8Sr0. 2MnO3 powder by different ways
CN101172661A (en) Method of producing ultra-fine perovskite type LaFeO*, LaMnO*, LaNiO*
KR101279640B1 (en) Method for in-situ production of composite powders consist of nano-alloy powder and a metal oxides
CN106517360B (en) A kind of particle self assembly cobaltosic oxide micron spherical powder and preparation method thereof
JPH0891809A (en) Method for synthesizing fine oxide particle and fine oxide particles
JPH08169715A (en) Method for synthesizing fine compound oxide particles and fine compound oxide particles
Mallikarjuna et al. Combustion Derived Ultrafine γ-Fe 2 O 3 Structure, morphology and thermal studies
CN100398453C (en) Method of burning gel of stearic acid for preparing Nano LaCo03 in type of perovskite
Selig et al. Hydrolysis reactions of transition metal hexafluorides in liquid hydrogen fluoride: oxonium salts with Pt, Ir and Ru.
Urquizo et al. Synthesis of La–Sr–Mn–O and La–Sr–Ca–Mn–O perovskites through solution combustion using urea at fuel deficient conditions
Chihara et al. Molecular Motion in CsH (CHCl2COO) 2 as Studied by 35Cl Nuclear Quadrupole Resonance and Dielectric Measurements
Dobrokhotova et al. Synthesis of lanthanide manganites LnMnO 3 and LnMn 2 O 5 from individual molecular precursors
Lu et al. Synthesis of yttria-doped strontium-zirconium oxide powders via ammonium glycolate combustion methods as precursors for dense ceramic membranes
JPH0574530B2 (en)
Hapsari et al. Effect of Dissolution Temperature on Purity of LaNi5 Powder Synthesized with the Combustion-Reduction Method.
Marinšek et al. Structure development of NiO–YSZ oxide mixtures in simulated citrate–nitrate combustion synthesis
Ristić et al. Formation of oxide phases in the system Pr-Fe-O
Alamolhoda et al. Optimization of the Fe/Sr Ratio in Processing of Ultra-Fine strontium hexaferrite powders by a sol-gel auto-combustion method in the presence of trimethylamine
Ravula et al. Combustion Synthesized Ceria Powder and its Characterization
KR100411493B1 (en) A fine particles of Nickel and the method of processing thereof
JPS6054925A (en) Production of magnetopumbite type ferrite