JPH08138669A - Cathode active material, manufacture thereof, and non-aqueous solvent secondary battery using the same - Google Patents

Cathode active material, manufacture thereof, and non-aqueous solvent secondary battery using the same

Info

Publication number
JPH08138669A
JPH08138669A JP6269910A JP26991094A JPH08138669A JP H08138669 A JPH08138669 A JP H08138669A JP 6269910 A JP6269910 A JP 6269910A JP 26991094 A JP26991094 A JP 26991094A JP H08138669 A JPH08138669 A JP H08138669A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
secondary battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6269910A
Other languages
Japanese (ja)
Inventor
Keijiro Takanishi
慶次郎 高西
Yoshio Matsuda
良夫 松田
Jun Tsukamoto
遵 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP6269910A priority Critical patent/JPH08138669A/en
Publication of JPH08138669A publication Critical patent/JPH08138669A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To provide a high capacity and an excellent charging and discharging cycle by using a compound having a specified composition with a chemical formula; Li1-x Ax Ni1-y By O2 as a positive active material. CONSTITUTION: A compound having a chemical formula Li1-x Ax Ni1-y By O2 is used as a positive active material, wherein A stands for alkali or alkaline earth metal elements, B for at least one of transition metal elements, 0<x<=0.10, 0<y<=0.30 mole ratio. In the case B stands for two or more transition metal elements, y means the total mole ratio of the transition metal elements and also in the case y=0, A contains at least an alkaline earth metal. A starting raw material containing lithium or A is added to a starting raw material containing nickel or B in at least 1.05 and at highest 1.25 stoichiometric ratio (of the former to the latter), the raw materials are sintered in oxygen atmosphere, and non-reacted alkali components are removed. As a result, the amount of an alkali metal with which lithium is substituted can be lessened and thus the initial capacity is suppressed from decreasing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、正極活物質、およびそ
の製造方法、およびかかる正極活物質を用いた非水溶媒
系二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material, a method for producing the same, and a non-aqueous solvent secondary battery using the positive electrode active material.

【0002】[0002]

【従来の技術】近年、ビデオカメラやノート型パソコン
等のポータブル機器の普及に伴い、小型高容量の二次電
池に対する需要が高まっている。現在使用されている二
次電池のほとんどはアルカリ電解液を用いたニッケル−
カドミウム電池であるが、電池電圧が約1.2Vと低
く、エネルギー密度の向上は困難である。そのため、比
重が0.534と固体の単体中最も軽いうえ、電位が極
めて卑であり、単位重量当たりの電流容量も金属負極材
料中最大であるリチウム金属を使用するリチウム二次電
池が検討された。
2. Description of the Related Art In recent years, with the widespread use of portable devices such as video cameras and notebook computers, demand for small and high capacity secondary batteries has increased. Most of the secondary batteries currently in use are nickel-based using alkaline electrolyte.
Although it is a cadmium battery, the battery voltage is as low as about 1.2 V, and it is difficult to improve the energy density. Therefore, a lithium secondary battery using lithium metal having a specific gravity of 0.534, which is the lightest among the solid single substances, has an extremely base electric potential, and has the largest current capacity per unit weight among the metal negative electrode materials, has been studied. .

【0003】しかし、リチウム金属を負極に使用する二
次電池では、放電時に負極の表面に樹枝状のリチウム
(デンドライト)が再結晶し、充放電サイクルによって
これが成長する。このデンドライトの成長は、二次電池
のサイクル特性を劣化させるばかりではなく、最悪の場
合には正極と負極が接触しないように配置された隔膜
(セパレータ)を突き破って、正極と電気的に短絡、発
火して電池を破壊してしまう。そこで、例えば、特開昭
62−90863号公報に示されているように、コーク
ス等の炭素質材料を負極とし、アルカリ金属イオンをド
ーピング、脱ドーピングすることにより使用する二次電
池が提案された。これによって、上述したような充放電
の繰り返しにおける負極の劣化問題を回避できることが
分かった。また、このような各種炭素質材料は、アニオ
ンをドーピングして正極として用いることも可能であ
る。上記の炭素質材料へのリチウムイオンあるいはアニ
オンのドーピングを利用した電極を利用した二次電池と
しては、特開昭57−208079号公報、特開昭58
−93176号公報、特開昭58−192266号公
報、特開昭62−90863号公報、特開昭62−12
2066号公報、特開平3−66856号公報等が公知
である。
However, in a secondary battery using lithium metal for the negative electrode, dendritic lithium (dendrites) is recrystallized on the surface of the negative electrode during discharge and grows by charge / discharge cycles. The growth of this dendrite not only deteriorates the cycle characteristics of the secondary battery, but in the worst case, it breaks through a diaphragm (separator) arranged so that the positive electrode and the negative electrode do not contact each other, and electrically shorts with the positive electrode. It ignites and destroys the battery. Therefore, for example, as disclosed in JP-A-62-90863, there has been proposed a secondary battery which uses a carbonaceous material such as coke as a negative electrode and is used by doping and dedoping with alkali metal ions. . It has been found that this makes it possible to avoid the problem of deterioration of the negative electrode due to repeated charging and discharging as described above. Further, such various carbonaceous materials can be used as a positive electrode after being doped with anions. Secondary batteries using electrodes made by doping lithium ions or anions into the above carbonaceous materials are disclosed in JP-A-57-208079 and JP-A-58.
-93176, JP-A-58-192266, JP-A-62-90863, and JP-A-62-12.
Japanese Laid-Open Patent Publication No. 2066 and Japanese Laid-Open Patent Publication No. 3-66856 are known.

【0004】このような炭素質材料としては、粉末の形
状のもの、炭素繊維あるいは炭素繊維構造体など、いず
れの形態で用いてもよい。
Such carbonaceous material may be used in any form such as powder, carbon fiber or carbon fiber structure.

【0005】さらに、最近では、高エネルギー密度化の
要求に応えるべく、電池電圧が4V前後を示すものが現
れ、注目を浴びている。電池電圧の高電圧化は、正極に
高電位を示す活物質の探索、開発によって進められ、ア
ルカリ金属を含む遷移金属酸化物や遷移金属カルコゲン
などの無機化合物が知られている。なかでも、Lix
oO2 (0<x≦1.0)、Lix NiO2 (0<x≦
1.0)などが、高電位、安定性、長寿命という点から
最も有望であると考えている。このなかでも、LiNi
2 は、LiCoO2 に比べて、原料がコスト安であ
り、かつ、供給が安定していること、さらには、4V級
の活物質ではあるが、充電電位が幾分低いことから電解
液の安定性が良い、などという利点から、特に精力的に
研究が進められている。
Further, recently, in order to meet the demand for higher energy density, a battery voltage of around 4V has appeared and has attracted attention. Higher battery voltage has been pursued by searching for and developing an active material exhibiting a high potential in the positive electrode, and inorganic compounds such as transition metal oxides and transition metal chalcogens containing alkali metals are known. Among them, Li x C
oO 2 (0 <x ≦ 1.0), Li x NiO 2 (0 <x ≦
1.0) is considered to be the most promising in terms of high potential, stability, and long life. Among these, LiNi
Compared with LiCoO 2 , the raw material of O 2 is cheaper in cost, the supply is stable, and, although it is an active material of 4V class, the charging potential is somewhat lower, so that Research has been carried out vigorously because of the advantages of good stability.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、LiN
iO2 は、100mAh/g程度の比較的低い放電容量
で充放電を繰り返した場合は、サイクル寿命特性には特
に問題がないが、100mAh/g程度以上の放電容量
で充放電を繰り返した場合は、著しい容量劣化を起こ
し、実用上使用不可能であるという課題があった。
However, LiN
io 2 has no particular problem in cycle life characteristics when charge / discharge is repeated at a relatively low discharge capacity of about 100 mAh / g, but when charge / discharge is repeated at a discharge capacity of about 100 mAh / g or more. However, there has been a problem that the capacity is remarkably deteriorated and it cannot be practically used.

【0007】すなわち、本発明者らがLiNiO2 を正
極活物質に用いたリチウム二次電池の充放電サイクルに
よる放電容量の劣化の原因について検討した結果、次の
2つの理由によってサイクル劣化が著しく起こるのでは
ないかとの結論を得た。すなわち、(1)ニッケルと酸
素との共有結合が弱く、充電時リチウムをデインターカ
レーションした時、層状構造を維持できず、部分的に構
造が破壊されてしまい、その後の放電時にリチウムがイ
ンターカレーションする場所が減少してしまい、放電容
量の劣化を起こす、(2)LiCoO2 の場合、充電時
にリチウムのデインターカレーションに伴い生じた4価
のコバルトが、3d軌道(t2g)に不対電子を有するた
め、充電中に電子伝導性が増加するのに対して、LiN
iO2 の場合、充電時に生じた4価のニッケルは、3d
軌道(t2g)が6個の電子で満たされており不対電子が
存在しないために充電中に電子伝導性が低下し、その結
果、放電初期に大きな過電圧を生じて放電容量の劣化を
起こす、と考えられる。
That is, the inventors of the present invention have examined the cause of the deterioration of the discharge capacity due to the charging / discharging cycle of the lithium secondary battery using LiNiO 2 as the positive electrode active material, and as a result, the cycle deterioration occurs remarkably for the following two reasons. We concluded that it might be. That is, (1) the covalent bond between nickel and oxygen is weak, and when deintercalating lithium during charging, the layered structure cannot be maintained and the structure is partially destroyed, and lithium is intercalated during subsequent discharging. In the case of (2) LiCoO 2 , which causes the deterioration of the discharge capacity due to the reduction of the places to be calated, the tetravalent cobalt generated due to the deintercalation of lithium during charging becomes 3d orbit (t 2g ). Due to having unpaired electrons, the electron conductivity increases during charging, whereas LiN
In the case of iO 2, the tetravalent nickel generated during charging is 3d
Since the orbit (t 2g ) is filled with 6 electrons and there are no unpaired electrons, the electron conductivity decreases during charging, and as a result, a large overvoltage is generated at the initial stage of discharge and the discharge capacity deteriorates. ,it is conceivable that.

【0008】LiNiO2 の場合は、(1)と(2)が
同時に起こるため、充放電サイクルに伴って、著しいサ
イクル劣化を引き起こと考えられる。そのため、(1)
と(2)の両方を解決しないと実用上のサイクル寿命特
性の改善にはならない。
In the case of LiNiO 2 , since (1) and (2) occur at the same time, it is considered that significant cycle deterioration is caused with the charge / discharge cycle. Therefore, (1)
Unless both (1) and (2) are solved, the cycle life characteristics cannot be practically improved.

【0009】ここで、以前から、特に(1)に関して、
特開平5−299092号公報(LiNi1-x Mnx
2 )、特開平6−150929号公報(Lix y Ni
2;MはNa、Kのうち少なくとも1つ)、特開平5
−325966号公報など幾つかの改善が提案されてき
た。特開平6−150929号公報は、リチウムの一部
をナトリウムまたはカリウムに置換することによって、
充電時リチウムをデインターカレーションした時、置換
したナトリウムまたはカリウムによって層状構造を維持
しようとするものであるが、この場合、リチウム層のナ
トリウムまたはカリウムがリチウムイオンの拡散を阻害
してしまい、放電容量を低下させてしまうという欠点が
ある。特開平5−299092号公報および特開平5−
325966号公報は、ニッケルの一部をマンガンある
いはコバルトに置換することによって、充電時リチウム
をデインターカレーションした時、置換したマンガンあ
るいはコバルトによって層状構造を維持しようとするも
のであるが、数百回以上のサイクル寿命特性を要求され
る実用上のサイクル劣化改善には全然不十分である。
Here, from before, particularly regarding (1),
JP-A-5-299092 (LiNi 1-x Mn x O
2) JP-A 6-150929 Patent Publication (Li x M y Ni
O 2 ; M is at least one of Na and K).
Several improvements have been proposed, such as the -325966 publication. JP-A-6-150929 discloses that by substituting a part of lithium with sodium or potassium,
When deintercalating lithium during charging, it tries to maintain a layered structure by replacing sodium or potassium, but in this case, sodium or potassium in the lithium layer interferes with the diffusion of lithium ions, and discharge occurs. It has the drawback of reducing the capacity. Japanese Unexamined Patent Publication No. 5-299092 and Japanese Unexamined Patent Publication No.
Japanese Patent No. 325966 discloses an attempt to maintain a layered structure by substituting manganese or cobalt when deintercalating lithium during charging by substituting manganese or cobalt for part of nickel. It is completely inadequate for improving practical cycle deterioration that requires cycle life characteristics of more than one cycle.

【0010】また、(2)に関しても、特開昭62−9
0863号公報、特開平6−124707号公報など幾
つかの改善が提案されてきた。特開昭62−90863
号公報(Ax y z O2 ;Aはアルカリ金属、Mは遷
移金属、NはAl、In、Snの少なくとも1種)は、
ニッケルの一部をアルミなどに置換することによって、
電子伝導性を付与しようとするものであるが、放電電圧
が低下する傾向があり、本来リチウム電池に期待されて
いる高電圧、高エネルギー密度という特徴を損なってし
まうという欠点がある。特開平6−124707号公報
(Liy Ni1- x Mex 2 ;MeはCu、Zn、Ag
のいずれか)は、ニッケルの一部を銅などの遷移金属元
素で置換することによって、置換した銅などの遷移金属
元素によって電子伝導性を付与しようとするものである
が、サイクル寿命特性の向上については何の記載もな
い。
Regarding (2), Japanese Patent Laid-Open No. 62-9
Several improvements have been proposed, such as 0863 and Japanese Patent Laid-Open No. 6-124707. JP-A-62-90863
JP (A x M y N z O2 ; A is an alkali metal, M is a transition metal, N represents Al, In, at least one of Sn) is
By replacing a part of nickel with aluminum etc.,
Although an attempt is made to impart electron conductivity, there is a drawback that the discharge voltage tends to decrease, and the characteristics of high voltage and high energy density originally expected for lithium batteries are impaired. JP-A-6-124707 (Li y Ni 1- x Me x O 2 ; Me is Cu, Zn, Ag
(1) is intended to impart electron conductivity by the substituted transition metal element such as copper by substituting a part of nickel with a transition metal element such as copper, but the cycle life characteristics are improved. There is no description about.

【0011】また、特開平5−283076号公報(L
y Ni1-x Mex 2 ;MeはTi、V、Mn、Fe
のいずれか)は、ニッケルの一部をチタンなどの遷移金
属元素に置換することによって、充電時リチウムをデイ
ンターカレーションした時、置換したチタンなどの遷移
金属元素によって層状構造を維持し、かつ、電子伝導性
を付与しようとするものであるが、数百回以上のサイク
ル寿命特性を要求される実用上のサイクル劣化改善には
まだ不十分である。
Further, Japanese Laid-Open Patent Publication No. 5-283076 (L
i y Ni 1-x Me x O 2 ; Me is Ti, V, Mn, Fe
By substituting a part of nickel with a transition metal element such as titanium, so that when the lithium is deintercalated during charging, the layer structure is maintained by the substituted transition metal element such as titanium, and Although it is intended to impart electronic conductivity, it is still insufficient for improving practical cycle deterioration which requires cycle life characteristics of several hundred cycles or more.

【0012】本発明は、上記従来技術の欠点を解消しよ
うとするものであり、高容量で充放電サイクルに優れた
正極活物質およびそれを用いた高性能の二次電池を提供
することを目的とする。
The present invention is intended to solve the above-mentioned drawbacks of the prior art, and an object thereof is to provide a positive electrode active material having a high capacity and an excellent charge / discharge cycle, and a high-performance secondary battery using the same. And

【0013】[0013]

【課題を解決するための手段】本発明は、上記課題を解
決するために以下の構成を有するものである。
The present invention has the following constitution in order to solve the above problems.

【0014】「(1) 化学式Li1-x x Ni1-y y
2 (但し、Aはアルカリもしくはアルカリ土類金属元
素、Bは少なくとも1種の遷移金属元素からなり、式中
x、yのモル数は、0<x≦0.10、0<y≦0.3
0;但し、Bが2種以上の遷移金属元素からなる場合
は、yは全遷移金属元素の総モル数、また、y=0の時
は、Aは少なくともアルカリ土類金属を含む)で表され
る化合物を用いた正極活物質。
"(1) Chemical formula Li 1-x A x Ni 1- y By O
2 (where A is an alkali or alkaline earth metal element, B is at least one transition metal element, and the number of moles of x and y is 0 <x ≦ 0.10, 0 <y ≦ 0. Three
0; however, when B is composed of two or more kinds of transition metal elements, y is the total number of moles of all transition metal elements, and when y = 0, A includes at least an alkaline earth metal) Positive electrode active material using the compound described above.

【0015】(2) リチウムまたはAを含む出発原料を、
ニッケルまたはBを含む出発原料に対して化学量論比で
1.05以上、1.25以下の割合で調合し、かつ、原
料を酸素雰囲気中で焼成後、未反応のアルカリ分を除去
することを特徴とする請求項1記載の正極活物質の製造
方法。
(2) The starting material containing lithium or A is
Mixing a starting material containing nickel or B in a stoichiometric ratio of 1.05 or more and 1.25 or less, and removing unreacted alkali content after firing the material in an oxygen atmosphere. The method for producing a positive electrode active material according to claim 1, wherein

【0016】(3) 請求項1記載の正極活物質を用いるこ
とを特徴とする非水溶媒系二次電池。」 本発明者らは、サイクル寿命特性の改善を鋭意検討した
結果、Li1-x x Ni1-y y 2 (但し、Aはアル
カリもしくはアルカリ土類金属元素、Bは少なくとも1
種の遷移金属元素からなり、式中x、yのモル数は、0
<x≦0.10、0<y≦0.30;但し、Bが2種以
上の遷移金属元素からなる場合は、yは全遷移金属元素
の総モル数、また、y=0の時は、Aは少なくともアル
カリ土類金属を含む)という一般的な化学式を有する正
極活物質を見い出すに至ったのである。ここで、アルカ
リ金属元素としてはカリウムまたはナトリウムが、アル
カリ土類金属元素としては、上述のバリウム以外に、カ
ルシウム、マグネシウム、ストロンチウムが、遷移金属
元素としてはマンガン以外にはスカンジウム、チタン、
バナジウム、クロム、鉄、コバルトが、それぞれ同様の
効果を示した。
(3) A non-aqueous solvent secondary battery comprising the positive electrode active material according to claim 1. As a result of earnest studies for improving the cycle life characteristics, the present inventors have found that Li 1-x A x Ni 1- y By O 2 (where A is an alkali or alkaline earth metal element and B is at least 1
It consists of one kind of transition metal element, and the number of moles of x and y is 0.
<X ≦ 0.10, 0 <y ≦ 0.30; provided that B is composed of two or more kinds of transition metal elements, y is the total number of moles of all transition metal elements, and y = 0. , A includes at least an alkaline earth metal), and has found a positive electrode active material having a general chemical formula. Here, potassium or sodium as the alkali metal element, as the alkaline earth metal element, in addition to barium described above, calcium, magnesium, strontium, scandium other than manganese as the transition metal element, titanium,
Vanadium, chromium, iron, and cobalt each showed the same effect.

【0017】これは、リチウムと置換するアルカリ金属
またはアルカリ土類金属元素の量をリチウムの10%以
内と小さくすることによって、初期容量の低下を押さえ
つつサイクル寿命特性の改善を達成することができ、か
つ、ニッケルと遷移金属元素を置換することによって、
層状構造を維持し、かつ、電子伝導性を付与することが
可能になり、アルカリ金属またはアルカリ土類金属元素
の効果と相乗的に作用しあって、良好なサイクル寿命特
性が得られたものと推測される。
This is because by reducing the amount of alkali metal or alkaline earth metal element substituting for lithium to within 10% of lithium, improvement of cycle life characteristics can be achieved while suppressing reduction of initial capacity. , And by substituting the transition metal element with nickel,
It is possible to maintain a layered structure and impart electron conductivity, synergize with the effect of an alkali metal or alkaline earth metal element, and obtain good cycle life characteristics. Guessed.

【0018】また、xが0.10よりも大きくなると、
前述のとおりリチウムと置換したアルカリ金属元素がリ
チウムイオンの拡散を阻害してしまい、逆に抵抗成分に
なって初期の放電容量を大きく低下させてしまう。初期
の放電容量の低下を抑えるにはxは0.05よりも小さ
い方が好ましい。また、yが0.3よりも大きくなると
結晶構造が不安定になりサイクル寿命特性が悪くなって
しまう。好ましくは、yは0.3よりも小さい方が、さ
らに好ましくはyは0.2よりも小さい方がよい。
When x becomes larger than 0.10.
As described above, the alkali metal element substituted with lithium hinders the diffusion of lithium ions and, on the contrary, becomes a resistance component, which greatly reduces the initial discharge capacity. In order to suppress the decrease in the initial discharge capacity, x is preferably smaller than 0.05. Further, when y is larger than 0.3, the crystal structure becomes unstable and the cycle life characteristics deteriorate. Preferably, y is smaller than 0.3, and more preferably y is smaller than 0.2.

【0019】ここで、本発明に係わるアルカリ金属また
はアルカリ土類金属元素などの第三成分を添加、置換固
溶させる場合、目的組成に正確に調合しても、再現性よ
く目的組成の活物質を得ることは非情に困難であった。
そこで、蒸発分を考慮して、リチウムおよびアルカリ金
属またはアルカリ土類金属元素などの第三成分を含む出
発原料を、ニッケルおよび遷移金属元素を含む出発原料
に対して過剰に調合し、焼成後、未反応のアルカリ分を
除去することで、再現性よく目的組成の活物質を得るこ
とを見い出した。
Here, when the third component such as the alkali metal or alkaline earth metal element according to the present invention is added and substituted to form a solid solution by substitution, the active material having the target composition with good reproducibility can be prepared even if the target composition is accurately prepared. It was ruthlessly difficult to obtain.
Therefore, in consideration of the evaporation, a starting material containing a third component such as lithium and an alkali metal or an alkaline earth metal element is excessively mixed with a starting material containing nickel and a transition metal element, and after firing, It was found that an active material having a target composition can be obtained with good reproducibility by removing the unreacted alkali content.

【0020】次に本発明の正極活物質の製造方法につい
て述べる。原料のリチウム化合物としては、一般的な炭
酸リチウム、硝酸リチウム、硫酸リチウム、水酸化リチ
ウムなどの塩またはその水和物、または酸化リチウム、
過酸化リチウムなどの酸化物やヨウ化リチウムなどが挙
げられる。ニッケルについても同様の塩またはその水和
物、酸化物が挙げられ、他のアルカリ金属、アルカリ土
類金属および3d遷移金属についても同様の出発原料が
用いられる。
Next, a method for producing the positive electrode active material of the present invention will be described. As the lithium compound as a raw material, general lithium carbonate, lithium nitrate, lithium sulfate, a salt such as lithium hydroxide or a hydrate thereof, or lithium oxide,
Examples thereof include oxides such as lithium peroxide and lithium iodide. Similar salts or hydrates or oxides thereof are mentioned for nickel, and similar starting materials are used for other alkali metals, alkaline earth metals and 3d transition metals.

【0021】リチウムおよび添加元素であるアルカリ金
属またはアルカリ土類金属元素を目的の化学量論比より
も1.05〜1.25倍多くなるように出発原料を調合
する。こうして調合した原料を十分に混合した後、必要
があれば成型して固相反応を起こしやすくした後、空気
や純酸素などの酸化雰囲気中で、通常300〜700℃
で予備焼成する。そして、ボールミルや擂潰機などを用
いて二次粒子を解砕した後、再び酸化雰囲気中で、通常
500〜900℃で焼成後、未反応のアルカリ分を除去
し、次いで粉砕や分級操作などによって、粒度調整して
正極活物質とした。過剰のアルカリ分を調合して合成し
た後、余分のアルカリ分を例えば、水洗などで除去する
ことにより効果が生じる理由は明確にはなっていない
が、この操作によって、より均質かつ再現性のある組成
が得られることを組成分析によって確認している。
The starting materials are prepared so that lithium and the additional element, alkali metal or alkaline earth metal element, are 1.05 to 1.25 times more than the target stoichiometric ratio. After thoroughly mixing the raw materials thus prepared, if necessary, molding is performed to facilitate the solid-phase reaction, and then the temperature is usually 300 to 700 ° C. in an oxidizing atmosphere such as air or pure oxygen.
Pre-fire at. Then, after crushing the secondary particles by using a ball mill or a crusher, the unreacted alkali is removed after firing again in an oxidizing atmosphere, usually at 500 to 900 ° C., followed by pulverization and classification. The particle size was adjusted to obtain a positive electrode active material. Although the reason why the effect is obtained by removing the excess alkali content by rinsing with water after synthesizing by synthesizing the excess alkali content has not been clarified, this operation provides more uniform and reproducible results. It was confirmed by composition analysis that the composition was obtained.

【0022】本発明に用いられる負極炭素質材料として
は、特に限定されるものではなく、一般に有機物を焼成
したものが用いられる。炭素質材料の電子伝導性が集電
の目的に対して充分でない場合、導電剤を添加すること
も好ましい。
The negative electrode carbonaceous material used in the present invention is not particularly limited, and a material obtained by firing an organic material is generally used. When the electron conductivity of the carbonaceous material is not sufficient for the purpose of collecting electricity, it is also preferable to add a conductive agent.

【0023】また、炭素質材料が炭素繊維の場合、用い
られる炭素繊維としては、特に限定されるものではな
く、一般に有機物を焼成したものが用いられる。具体的
には、ポリアクリロニトリル(PAN)から得られるP
AN系炭素繊維、石炭もしくは石油などのピッチから得
られるピッチ系炭素繊維、セルロースから得られるセル
ロース系炭素繊維、低分子量有機物の気体から得られる
気相成長炭素繊維などが挙げられるが、そのほかに、ポ
リビニルアルコール、リグニン、ポリ塩化ビニル、ポリ
アミド、ポリイミド、フェノール樹脂、フルフリルアル
コールなどを焼成して得られる炭素繊維でも構わない。
これらの炭素繊維の中で、炭素繊維が用いられる電極お
よび電池の特性に応じて、その特性を満たす炭素繊維が
適宜選択されることが必要となる。上記炭素繊維の中
で、アルカリ金属塩を含む非水電解液を用いた二次電池
の負極に使用する場合には、PAN系炭素繊維、ピッチ
系炭素繊維、気相成長炭素繊維が好ましい。特に、アル
カリ金属イオン、特にリチウムイオンのドーピングが良
好であるという点で、PAN系炭素繊維やピッチ系炭素
繊維が好ましく、この中でも、東レ(株)製の”トレ
カ”Tシリーズ、または、”トレカ”Mシリーズなどの
PAN系炭素繊維、メゾフェーズピッチコークスを焼成
して得られるピッチ系炭素繊維がさらに好ましく用いら
れる。
When the carbonaceous material is carbon fiber, the carbon fiber to be used is not particularly limited, and generally fired organic material is used. Specifically, P obtained from polyacrylonitrile (PAN)
Examples include AN-based carbon fiber, pitch-based carbon fiber obtained from pitch of coal or petroleum, cellulose-based carbon fiber obtained from cellulose, vapor-grown carbon fiber obtained from gas of low molecular weight organic substance, and the like. Carbon fibers obtained by firing polyvinyl alcohol, lignin, polyvinyl chloride, polyamide, polyimide, phenol resin, furfuryl alcohol, etc. may be used.
Among these carbon fibers, depending on the characteristics of the electrode and battery in which the carbon fibers are used, it is necessary to appropriately select the carbon fibers that satisfy the characteristics. Among the above-mentioned carbon fibers, PAN-based carbon fibers, pitch-based carbon fibers, and vapor-grown carbon fibers are preferable when used in the negative electrode of a secondary battery using a non-aqueous electrolyte containing an alkali metal salt. In particular, PAN-based carbon fibers and pitch-based carbon fibers are preferable in terms of favorable doping with alkali metal ions, particularly lithium ions. Among these, "Torayca" T series or "Torayca" manufactured by Toray Industries, Inc. PAN-based carbon fibers such as "M series" and pitch-based carbon fibers obtained by firing mesophase pitch coke are more preferably used.

【0024】炭素繊維を電極にする際には、どのような
形態をとっても構わないが、一軸方向に配置したり、も
しくは布帛状やフェルト状の構造体にするなどが、好ま
しい形態となる。布帛状あるいはフェルト状などの構造
体としては、織物、編物、組物、レース、網、フェル
ト、紙、不織布、マットなどが挙げられるが、炭素繊維
の性質や電極特性などの点から、織物やフェルトなどが
好ましい。
When the carbon fiber is used as an electrode, it may have any form, but a preferred form is to dispose it in a uniaxial direction, or to form a fabric-like or felt-like structure. Examples of the fabric-like or felt-like structure include woven fabrics, knitted fabrics, braids, laces, nets, felts, papers, non-woven fabrics, mats, and the like. Felt and the like are preferred.

【0025】本発明の電極を用いた二次電池の電解液と
しては、特に限定されることなく従来の電解液が用いら
れ、例えば酸あるいはアルカリ水溶液、または非水溶媒
などが挙げられる。この中で、上述のアルカリ金属塩を
含む非水電解液からなる二次電池の電解液としては、プ
ロピレンカーボネート、エチレンカーボネート、γ-ブ
チロラクトン、N- メチルピロリドン、アセトニトリ
ル、N,N−ジメチルホルムアミド、ジメチルスルフォ
キシド、テトラヒドロフラン、1,3−ジオキソラン、
ギ酸メチル、スルホラン、オキサゾリドン、塩化チオニ
ル、1,2−ジメトキシエタン、ジエチレンカーボネー
トや、これらの誘導体や混合物などが好ましく用いられ
る。電解液に含まれる電解質としては、アルカリ金属、
特にリチウムのハロゲン化物、過塩素酸塩、チオシアン
塩、ホウフッ化塩、リンフッ化塩、砒素フッ化塩、アル
ミニウムフッ化塩、トリフルオロメチル硫酸塩などが好
ましく用いられる。
The electrolytic solution of the secondary battery using the electrode of the present invention is not particularly limited, and a conventional electrolytic solution may be used, and examples thereof include an acid or alkaline aqueous solution or a non-aqueous solvent. Among them, as the electrolytic solution of the secondary battery composed of the above-mentioned non-aqueous electrolytic solution containing an alkali metal salt, propylene carbonate, ethylene carbonate, γ-butyrolactone, N-methylpyrrolidone, acetonitrile, N, N-dimethylformamide, Dimethyl sulfoxide, tetrahydrofuran, 1,3-dioxolane,
Methyl formate, sulfolane, oxazolidone, thionyl chloride, 1,2-dimethoxyethane, diethylene carbonate, derivatives and mixtures of these are preferably used. The electrolyte contained in the electrolytic solution is an alkali metal,
Particularly, lithium halides, perchlorates, thiocyanates, borofluorides, phosphorous fluorides, arsenic fluorides, aluminum fluorides, trifluoromethylsulfates and the like are preferably used.

【0026】本発明の電極を用いた二次電池の用途とし
ては、軽量かつ高容量で高エネルギー密度の特徴を利用
して、ビデオカメラ、パソコン、ワープロ、ラジカセ、
携帯電話などの携帯用小型電子機器に広く利用可能であ
る。
The secondary battery using the electrode of the present invention can be used as a video camera, a personal computer, a word processor, a radio-cassette, by utilizing the features of light weight, high capacity and high energy density.
It is widely applicable to portable small electronic devices such as mobile phones.

【0027】[0027]

【実施例】本発明の具体的実施態様を以下に実施例をも
って述べるが、本発明はこれに限定されるものではな
い。
EXAMPLES Specific embodiments of the present invention will be described below with reference to examples, but the present invention is not limited thereto.

【0028】実施例1〜17 化学式Li1-x x Ni1-y y 2 (但し、Aはアル
カリもしくはアルカリ土類金属元素、Bは少なくとも1
種の遷移金属元素からなり、式中x、yのモル数は、0
<x≦0.10、0<y≦0.30;但し、Bが2種以
上の遷移金属元素からなる場合は、yは全遷移金属元素
の総モル数、また、y=0の時は、Aは少なくともアル
カリ土類金属元素を含む)で示される化合物として、下
記の18種類を用いた実施例を示す。
Examples 1 to 17 Chemical formulas Li 1-x A x Ni 1- y By O 2 (where A is an alkali or alkaline earth metal element and B is at least 1
It consists of one kind of transition metal element, and the number of moles of x and y is 0.
<X ≦ 0.10, 0 <y ≦ 0.30; provided that B is composed of two or more kinds of transition metal elements, y is the total number of moles of all transition metal elements, and y = 0. , A includes at least an alkaline earth metal element), the following 18 examples are used.

【0029】実施例1.Li0.98Ba0.02NiO2 実施例2.Li0.98Sr0.02NiO2 実施例3.Li0.970.03Ni0.90Mn0.102 実施例4.Li0.97Na0.03Ni0.90Mn0.102 実施例5.Li0.98Ba0.02Ni0.90Mn0.102 実施例6.Li0.95Ba0.05Ni0.90Mn0.102 実施例7.Li0.90Ba0.10Ni0.90Mn0.102 実施例8.Li0.98Ba0.02Ni0.80Mn0.202 実施例9.Li0.98Ba0.02Ni0.70Mn0.302 実施例10.Li0.98Ba0.02Ni0.90Co0.102 実施例11.Li0.98Ba0.02Ni0.90Ti0.102 実施例12.Li0.98Ba0.02Ni0.90Cu0.102 実施例13.Li0.98Mg0.02Ni0.90Co0.102 実施例14.Li0.98Sr0.02Ni0.90Co0.102 実施例15.LiNi0.90Mn0.05Co0.052 実施例16.LiNi0.80Mn0.10Co0.102 実施例17.LiNi0.70Mn0.10Co0.202 実施例18.LiNi0.90Mn0.10Cu0.102 この中で、前述の実施例5において用いたLi0.98Ba
0.02Ni0.90Mn0.102 の合成法について以下に詳細
に説明する。
Example 1. Li 0.98 Ba 0.02 NiO 2 Example 2. Li 0.98 Sr 0.02 NiO 2 Example 3. Li 0.97 K 0.03 Ni 0.90 Mn 0.10 O 2 Example 4. Li 0.97 Na 0.03 Ni 0.90 Mn 0.10 O 2 Example 5. Li 0.98 Ba 0.02 Ni 0.90 Mn 0.10 O 2 Example 6. Li 0.95 Ba 0.05 Ni 0.90 Mn 0.10 O 2 Example 7. Li 0.90 Ba 0.10 Ni 0.90 Mn 0.10 O 2 Example 8. Li 0.98 Ba 0.02 Ni 0.80 Mn 0.20 O 2 Example 9. Li 0.98 Ba 0.02 Ni 0.70 Mn 0.30 O 2 Example 10. Li 0.98 Ba 0.02 Ni 0.90 Co 0.10 O 2 Example 11. Li 0.98 Ba 0.02 Ni 0.90 Ti 0.10 O 2 Example 12. Li 0.98 Ba 0.02 Ni 0.90 Cu 0.10 O 2 Example 13. Li 0.98 Mg 0.02 Ni 0.90 Co 0.10 O 2 Example 14 Li 0.98 Sr 0.02 Ni 0.90 Co 0.10 O 2 Example 15. LiNi 0.90 Mn 0.05 Co 0.05 O 2 Example 16. LiNi 0.80 Mn 0.10 Co 0.10 O 2 Example 17 LiNi 0.70 Mn 0.10 Co 0.20 O 2 Example 18. LiNi 0.90 Mn 0.10 Cu 0.10 O 2 In this, Li 0.98 Ba used in Example 5 was used.
The method for synthesizing 0.02 Ni 0.90 Mn 0.10 O 2 will be described in detail below.

【0030】市販の高純度試薬の硝酸リチウム(LiN
3 )、水酸化ニッケル(Ni(OH)2 )、水酸化バ
リウム・8水塩(Ba(OH)2 ・8H2 O)、二酸化
マンガン(MnO2 )を酸化物換算でLi1.10Ba0.22
Ni0.90Mn0.102 となるように秤量し、自動乳鉢で
十分に混合した後、アルミナ製るつぼ内に充填して、雰
囲気焼成炉を用いて純酸素気流中(流量1リットル/
分)、650℃で16時間保持し予備焼成した。室温ま
で冷却した後、再び自動乳鉢で30分間粉砕し、二次粒
子の凝集を解砕した。そして、予備焼成と同様の雰囲気
下で、800℃で24時間保持し本焼成し、室温まで冷
却した後、メノウ製乳鉢で20分間粉砕して得られた粉
末を蒸留水で2時間水洗した後、真空乾燥器を用いて1
50℃で4時間乾燥させ、再度自動乳鉢で1時間粉砕し
て本発明の正極活物質粉末とした。得られた粉末を定量
組成分析したところ、Li0.98Ba0.020 Ni0.90Mn
0.102 の組成であることを確認した。
A commercially available high-purity reagent, lithium nitrate (LiN
O 3 ), nickel hydroxide (Ni (OH) 2 ), barium hydroxide octahydrate (Ba (OH) 2 / 8H 2 O), and manganese dioxide (MnO 2 ) in terms of oxides Li 1.10 Ba 0.22
Ni 0.90 Mn 0.10 O 2 was weighed and sufficiently mixed in an automatic mortar, and then filled in an alumina crucible and placed in a pure oxygen gas stream (flow rate of 1 liter /
Min) and held at 650 ° C. for 16 hours for preliminary firing. After cooling to room temperature, it was ground again in an automatic mortar for 30 minutes to break up the aggregation of secondary particles. Then, in the same atmosphere as in the pre-baking, the powder was obtained by holding it at 800 ° C. for 24 hours for main baking, cooling it to room temperature, crushing it for 20 minutes in an agate mortar, and washing it with distilled water for 2 hours. , Using a vacuum dryer 1
The positive electrode active material powder of the present invention was obtained by drying at 50 ° C. for 4 hours and pulverizing again in an automatic mortar for 1 hour. A quantitative compositional analysis of the obtained powder revealed that Li 0.98 Ba 0.020 Ni 0.90 Mn
It was confirmed that the composition was 0.10 O 2 .

【0031】次に充放電特性評価用セルの作製方法につ
いて述べる。正極合剤は、結着剤であるポリフッ化ビニ
リデン活物質を10wt%になるように調合したN−メ
チルピロリドン(NMP)溶液に、上記活物質:導電剤
(アセチレンブラック):結着剤が89重量部:4重量
部:7重量部となるように混合し、窒素気流中自動乳鉢
で30分間混合して作製した。これを厚さ20μmのア
ルミ箔上に塗布し、乾燥器内90℃で乾燥後、裏面にも
塗布、乾燥して両面に正極を形成した後、プレスして厚
さ200μm、正極材塗布部の幅10mm,長さ20m
mの正極を作製した。
Next, a method of manufacturing the charge / discharge characteristic evaluation cell will be described. The positive electrode mixture was prepared by adding N-methylpyrrolidone (NMP) solution prepared by mixing polyvinylidene fluoride active material as a binder to 10 wt%, and adding the active material: conductive agent (acetylene black): binder to 89%. Parts by weight: 4 parts by weight: 7 parts by weight, and the mixture was prepared by mixing in a nitrogen stream in an automatic mortar for 30 minutes. This is applied on an aluminum foil having a thickness of 20 μm, dried at 90 ° C. in a drier, applied on the back surface and dried to form a positive electrode on both sides, and then pressed to a thickness of 200 μm and applied to the positive electrode material application portion. Width 10 mm, length 20 m
m positive electrode was produced.

【0032】次に、このようにして作製した正極の放電
容量の評価を行った。電解液は1MLiBF4 を含むプ
ロピレンカーボネート、ジメチルカーボネート(各々体
積比で1:1)で、対極および参照極には金属リチウム
箔を用いた、3極式セルで評価した。活物質当たりの電
流密度は30mA/gの定電流で、4.1V(vs.Li+/L
i) まで充電した。充電後に、充電と同じ電流密度で
3.0V(vs.Li+ /Li)まで放電した。さらに、充放電
サイクルを繰り返し、100回目の放電容量と1回目の
放電容量を比較して、次式で表される容量保持率を求め
た。 容量保持率(%)={(100回目の放電容量)/(1
回目の放電容量)}×100 他の実施例についても、カリウム、ナトリウム、ストロ
ンチウムおよびマグネシウムの出発原料に炭酸塩、コバ
ルトおよび銅の出発原料に二水酸化物、チタンの出発原
料に二酸化物、を用い、目的の組成になるように、過剰
にリチウム化合物とアルカリ金属またはアルカリ土類金
属の化合物を調合した以外は、同様にして正極活物質を
作製した。アルカリ金属元素についてはフレーム原子吸
光法で、その他の金属元素についてはICP発光分光分
析法を用いた定量組成分析の結果、いずれも、誤差範囲
内で各実施例に示した目的組成であることを確認した。
ここで、各実施例の仕込み組成および定量分析組成を表
1に示した。また、各実施例の初期容量と容量保持率を
表2に示した。
Next, the discharge capacity of the positive electrode thus manufactured was evaluated. The electrolytes were propylene carbonate and dimethyl carbonate containing 1M LiBF 4 (1: 1 in volume ratio, respectively), and the evaluation was carried out in a three-electrode cell using a lithium metal foil for the counter electrode and the reference electrode. Current density per active material is constant current of 30mA / g, 4.1V (vs.Li + / L
Charged up to i). After charging, the battery was discharged to 3.0 V (vs. Li + / Li) at the same current density as the charging. Further, the charge / discharge cycle was repeated, and the discharge capacity at the 100th time was compared with the discharge capacity at the first time to obtain the capacity retention rate represented by the following formula. Capacity retention rate (%) = {(100th discharge capacity) / (1
Second discharge capacity)} × 100 In other examples, potassium, sodium, strontium, and magnesium were used as starting materials, carbonate, cobalt and copper as starting materials, dihydroxide, and titanium as starting material, dioxide. A positive electrode active material was produced in the same manner except that the lithium compound and the compound of the alkali metal or the alkaline earth metal were excessively mixed so as to have the desired composition. As a result of the quantitative composition analysis using the flame atomic absorption method for the alkali metal element and the ICP emission spectroscopic analysis method for the other metal elements, it was confirmed that the target compositions shown in the respective examples were within the error range. confirmed.
Here, the charged composition and the quantitative analysis composition of each example are shown in Table 1. Table 2 shows the initial capacity and capacity retention rate of each example.

【0033】さらに、本発明の正極活物質と炭素繊維を
組み合わせて作製した二次電池についても実施例19に示
す。
Furthermore, Example 19 also shows a secondary battery produced by combining the positive electrode active material of the present invention and carbon fiber.

【0034】実施例19 実施例5にて作製した正極活物質30mgに、市販のP
AN系炭素繊維(“トレカ”T−300、東レ(株)
製)1ストランド(3K:3000本)7mgを負極に
し、多孔質ポリプロピレンフィルム(セルガード#25
00、ダイセル化学(株)製)のセパレータを介して重
ね合わせて、二次電池を作製した。電解液は、1M過L
iBF4 を含むプロピレンカーボネート、ジメチルカー
ボネート(各々体積比で1:1)を用いた。このように
して作製した二次電池を用いて、炭素繊維重量当たりの
電流密度40mA/gの定電流で、4.10Vまで充電
した。充電後、40mA/gの定電流で放電させた。こ
の時の初期容量(正極活物質重量換算)と容量保持率の
結果を表2に示した。
Example 19 30 mg of the positive electrode active material prepared in Example 5 was mixed with commercially available P
AN carbon fiber ("Torayca" T-300, Toray Industries, Inc.
7 mg of 1 strand (3K: 3000 pieces) as a negative electrode and a porous polypropylene film (Celgard # 25)
No. 00, manufactured by Daicel Chemical Industries, Ltd., and a secondary battery was prepared by stacking them via a separator. Electrolyte is 1M excess L
Propylene carbonate and dimethyl carbonate containing iBF 4 (1: 1 in volume ratio) were used. Using the secondary battery produced in this manner, the secondary battery was charged to 4.10 V at a constant current with a current density per carbon fiber weight of 40 mA / g. After charging, the battery was discharged at a constant current of 40 mA / g. Table 2 shows the results of the initial capacity (converted to the weight of the positive electrode active material) and the capacity retention rate at this time.

【0035】[0035]

【表1】 [Table 1]

【表2】 比較例1 第3成分を添加しないこと以外は実施例5と同様にし
て、LiNiO2 からなる正極活物質を作製し、実施例
5と同様にして、初期容量と容量保持率とを求めた結果
を表3に示した。
[Table 2] Comparative Example 1 A positive electrode active material made of LiNiO 2 was produced in the same manner as in Example 5 except that the third component was not added, and the results of obtaining the initial capacity and the capacity retention rate in the same manner as in Example 5 were obtained. Is shown in Table 3.

【0036】比較例2 バリウムの添加量をリチウムに対して20重量%とした
こと以外は、実施例5と同様にしてLi0.80Ba0.20
0.90Mn0.102 からなる正極活物質を作製し、実施
例5と同様にして、初期容量と容量保持率とを求めた結
果を表3に示した。
Comparative Example 2 Li 0.80 Ba 0.20 N was prepared in the same manner as in Example 5 except that the amount of barium added was 20% by weight with respect to lithium.
A positive electrode active material made of i 0.90 Mn 0.10 O 2 was prepared, and the initial capacity and the capacity retention were determined in the same manner as in Example 5, and the results are shown in Table 3.

【0037】比較例3 マンガンの添加量をニッケルに対して40重量%とした
こと以外は、実施例5と同様にしてLi0.98Ba0.02
0.60Mn0.402 からなる正極活物質を作製し、実施
例5と同様にして、初期容量と容量保持率とを求めた結
果を表3に示した。
Comparative Example 3 Li 0.98 Ba 0.02 N was prepared in the same manner as in Example 5 except that the addition amount of manganese was 40% by weight with respect to nickel.
A positive electrode active material made of i 0.60 Mn 0.40 O 2 was prepared, and the initial capacity and the capacity retention were determined in the same manner as in Example 5, and the results are shown in Table 3.

【0038】比較例4 マンガンとコバルトの添加量をニッケルに対して40重
量%としたこと以外は、実施例15と同様にしてLiNi
0.60Mn0.20Co0.202 からなる正極活物質を作製
し、実施例15と同様にして、初期容量と容量保持率とを
求めた結果を表3に示した。
Comparative Example 4 LiNi was prepared in the same manner as in Example 15 except that the addition amounts of manganese and cobalt were 40% by weight with respect to nickel.
A positive electrode active material made of 0.60 Mn 0.20 Co 0.20 O 2 was prepared, and the initial capacity and the capacity retention were determined in the same manner as in Example 15, and the results are shown in Table 3.

【0039】比較例5 実施例5において、バリウムとマンガンの仕込み量をL
0.98Ba0.02Ni0. 90Mn0.102 となるように調合
した以外は実施例5と同様にして、初期容量と容量保持
率とを求めた結果を表3に示した。
Comparative Example 5 In Example 5, the charged amounts of barium and manganese were changed to L
i 0.98 Ba 0.02 Ni 0. except which is prepared to have a 90 Mn 0.10 O 2 in the same manner as in Example 5, the results obtained with the initial capacity and the capacity retention are shown in Table 3.

【0040】比較例6 水洗で余分のアルカリ分を除去しなかったこと以外は実
施例5と同様にして、Li0.98Ba0.02Ni0.90Mn
0.102 からなる正極活物質を作製した。さらに、実施
例5と同様にして、初期容量と容量保持率とを求めた結
果を表3に示した。
Comparative Example 6 Li 0.98 Ba 0.02 Ni 0.90 Mn was prepared in the same manner as in Example 5 except that excess alkali was not removed by washing with water.
A positive electrode active material made of 0.10 O 2 was prepared. Furthermore, in the same manner as in Example 5, the results of obtaining the initial capacity and the capacity retention rate are shown in Table 3.

【0041】[0041]

【表3】 比較例7 正極活物質に比較例1で作製したLiNiO2 を用いた
以外は実施例19と同様にして二次電池を作製した。
[Table 3] Comparative Example 7 A secondary battery was produced in the same manner as in Example 19 except that the LiNiO 2 produced in Comparative Example 1 was used as the positive electrode active material.

【0042】また、各比較例に示した正極活物質を定量
組成分析したところ、比較例1〜4は、誤差範囲内で目
的組成であることを確認したが、比較例5ではリチウム
およびバリウムが目的組成より5%少なく、比較例6で
は逆に、リチウムおよびバリウムがそれぞれ5%多いこ
とがわかった。比較例1〜6の仕込み組成および定量分
析組成を表4に示した。
Further, quantitative composition analysis of the positive electrode active material shown in each Comparative Example confirmed that Comparative Examples 1 to 4 were target compositions within an error range, but Comparative Example 5 contained lithium and barium. It was found that the target composition was 5% less, and conversely in Comparative Example 6, lithium and barium were each 5% more. Table 4 shows the feed composition and the quantitative analysis composition of Comparative Examples 1 to 6.

【0043】[0043]

【表4】 表2および表3から、本発明の正極活物質は、比較例1
の未添加のLiNiO2 系と比べて、充放電特性、特に
サイクル寿命特性が優れていることがわかる。また、実
施例5〜7と比較例2からは、xの値が0.10を越え
ると、特に初期容量が低下することが、また、実施例
5、実施例8および実施例9と比較例3からは、yの値
が0.30を越えると、特にサイクル寿命特性が劣化す
ることがわかる。さらに、実施例15〜17と比較例4から
は、添加遷移金属元素の総モル数であるyの値が0.3
0を越えると、特にサイクル寿命特性が劣化することが
わかる。この傾向が、添加元素を変えても、若干の変動
はあるものの同様であることを確認している。また、本
発明の正極活物質に、電極性能を損ねることなく、さら
に添加元素を加えてもよい。
[Table 4] From Table 2 and Table 3, the positive electrode active material of the present invention is Comparative Example 1
It can be seen that the charge and discharge characteristics, especially the cycle life characteristics are superior to those of the LiNiO 2 system in which No. In addition, from Examples 5 to 7 and Comparative Example 2, when the value of x exceeds 0.10, the initial capacity is particularly decreased, and in Example 5, Example 8 and Example 9 and Comparative Example. From 3, it can be seen that the cycle life characteristics are particularly deteriorated when the value of y exceeds 0.30. Furthermore, from Examples 15 to 17 and Comparative Example 4, the value of y, which is the total number of moles of the added transition metal element, is 0.3.
It can be seen that when it exceeds 0, the cycle life characteristics are particularly deteriorated. It has been confirmed that this tendency is the same even if the additive element is changed, although there is some variation. Further, additional elements may be added to the positive electrode active material of the present invention without impairing the electrode performance.

【0044】次に、実施例5と比較例5、比較例6の結
果から、過剰にリチウムおよびアルカリ金属またはアル
カリ土類金属を添加し、活物質合成後に水洗で除去する
ことによって充放電特性に優れた正極が得られることが
分かる。特に、過剰に添加し、水洗しなかったものは良
好な正極が得られず、評価できなかった。さらに、実施
例19と比較例7から、本発明の正極活物質を用いれば、
サイクル寿命特性に優れた二次電池が得られることがわ
かる。
Next, based on the results of Example 5, Comparative Example 5 and Comparative Example 6, lithium and an alkali metal or an alkaline earth metal were added in excess and removed by washing with water after synthesizing the active material to improve charge / discharge characteristics. It can be seen that an excellent positive electrode can be obtained. In particular, those which were excessively added and not washed with water could not be evaluated because a good positive electrode was not obtained. Furthermore, from Example 19 and Comparative Example 7, using the positive electrode active material of the present invention,
It can be seen that a secondary battery having excellent cycle life characteristics can be obtained.

【0045】[0045]

【発明の効果】本発明により、高容量で充放電サイクル
に優れた正極活物質およびそれを用いた高性能の二次電
池を提供することができる。
According to the present invention, it is possible to provide a positive electrode active material having a high capacity and an excellent charge / discharge cycle, and a high-performance secondary battery using the same.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】化学式Li1-x x Ni1-y y 2 (但
し、Aはアルカリもしくはアルカリ土類金属元素、Bは
少なくとも1種の遷移金属元素からなり、式中x、yの
モル数は、0<x≦0.10、0<y≦0.30;但
し、Bが2種以上の遷移金属元素からなる場合は、yは
全遷移金属元素の総モル数、また、y=0の時は、Aは
少なくともアルカリ土類金属を含む)で表される化合物
を用いた正極活物質。
1. A chemical formula Li 1-x A x Ni 1 -y B y O 2 ( where, A is an alkali or alkaline earth metal element, B consists of at least one transition metal element, wherein x, y Is 0 <x ≦ 0.10, 0 <y ≦ 0.30; provided that B is composed of two or more transition metal elements, y is the total number of moles of all transition metal elements, and When y = 0, A is a positive electrode active material using a compound represented by (A includes at least an alkaline earth metal).
【請求項2】リチウムまたはAを含む出発原料を、ニッ
ケルまたはBを含む出発原料に対して化学量論比で1.
05以上、1.25以下の割合で調合し、かつ、原料を
酸素雰囲気中で焼成後、未反応のアルカリ分を除去する
ことを特徴とする請求項1記載の正極活物質の製造方
法。
2. A starting material containing lithium or A in a stoichiometric ratio of 1. to a starting material containing nickel or B.
The method for producing a positive electrode active material according to claim 1, wherein the unreacted alkali component is removed after the raw material is mixed in a ratio of from 05 to 1.25 and the raw material is baked in an oxygen atmosphere.
【請求項3】該アルカリ分の除去が、水洗によることを
特徴とする請求項2記載の正極活物質の製造方法。
3. The method for producing a positive electrode active material according to claim 2, wherein the alkali content is removed by washing with water.
【請求項4】請求項1記載の正極活物質を用いることを
特徴とする非水溶媒系二次電池。
4. A non-aqueous solvent secondary battery comprising the positive electrode active material according to claim 1.
【請求項5】請求項2記載の方法で製造された正極活物
質を用いることを特徴とする請求項4記載の非水溶媒系
二次電池。
5. The non-aqueous solvent secondary battery according to claim 4, wherein the positive electrode active material manufactured by the method according to claim 2 is used.
【請求項6】負極活物質に炭素質材料を用いることを特
徴とする請求項4または5記載の非水溶媒系二次電池。
6. The non-aqueous solvent secondary battery according to claim 4, wherein a carbonaceous material is used as the negative electrode active material.
【請求項7】該炭素質材料が、炭素繊維であることを特
徴とする請求項4〜6のいずれか1項に記載の記載の非
水溶媒系二次電池。
7. The non-aqueous solvent secondary battery according to claim 4, wherein the carbonaceous material is carbon fiber.
JP6269910A 1994-11-02 1994-11-02 Cathode active material, manufacture thereof, and non-aqueous solvent secondary battery using the same Pending JPH08138669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6269910A JPH08138669A (en) 1994-11-02 1994-11-02 Cathode active material, manufacture thereof, and non-aqueous solvent secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6269910A JPH08138669A (en) 1994-11-02 1994-11-02 Cathode active material, manufacture thereof, and non-aqueous solvent secondary battery using the same

Publications (1)

Publication Number Publication Date
JPH08138669A true JPH08138669A (en) 1996-05-31

Family

ID=17478930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6269910A Pending JPH08138669A (en) 1994-11-02 1994-11-02 Cathode active material, manufacture thereof, and non-aqueous solvent secondary battery using the same

Country Status (1)

Country Link
JP (1) JPH08138669A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998018170A1 (en) * 1996-10-23 1998-04-30 Tdk Corporation Method for manufacturing electrode for battery
JPH10199525A (en) * 1997-01-16 1998-07-31 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US6277521B1 (en) 1997-05-15 2001-08-21 Fmc Corporation Lithium metal oxide containing multiple dopants and method of preparing same
EP1132985A2 (en) * 2000-03-03 2001-09-12 Nissan Motor Company, Limited Positive electrode material for nonaqueous electrolyte secondary battery and battery using the same
US6361756B1 (en) 1998-11-20 2002-03-26 Fmc Corporation Doped lithium manganese oxide compounds and methods of preparing same
US6582852B1 (en) 1997-05-15 2003-06-24 Fmc Corporation Metal oxide containing multiple dopants and method of preparing same
US6589499B2 (en) 1998-11-13 2003-07-08 Fmc Corporation Layered lithium cobalt oxides free of localized cubic spinel-like structural phases and method of making same
US6855461B2 (en) 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries
JP2005116470A (en) * 2003-10-10 2005-04-28 Toyota Central Res & Dev Lab Inc Nonaqueous lithium secondary battery
US6921609B2 (en) 2001-06-15 2005-07-26 Kureha Chemical Industry Co., Ltd. Gradient cathode material for lithium rechargeable batteries
JP2008277309A (en) * 2000-02-14 2008-11-13 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and manufacturing method thereof
WO2010064440A1 (en) 2008-12-04 2010-06-10 戸田工業株式会社 Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
WO2011155523A1 (en) 2010-06-09 2011-12-15 戸田工業株式会社 Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JPWO2011108653A1 (en) * 2010-03-04 2013-06-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
JP5934089B2 (en) * 2010-03-04 2016-06-15 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
KR20180044285A (en) 2015-08-27 2018-05-02 스미토모 긴조쿠 고잔 가부시키가이샤 POSITIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR MANUFACTURING THE SAME, AND NON-
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
JP2022520866A (en) * 2019-02-28 2022-04-01 エスエム ラブ コーポレーション リミテッド A lithium secondary battery containing a positive electrode active material, a method for producing the same, and a positive electrode containing the positive electrode.

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998018170A1 (en) * 1996-10-23 1998-04-30 Tdk Corporation Method for manufacturing electrode for battery
US6423105B1 (en) 1996-10-23 2002-07-23 Tdk Corporation Process for producing an electrode for a battery
JPH10199525A (en) * 1997-01-16 1998-07-31 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US6794085B2 (en) 1997-05-15 2004-09-21 Fmc Corporation Metal oxide containing multiple dopants and method of preparing same
US6277521B1 (en) 1997-05-15 2001-08-21 Fmc Corporation Lithium metal oxide containing multiple dopants and method of preparing same
US6582852B1 (en) 1997-05-15 2003-06-24 Fmc Corporation Metal oxide containing multiple dopants and method of preparing same
US7074382B2 (en) 1998-11-13 2006-07-11 Fmc Corporation Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same
US6589499B2 (en) 1998-11-13 2003-07-08 Fmc Corporation Layered lithium cobalt oxides free of localized cubic spinel-like structural phases and method of making same
US6620400B2 (en) 1998-11-13 2003-09-16 Fmc Corporation Method of producing layered lithium metal oxides free of localized cubic spinel-like structural phases
US6361756B1 (en) 1998-11-20 2002-03-26 Fmc Corporation Doped lithium manganese oxide compounds and methods of preparing same
JP2008277309A (en) * 2000-02-14 2008-11-13 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and manufacturing method thereof
EP1132985A3 (en) * 2000-03-03 2005-11-23 Nissan Motor Company, Limited Positive electrode material for nonaqueous electrolyte secondary battery and battery using the same
EP1132985A2 (en) * 2000-03-03 2001-09-12 Nissan Motor Company, Limited Positive electrode material for nonaqueous electrolyte secondary battery and battery using the same
US6855461B2 (en) 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries
US6921609B2 (en) 2001-06-15 2005-07-26 Kureha Chemical Industry Co., Ltd. Gradient cathode material for lithium rechargeable batteries
JP2005116470A (en) * 2003-10-10 2005-04-28 Toyota Central Res & Dev Lab Inc Nonaqueous lithium secondary battery
WO2010064440A1 (en) 2008-12-04 2010-06-10 戸田工業株式会社 Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
KR20170106519A (en) 2008-12-04 2017-09-20 도다 고교 가부시끼가이샤 Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JP5934089B2 (en) * 2010-03-04 2016-06-15 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
JPWO2011108653A1 (en) * 2010-03-04 2013-06-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2011155523A1 (en) 2010-06-09 2011-12-15 戸田工業株式会社 Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
KR20180044285A (en) 2015-08-27 2018-05-02 스미토모 긴조쿠 고잔 가부시키가이샤 POSITIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, METHOD FOR MANUFACTURING THE SAME, AND NON-
US10586983B2 (en) 2015-08-27 2020-03-10 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery
JP2022520866A (en) * 2019-02-28 2022-04-01 エスエム ラブ コーポレーション リミテッド A lithium secondary battery containing a positive electrode active material, a method for producing the same, and a positive electrode containing the positive electrode.

Similar Documents

Publication Publication Date Title
KR100389052B1 (en) Positive electrode active material, preparation method thereof and nonaqueous solvent secondary battery using the same
JPH08138669A (en) Cathode active material, manufacture thereof, and non-aqueous solvent secondary battery using the same
US11189829B2 (en) Positive electrode active material for secondary battery, and method of preparing the same
JP3918311B2 (en) Negative electrode material and non-aqueous electrolyte secondary battery using the same
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP3460413B2 (en) Positive electrode active material, method for producing the same, and non-aqueous solvent-based secondary battery using the same
JP2002063940A (en) Nonaqueous electrolyte secondary battery
JP2010153258A (en) Nonaqueous electrolyte battery
JP2003034534A (en) Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same
JP3819940B2 (en) Nonaqueous electrolyte secondary battery
US9893356B2 (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method of producing cathode active material for nonaqueous electrolyte secondary battery
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JP2004014472A (en) Nonaqueous secondary battery
JP5176317B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JPH1079250A (en) Positive electrode active material, its manufacture, and nonaqueous solvent secondary battery using it
JP2005317447A (en) Battery
JP2001283845A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP3793054B2 (en) Nonaqueous electrolyte secondary battery
JP2003331922A (en) Cell
JP3855310B2 (en) Lithium / transition metal composite oxide, method for producing the same, and nonaqueous solvent secondary battery using the same
US6716555B2 (en) Positive active material for secondary battery, process for preparation thereof and non-aqueous secondary battery comprising same
JP2008103181A (en) Cathode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP2002348121A (en) Method for manufacturing lithium nickel compound oxide
JPH1145742A (en) Nonaqueous electrolytic secondary battery
JP3858088B2 (en) Method for producing homogeneously shaped lithium manganese oxide