JPH1145742A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JPH1145742A
JPH1145742A JP10161506A JP16150698A JPH1145742A JP H1145742 A JPH1145742 A JP H1145742A JP 10161506 A JP10161506 A JP 10161506A JP 16150698 A JP16150698 A JP 16150698A JP H1145742 A JPH1145742 A JP H1145742A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
electrode
capacity
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10161506A
Other languages
Japanese (ja)
Inventor
Shigeo Kurose
茂夫 黒瀬
Tadayoshi Iijima
忠良 飯島
Tetsuya Takahashi
哲哉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP10161506A priority Critical patent/JPH1145742A/en
Publication of JPH1145742A publication Critical patent/JPH1145742A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic secondary battery having a high capacity and still more improved charging/discharging characteristics. SOLUTION: In this battery, a positive electrode 4 and a negative electrode 2 are combined so as to satisfy a relation of 0.9<=Kp/Kn<=1.1, where Kp is initial efficiency of the positive electrode 4 and Kn is initial efficiency of the negative electrode 2. Preferably, an active material of the positive electrode 4 consists of a lithium composite oxide having composition of Lix Niy Mz O2 (0.8<x<1.5, 0.8<y+z<1.2, 0<=z<0.35; M is at least one element selected from among Co, Mg, Ca, Sr, Al, Mn, and Fe).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池に関し、より詳しくは、高容量で充放電特性が向上し
た非水電解質二次電池に関する。
The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to a non-aqueous electrolyte secondary battery having a high capacity and improved charge / discharge characteristics.

【0002】[0002]

【従来の技術】近年の電子分野の発展はめざましく、ビ
デオカメラ、液晶カメラ、携帯電話、ラップトップコン
ピューター、ワープロ等の各種機器が開発されている。
それに対応して、これら電子機器の電源に使用される電
池においては、小型化、軽量化、高エネルギー密度化へ
の要求が高まっている。
2. Description of the Related Art In recent years, the development of the electronic field has been remarkable, and various devices such as video cameras, liquid crystal cameras, mobile phones, laptop computers, word processors and the like have been developed.
Correspondingly, demands for smaller, lighter, and higher energy densities of batteries used as power supplies for these electronic devices are increasing.

【0003】従来、これらの電子機器には鉛電池やニッ
ケルカドミウム電池が使用されていたが、これらの電池
は小型化、軽量化、高エネルギー密度化の要求に対して
十分に応えることができない。
Conventionally, lead-acid batteries and nickel-cadmium batteries have been used in these electronic devices, but these batteries cannot sufficiently meet the demands for miniaturization, weight reduction, and high energy density.

【0004】そこで、非水溶媒にリチウム塩を溶解させ
た非水電解液を用いる、非水電解液電池が提案されてい
る。この非水電解液電池としては、リチウムやリチウム
合金もしくはリチウムイオンをドープ、脱ドープするこ
とが可能な炭素材料を負極材料として用い、リチウムコ
バルト複合酸化物を正極材料として用いたものがすでに
実用化されている。
Therefore, a non-aqueous electrolyte battery using a non-aqueous electrolyte in which a lithium salt is dissolved in a non-aqueous solvent has been proposed. This non-aqueous electrolyte battery has already been put into practical use using a carbon material that can be doped or undoped with lithium or a lithium alloy or lithium ion as a negative electrode material and a lithium-cobalt composite oxide as a positive electrode material. Have been.

【0005】この種の非水電解液電池は、作動電圧が3
〜4Vと高いため、高エネルギー密度化が可能であり、
自己放電も少なく、サイクル特性にも優れているという
利点を有している。
[0005] This type of non-aqueous electrolyte battery has an operating voltage of three.
Because it is as high as ~ 4V, high energy density is possible,
It has the advantage of less self-discharge and excellent cycle characteristics.

【0006】また、この非水電解液電池では、さらなる
小型化、軽量化、高エネルギー密度化を実現するため
に、活物質等の研究開発が盛んになされている。正極活
物質としては、リチウムニッケル複合酸化物やリチウム
ニッケルコバルト複合酸化物のようなNiを含有するリ
チウム複合酸化物も提案されている。
In this non-aqueous electrolyte battery, research and development of active materials and the like have been actively conducted in order to realize further reduction in size, weight, and high energy density. As a positive electrode active material, a lithium-containing composite oxide containing Ni, such as a lithium-nickel composite oxide or a lithium-nickel-cobalt composite oxide, has also been proposed.

【0007】また、例えば、特開平5−290847号
公報には、Li1+x CoO2 を正極活物質として用い
て、この潜在容量に相当するリチウムを負極の予備充電
に充当させ、容量増大を図ることが開示されている。し
かしながら、高容量化は不十分である。
[0007] For example, Japanese Patent Application Laid-Open No. Hei 5-290847 discloses that Li 1 + x CoO 2 is used as a positive electrode active material, and lithium corresponding to this latent capacity is used for precharging of the negative electrode to increase the capacity. It is disclosed that an attempt is made. However, increasing the capacity is insufficient.

【0008】[0008]

【発明が解決しようとする課題】本発明者らが非水電解
質二次電池の容量と充放電特性を検討したところ、正極
及び負極それぞれの容量だけを単純に向上させても、電
池としての容量や充放電特性は設計値通りには向上しな
いことが判明した。そこで、本発明の目的は、上記従来
技術の問題点を解決し、高容量であってさらに充放電特
性の向上した非水電解質二次電池を提供することにあ
る。
The present inventors have studied the capacity and charge / discharge characteristics of a non-aqueous electrolyte secondary battery, and found that even if only the capacity of each of the positive electrode and the negative electrode was simply improved, the capacity of the battery could be improved. It was also found that the charge / discharge characteristics did not improve as designed. Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a non-aqueous electrolyte secondary battery having a high capacity and further improved charge / discharge characteristics.

【0009】[0009]

【課題を解決するための手段】本発明者らは鋭意研究し
た結果、正極及び負極それぞれの初期効率に着目し、両
者の初期効率が特定の関係を満たすように、正極及び負
極を組み合わせることによって、電池の高容量化と充放
電特性の向上が達成できることを見出し、本発明を完成
した。
Means for Solving the Problems As a result of intensive studies, the present inventors focused on the initial efficiencies of the positive electrode and the negative electrode, and combined the positive electrode and the negative electrode so that the initial efficiencies of both satisfied a specific relationship. The present inventors have found that high capacity of the battery and improvement of the charge / discharge characteristics can be achieved, and the present invention has been completed.

【0010】すなわち、本発明は、リチウムイオンをド
ープ、脱ドープ可能な正極及び負極を備える非水電解質
二次電池において、正極及び負極は、正極の初期効率を
Kp、負極の初期効率をKnとしたときに、0.9≦K
p/Kn≦1.1の関係を満たすように組み合わせられ
たものであることを特徴する、非水電解質二次電池であ
る。
That is, the present invention relates to a non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of doping and dedoping lithium ions, wherein the positive electrode and the negative electrode have an initial efficiency of the positive electrode of Kp and an initial efficiency of the negative electrode of Kn. When 0.9 ≦ K
A nonaqueous electrolyte secondary battery, which is a combination that satisfies the relationship of p / Kn ≦ 1.1.

【0011】本発明において、正極の初期効率Kpは、
リチウムを対極として、最初に4.2Vまで充電し、
3.0Vまで放電したときの、充電容量に対する放電容
量の比であり、すなわち、Kp=(最初の放電容量)/
(最初の充電容量)である。また、負極の初期効率Kn
は、リチウムを対極として、最初に+0.0Vまで放電
し、2.0Vまで充電したときの、放電容量に対する充
電容量の比であり、すなわち、Kn=(最初の充電容
量)/(最初の放電容量)である。
In the present invention, the initial efficiency Kp of the positive electrode is:
With lithium as a counter electrode, first charge to 4.2V,
It is the ratio of the discharge capacity to the charge capacity when discharging to 3.0 V, that is, Kp = (initial discharge capacity) /
(Initial charge capacity). Also, the initial efficiency Kn of the negative electrode
Is the ratio of the charge capacity to the discharge capacity when first discharging to +0.0 V and charging to 2.0 V with lithium as the counter electrode, that is, Kn = (initial charge capacity) / (first discharge) Capacity).

【0012】活物質としてのニッケル含有リチウム複合
酸化物は容量が大きいが、その初期効率はリチウム酸コ
バルトよりも悪い傾向にある。また、難黒鉛化性炭素や
ポリマーカーボンも黒鉛系の活物質に比べ、容量が大き
いが初期効率が悪い傾向にある。従来は、正極と負極の
初期効率に差があると、初期効率が悪いものを少なく詰
め込むようにして電池化するとか、初期効率のよいもの
に負荷をかけるようにしている。容量を高くしようとす
ると初期の充放電効率が悪くなる傾向があるが、従来は
初期効率の向上を目指して改良が進められている。ま
た、従来の例えば鉛蓄電池では充放電により電解液中の
電解質塩の濃度は変化する。電解質塩のアニオン、カチ
オンが正極、負極と反応することで電気を得る電池で
は、初期効率によって容量が大きく変わってくることか
ら、初期効率を高めると容量の向上に効果がある。
Although the nickel-containing lithium composite oxide as an active material has a large capacity, its initial efficiency tends to be worse than that of cobalt lithium oxide. The non-graphitizable carbon and the polymer carbon also have a large capacity but a low initial efficiency as compared with the graphite-based active material. Conventionally, when there is a difference between the initial efficiencies of the positive electrode and the negative electrode, a battery with a low initial efficiency is packed in a small amount, or a load is applied to a high initial efficiency. If the capacity is to be increased, the initial charge / discharge efficiency tends to decrease, but conventionally, improvements have been made with the aim of improving the initial efficiency. In a conventional lead storage battery, for example, the concentration of the electrolyte salt in the electrolytic solution changes due to charge and discharge. In a battery that obtains electricity by reacting an anion and a cation of an electrolyte salt with a positive electrode and a negative electrode, the capacity is greatly changed depending on the initial efficiency. Therefore, increasing the initial efficiency is effective in improving the capacity.

【0013】しかし、リチウムイオン二次電池では、リ
チウムイオンが正極と負極を移動することで外部に電気
を取り出すので、基本的に電解液中の電解質塩の濃度は
変わることはない。つまり、充放電により電解液中の電
解質塩が消費されることがないので、無理に初期効率を
高める必要がなく、むしろ、正極と負極の初期効率比が
重要であることが分かった。本発明では正極及び負極の
初期効率の比が上記特定の範囲となるようにすること
で、高容量であってさらに充放電特性の向上した電池が
提供される。
However, in a lithium ion secondary battery, since lithium ions move outside the positive electrode and the negative electrode to extract electricity, the concentration of the electrolyte salt in the electrolyte does not basically change. That is, since the electrolyte salt in the electrolytic solution is not consumed by charge and discharge, it is not necessary to forcibly increase the initial efficiency, but rather, the initial efficiency ratio between the positive electrode and the negative electrode is important. In the present invention, by setting the ratio of the initial efficiencies of the positive electrode and the negative electrode within the above specific range, a battery having a high capacity and further improved charge / discharge characteristics is provided.

【0014】本発明において、正極の活物質は、Lix
Niy z 2 (ここで、xは0.8<x<1.5、y
+zは0.8<y+z<1.2、zは0≦z<0.35
である。Mは、Co、Mg、Ca、Sr、Al、Mn及
びFeから選ばれる少なくとも1種の元素を表す。)な
る組成のリチウム複合酸化物からなることが好ましい。
In the present invention, the active material of the positive electrode is Li x
Ni y M z O 2 (where x is 0.8 <x <1.5, y
+ Z is 0.8 <y + z <1.2, z is 0 ≦ z <0.35
It is. M represents at least one element selected from Co, Mg, Ca, Sr, Al, Mn and Fe. ) Is preferably composed of a lithium composite oxide having the following composition.

【0015】[0015]

【発明の実施の形態】以下、本発明について詳しく説明
する。本発明において正極活物質として、リチウム複合
酸化物を用いる。リチウム複合酸化物としては、例え
ば、Lix CoO2 (0<x≦1.0)、Lix NiO
2 (0<x≦1.0)、Li1+x Mn2-x 4 (0≦x
≦1/3)、Li(M,Mn)2 4 (M=Cr,C
o,Al,B)などが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. In the present invention, a lithium composite oxide is used as the positive electrode active material. Examples of the lithium composite oxide include Li x CoO 2 (0 <x ≦ 1.0) and Li x NiO
2 (0 <x ≦ 1.0), Li 1 + x Mn 2-x O 4 (0 ≦ x
≦ 1 /), Li (M, Mn) 2 O 4 (M = Cr, C
o, Al, B) and the like.

【0016】本発明においては、リチウム複合酸化物
が、Lix Niy z 2 (ここで、xは0.8<x<
1.5、y+zは0.8<y+z<1.2、zは0≦z
<0.35である。Mは、Co、Mg、Ca、Sr、A
l、Mn及びFeから選ばれる少なくとも1種の元素を
表す。)であることが、高容量、安価である点からとり
わけ好適である。この場合に、金属MはCoがより好ま
しく、2種類以上の金属でもよい。
In the present invention, the lithium composite oxide is Li x Ni y M z O 2 (where x is 0.8 <x <
1.5, y + z is 0.8 <y + z <1.2, z is 0 ≦ z
<0.35. M is Co, Mg, Ca, Sr, A
represents at least one element selected from 1, Mn and Fe. ) Is particularly preferable in terms of high capacity and low cost. In this case, the metal M is more preferably Co, and may be two or more metals.

【0017】このようなリチウム複合酸化物の製造方法
としては、例えば、LiMetal3+ 2 (ここで、Metal
はNiを主体として、Co、Mg、Ca、Sr、Al、
Mn及びFeから選ばれる少なくとも1種の元素を含
む)焼成時に揮散する陰イオンをそれぞれ含むアルカリ
性水溶性リチウム化合物と塩基性金属塩とを水媒体中で
反応させてスラリーを得て、得られたスラリーを乾燥し
た後、焼成する方法を例示することができる。
A method for producing such a lithium composite oxide
For example, for example, LiMetal3+O Two(Where Metal
Is mainly composed of Ni, Co, Mg, Ca, Sr, Al,
Containing at least one element selected from Mn and Fe
B) Alkali containing anions that volatilize during firing
Water-soluble lithium compound and basic metal salt in aqueous medium
React to obtain a slurry, and dry the obtained slurry.
After that, a firing method can be exemplified.

【0018】塩基性金属塩は、Metal2+(OH)
2-nk(An-k ・mH2 Oで表されるものである。ここ
で、Metal2+には、Niを主体として、場合によっては
Co、Mg、Ca、Sr、Al、Mn及びFeから選ば
れる少なくとも1種の元素を含む。An-は、硝酸イオ
ン、塩素イオン、臭素イオン、酢酸イオン、炭酸イオン
等のn価(n=1〜3)のアニオンを表わす。また、k
は、0.03≦k≦0.3、mは、0≦m<2である。
The basic metal salt is Metal 2+ (OH)
2-nk (A n− ) k · mH 2 O. Here, Metal 2+ contains Ni as a main component and, in some cases, at least one element selected from Co, Mg, Ca, Sr, Al, Mn, and Fe. A n- represents a nitrate ion, a chlorine ion, a bromine ion, an acetate ion, an anion of valence n such as carbonate ion (n = 1 to 3). Also, k
Is 0.03 ≦ k ≦ 0.3, and m is 0 ≦ m <2.

【0019】この式で示される塩基性金属塩は、Metal
2+の水溶液に、Metal2+に対して、約0.7〜0.95
当量、好ましくは約0.8〜0.95当量のアルカリを
約80℃以下の反応条件下で加えて反応させた後、40
℃〜70℃で0.1〜10時間熟成し、水洗により副生
物を取り除くことにより製造することができる。ここで
用いるアルカリとしては、水酸化ナトリウム等の水酸化
アルカリ金属、水酸化カルシウム等の水酸化アルカリ土
類金属、アミン類等が挙げられる。
The basic metal salt represented by this formula is Metal
2+ aqueous solution, about 0.7-0.95 for Metal 2+
After adding an equivalent, preferably about 0.8 to 0.95 equivalent of an alkali under a reaction condition of about 80 ° C. or less, the reaction is carried out.
It can be produced by aging at a temperature of from 70 to 70 ° C for from 0.1 to 10 hours and removing by-products by washing with water. Examples of the alkali used here include alkali metals such as sodium hydroxide, alkaline earth metals such as calcium hydroxide, and amines.

【0020】この式で示される化合物より選択される塩
基性金属塩と、水酸化リチウム、炭酸リチウム又はこれ
らの水和物などの中から選択される1種または複数のリ
チウム化合物とを水中で、反応液の濃度としては5〜2
5重量%の範囲で、また反応温度は室温〜100℃の範
囲で反応を行いスラリーを得る。そして、組成物の形状
の均一性を向上させるために噴霧乾燥を行う。
A basic metal salt selected from the compounds represented by the above formula and one or more lithium compounds selected from lithium hydroxide, lithium carbonate and hydrates thereof are dissolved in water, The concentration of the reaction solution is 5 to 2
The reaction is carried out in the range of 5% by weight and the reaction temperature is in the range of room temperature to 100 ° C to obtain a slurry. Then, spray drying is performed to improve the uniformity of the shape of the composition.

【0021】この乾燥物を空気や酸素あるいはオゾン等
を含む酸化力を有したガス雰囲気下で、約700〜10
00℃の温度領域で、約0.1〜20時間加熱処理して
焼成することにより、リチウム複合酸化物を得ることが
できる。
The dried product is subjected to about 700 to 10 under an oxidizing gas atmosphere containing air, oxygen or ozone.
A lithium composite oxide can be obtained by performing heat treatment in a temperature range of 00 ° C. for about 0.1 to 20 hours and firing.

【0022】本発明に使用されるリチウム複合酸化物の
別の製造方法として、水溶性金属化合物から得られる塩
基性炭酸金属と水溶性リチウム化合物とを使用する方法
を例示することができる。
As another method for producing the lithium composite oxide used in the present invention, a method using a basic metal carbonate obtained from a water-soluble metal compound and a water-soluble lithium compound can be exemplified.

【0023】ここで用いられる水溶性金属化合物は、硝
酸塩、硫酸塩、金属塩化物等であり、この水溶性金属化
合物は、ニッケル化合物を主体として、Co、Mg、C
a、Sr、Al、Mn及びFeから選ばれる少なくとも
1種の元素が配合できるように、さらに所定量の別の水
溶性金属化合物を混合したものでよい。
The water-soluble metal compounds used here are nitrates, sulfates, metal chlorides and the like. The water-soluble metal compounds are mainly composed of nickel compounds, Co, Mg, C
A predetermined amount of another water-soluble metal compound may be further mixed so that at least one element selected from a, Sr, Al, Mn and Fe can be blended.

【0024】塩基性炭酸金属は、上記水溶性金属化合物
の混合物と、炭酸アルカリ、重炭酸アルカリ、炭酸アン
モニウム及び重炭酸アンモニウムからなる群から選ばれ
る化合物とを水中で反応させて得られる沈殿物や、さら
にこの反応系に水酸化ナトリウムを存在させて反応させ
て得られる沈澱物を、濾過、乾燥することによって得ら
れる。この場合に、良好な沈殿を生成させるには、炭酸
根が若干過剰となるように使用するのが良く、沈殿の比
表面積を制御するために攪拌条件を制御することも重要
である。
The basic metal carbonate may be a precipitate obtained by reacting a mixture of the above water-soluble metal compound with a compound selected from the group consisting of alkali carbonate, alkali bicarbonate, ammonium carbonate and ammonium bicarbonate in water. Further, the precipitate obtained by reacting the reaction system in the presence of sodium hydroxide is filtered and dried. In this case, in order to form a good precipitate, it is preferable to use the carbonate so that the carbonate group is slightly excessive, and it is also important to control the stirring conditions to control the specific surface area of the precipitate.

【0025】このようにして得られた塩基性炭酸金属
に、炭酸リチウム、水酸化リチウム等の水溶性リチウム
化合物の粉末を、前記金属とLiを所望の比率で混合す
る。この混合物を、粉末のまま先ず不活性ガス又は酸素
含有ガスの存在下で、300〜500℃に加熱する。こ
の加熱により、塩基性炭酸金属の分解のみが進行し、結
晶構造中の炭酸ガスが離脱する。この加熱を炭酸ガスの
発生が実質的に終了するまで続け、塩基性炭酸金属のす
べてを多数の微細な孔を有する酸化金属に変換する。
The thus obtained basic metal carbonate is mixed with a powder of a water-soluble lithium compound such as lithium carbonate or lithium hydroxide in a desired ratio of the metal and Li. The mixture, as a powder, is first heated to 300-500 ° C. in the presence of an inert gas or an oxygen-containing gas. By this heating, only the decomposition of the basic metal carbonate proceeds, and carbon dioxide in the crystal structure is released. This heating is continued until the generation of carbon dioxide gas is substantially completed, and all of the basic metal carbonate is converted into a metal oxide having a large number of fine pores.

【0026】炭酸ガスの発生が実質的に終了した後、さ
らに昇温すると、溶融した水溶性リチウム化合物が酸化
金属の微細孔中に侵入し、両者が極めて密接な接触状態
になる。ここで酸素ガス又は酸素富化空気の存在下で7
00〜900℃の温度で焼成すると、Niは2価から3
価になり、Li複合酸化物が生成する。
When the temperature is further increased after the generation of carbon dioxide gas is substantially finished, the molten water-soluble lithium compound penetrates into the fine pores of the metal oxide, and the two are brought into extremely close contact. Here, in the presence of oxygen gas or oxygen-enriched air,
When calcined at a temperature of 00 to 900 ° C., Ni is converted from divalent to trivalent.
And a Li composite oxide is produced.

【0027】ここで用いる塩基性炭酸金属は、比表面積
が大きな(例えば、100m2 /g以上)ものほど、ガ
ス放出と予備焼成後の微細孔生成が効率化されるために
好ましい。
The basic metal carbonate used here has a large specific surface area (for example, 100 m 2 / g or more), so that gas release and formation of micropores after preliminary firing are more efficient.

【0028】このような正極活物質と、アセチレンブラ
ック、グラファイト等の導電剤と、ポリテトラフルオロ
エチレン、ポリフッ化ビニリデン等の結合剤とをN−メ
チル−2−ピロリドン等の有機溶剤と共に混練して、正
極合剤塗料を作製する。この塗料を、アルミニウム箔等
の集電体に塗布・乾燥して正極を得ることができる。導
電剤、結合剤、有機溶剤及び集電体は特に制限されるこ
となく、種々選択することができる。
The positive electrode active material, a conductive agent such as acetylene black and graphite, and a binder such as polytetrafluoroethylene and polyvinylidene fluoride are kneaded together with an organic solvent such as N-methyl-2-pyrrolidone. Then, a positive electrode mixture paint is prepared. The paint can be applied to a current collector such as an aluminum foil and dried to obtain a positive electrode. The conductive agent, the binder, the organic solvent, and the current collector are not particularly limited, and can be variously selected.

【0029】一方、このような正極活物質と組み合わせ
て用いられる負極活物質について説明する。負極活物質
としては、リチウム、リチウム合金もしくはリチウムイ
オンをドープ、脱ドープすることが可能な材料を、特に
制限されることなく、使用することができる。このよう
な材料としては炭素材料やスズ酸化物が挙げられる。具
体的には、黒鉛、ガラス状炭素類、架橋構造を有する高
重合体を不活性雰囲気中で熱処理して得られる炭素材で
あるポリマーカーボン(セルロース、フェノール樹脂、
フルフラール樹脂、ポリパラフェニレン、ポリアクリロ
ニトリルなどの合成樹脂の炭素化によって得られるハー
ドカーボン)等が挙げられる。特に、ポリマーカーボン
が容量が大きく好適である。
On the other hand, a negative electrode active material used in combination with such a positive electrode active material will be described. As the negative electrode active material, a material capable of doping or undoping lithium, a lithium alloy, or lithium ion can be used without any particular limitation. Such materials include carbon materials and tin oxides. Specifically, graphite, glassy carbons, polymer carbon (cellulose, phenolic resin,
Hard carbon obtained by carbonizing a synthetic resin such as furfural resin, polyparaphenylene, and polyacrylonitrile). Particularly, polymer carbon is preferable because of its large capacity.

【0030】このような負極活物質と導電剤と結合剤と
を有機溶剤と共に混合したり、混練したりして、負極合
剤塗料を作製する。この塗料を、銅箔等の集電体に塗布
・乾燥して負極を得ることができる。導電剤、結合剤、
有機溶剤及び集電体は特に制限されることなく、種々選
択することができる。
The negative electrode active material, the conductive agent, and the binder are mixed or kneaded with an organic solvent to prepare a negative electrode mixture paint. The paint can be applied to a current collector such as a copper foil and dried to obtain a negative electrode. Conductive agent, binder,
The organic solvent and the current collector are not particularly limited, and can be variously selected.

【0031】本発明においては、このような正極と負極
とを組み合わせるに際して、正極の初期効率をKp、負
極の初期効率をKnとしたときに、0.9≦Kp/Kn
≦1.1の関係を満たす必要がある。正極の初期効率と
負極の初期効率の比Kp/Knが、0.9より小さい値
であっても、1.1よりも大きい値であっても、これら
を電池に用いた場合の電池の効率・容量が低下するとい
う不具合がある。すなわち、正極及び負極のいずれか一
方のみの初期効率が良くても、電池の容量は良くはなら
ない。本発明において、KpとKnは、0.95≦Kp
/Kn≦1.05の関係を満たすことがより好ましい。
In the present invention, when combining such a positive electrode and a negative electrode, when the initial efficiency of the positive electrode is Kp and the initial efficiency of the negative electrode is Kn, 0.9 ≦ Kp / Kn
It is necessary to satisfy the relationship of ≦ 1.1. Regardless of whether the ratio Kp / Kn of the initial efficiency of the positive electrode to the initial efficiency of the negative electrode is a value smaller than 0.9 or larger than 1.1, the efficiency of the battery when these are used for the battery -There is a problem that the capacity is reduced. That is, even if the initial efficiency of only one of the positive electrode and the negative electrode is good, the capacity of the battery is not improved. In the present invention, Kp and Kn are 0.95 ≦ Kp
More preferably, the relationship of /Kn≦1.05 is satisfied.

【0032】正極及び負極の各初期効率は、活物質その
ものの特性によって調整することが可能である。例え
ば、正極では、Lix Niy z 2 のxの値を大きく
することによって、初期効率は低下してくる。また、結
晶中の欠陥を減らすことで、初期効率を向上させること
ができる。負極では、負極表面にリチウムと反応し化合
物を形成するものを付着することで、初期効率を調整す
ることができる。活物質の比表面積や形状や焼成条件に
よっても、初期効率は変わってくる。内部構造では、内
部に炭素以外の元素を導入することで、初期効率を変え
ることができる。また、初期効率の異なるものを混ぜて
使用し、その混合比を変化させることで初期効率を調整
してもよい。
The respective initial efficiencies of the positive electrode and the negative electrode can be adjusted by the characteristics of the active material itself. For example, in the positive electrode, the initial efficiency is reduced by increasing the value of x of Li x Ni y M z O 2 . In addition, the initial efficiency can be improved by reducing defects in the crystal. In the negative electrode, the initial efficiency can be adjusted by attaching a substance that reacts with lithium to form a compound on the negative electrode surface. The initial efficiency also varies depending on the specific surface area, shape, and firing conditions of the active material. In the internal structure, the initial efficiency can be changed by introducing an element other than carbon into the inside. Alternatively, the initial efficiencies may be adjusted by mixing and using different initial efficiencies and changing the mixing ratio.

【0033】正極及び負極の各初期効率は、導電剤の種
類・量、結合剤の量、プレス圧、活物質合剤塗料の分散
度合いなどによっても調節可能である。例えば、電極容
量が低下しない範囲で導電剤の量を多くすることや、活
物質層の強度や接着性が保てる範囲で結合剤の量を減ら
したり、プレス圧を上げることで、電極の初期効率を向
上させることが可能である。電極の初期効率を低下させ
るときは、この逆の調整を行えばよい。
The initial efficiencies of the positive electrode and the negative electrode can also be adjusted by the type and amount of the conductive agent, the amount of the binder, the pressing pressure, the degree of dispersion of the active material mixture paint, and the like. For example, by increasing the amount of the conductive agent within a range where the electrode capacity does not decrease, reducing the amount of the binder within the range where the strength and adhesiveness of the active material layer can be maintained, or increasing the pressing pressure, the initial efficiency of the electrode can be improved. Can be improved. To lower the initial efficiency of the electrode, the opposite adjustment may be performed.

【0034】本発明の非水電解質二次電池において、リ
チウム塩を支持電解質とし、これを有機溶媒に溶解させ
た電解液が用いられる。有機溶媒としては、特に限定さ
れるものではないが、プロピレンカーボネート、エチレ
ンカーボネート、ジメトキシエタン、γ−ブチロラクト
ン、テトラヒドロフラン、ジエチルカーボネート、メチ
ルエチルカーボネート、ジプロピルカーボネート等が、
単独もしくは2種類以上を混合して使用される。
In the non-aqueous electrolyte secondary battery of the present invention, an electrolytic solution in which a lithium salt is used as a supporting electrolyte and this is dissolved in an organic solvent is used. The organic solvent is not particularly limited, but propylene carbonate, ethylene carbonate, dimethoxyethane, γ-butyrolactone, tetrahydrofuran, diethyl carbonate, methyl ethyl carbonate, dipropyl carbonate, and the like,
They are used alone or in combination of two or more.

【0035】また、支持電解質としては、特に限定され
るものではないが、LiClO4 、LiAsF6 、Li
PF6 、LiBF4 等が、単独もしくは2種類以上を混
合して使用される。
The supporting electrolyte is not particularly limited, but may be LiClO 4 , LiAsF 6 ,
PF 6 , LiBF 4 or the like is used alone or in combination of two or more.

【0036】本発明の非水電解質二次電池の形態として
は、種々のものがあり、例えば、コイン型電池の他に、
正極、負極及びセパレーターを用いてジェリーロールと
し、これを丸型や角型の缶に収めたもの等が挙げられ
る。
There are various forms of the nonaqueous electrolyte secondary battery of the present invention.
A jelly roll using the positive electrode, the negative electrode, and the separator, which is contained in a round or square can, and the like can be given.

【0037】[0037]

【実施例】以下に実施例を挙げて本発明をさらに具体的
に説明するが、本発明はこれら実施例に限定されるもの
ではない。 [実施例1] (正極の作製)硝酸ニッケル及び硝酸コバルトを、Ni
/Co(モル比)=0.8/0.2となるように水溶液
中で混合し、沈殿を形成させ、その後スプレードライヤ
ーで、乾燥し概ね球状の粒子を得た。この粒子と水酸化
リチウムをLi/Ni/Co(モル比)=1/0.8/
0.2で混合し焼成した。選られた粒子の粒子サイズは
15μmであった。このリチウム複合酸化物LiNi
0.8 Co0.2 2 を活物質として用いて、以下の配合組
成の正極用合剤塗料を調製した。
EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples. [Example 1] (Preparation of positive electrode) Nickel nitrate and cobalt nitrate were converted to Ni
/ Co (molar ratio) = 0.8 / 0.2, mixed in an aqueous solution to form a precipitate, and then dried with a spray drier to obtain substantially spherical particles. Li / Ni / Co (molar ratio) = 1 / 0.8 /
0.2 and baked. The particle size of the selected particles was 15 μm. This lithium composite oxide LiNi
Using 0.8 Co 0.2 O 2 as the active material, a positive electrode mixture paint having the following composition was prepared.

【0038】 (配合組成) 正極活物質:上記のLiNi0.8 Co0.2 2 93重量部 導電剤:LONZA製GraphiteKS44 4重量部 結合剤:エルフアトケムジャパンKYNAR741 3重量部 ポリフッ化ビニリデン(PVDF) 溶剤:N−メチル−2−ピロリドン(NMP) 67重量部(Blending composition) Positive electrode active material: 93 parts by weight of LiNi 0.8 Co 0.2 O 2 described above Conductive agent: 4 parts by weight of Graphite KS44 manufactured by LONZA Binder: 3 parts by weight of Elphatochem Japan KYNAR741 Polyvinylidene fluoride (PVDF) Solvent: 67 parts by weight of N-methyl-2-pyrrolidone (NMP)

【0039】PVDF3重量部をNMP27重量部に溶
解し、結合剤溶液30重量部を作製した。活物質93重
量部と導電材4重量部をハイパーミキサーで乾式混合
し、この混合物を加圧ニーダーに投入した。この混合物
に上記結合剤溶液13重量部を加え、加圧ニーダーのジ
ャケットを水冷しながら、30分間混練した。この混練
物を取り出し、結合剤溶液17重量部とNMP40重量
部を加えて、ハイパーミキサーにて溶解し、活物質合剤
塗料を得た。
3 parts by weight of PVDF was dissolved in 27 parts by weight of NMP to prepare 30 parts by weight of a binder solution. 93 parts by weight of the active material and 4 parts by weight of the conductive material were dry-mixed with a hyper mixer, and the mixture was charged into a pressure kneader. To the mixture was added 13 parts by weight of the binder solution, and the mixture was kneaded for 30 minutes while cooling the jacket of the pressure kneader with water. The kneaded product was taken out, 17 parts by weight of a binder solution and 40 parts by weight of NMP were added, and dissolved with a hypermixer to obtain an active material mixture paint.

【0040】調製された合剤塗料を、ブレードコーター
にて20μm厚のアルミニウム箔からなる集電体の片面
に塗布・乾燥した後、ローラープレス機にて圧縮成型
し、所定の大きさに切断して、単位体積中の活物質量が
3g/cm3 、合剤層厚さ67μmの電極(P1)を得
た。
The prepared mixture paint is applied to one side of a current collector made of aluminum foil having a thickness of 20 μm by a blade coater, dried, then compression molded by a roller press, and cut into a predetermined size. Thus, an electrode (P1) having an active material amount per unit volume of 3 g / cm 3 and a mixture layer thickness of 67 μm was obtained.

【0041】(正極特性の評価)電極(P1)を、縦2
5mm、横20mmに切断し、上端部を5mmの幅で電
極層を除去して20mm角の電極層を残した。電極層を
除去した上端部にリードとしてステンレス線をスポット
溶接した。さらに、電極の裏面(集電体の活物質層が形
成されていない面)にPVDFのラッカーを塗布して乾
燥させPVDF被膜を形成して、評価用電極(作用極)
を作製した。
(Evaluation of Positive Electrode Characteristics) The electrode (P1) was
It was cut into 5 mm and 20 mm in width, and the upper end was removed with a width of 5 mm to leave a 20 mm square electrode layer. A stainless wire was spot-welded as a lead to the upper end from which the electrode layer was removed. Furthermore, a PVDF lacquer is applied to the back surface of the electrode (the surface on which the active material layer of the current collector is not formed) and dried to form a PVDF coating, and the electrode for evaluation (working electrode)
Was prepared.

【0042】図1に示したように充放電容量測定用セル
を作製し、下記のようにして充放電を行った。すなわ
ち、図1を参照して、ビーカー(11)中に、前記で作成し
た電極(13)と、この電極(13)の活物質層(13a) が形成さ
れた面に向かい合うようにステンレス線に接続したリチ
ウム板を用いた対極(14)と、同様の参照極(15)を有する
ルギン管(16)とを配置した。電解液(17)には、電解質塩
として1mol/lの過塩素酸リチウムをエチレンカー
ボネイトとジエチルカーボネイトの1:1(容積比)混
合溶媒に溶解したものを用い、ビーカー(11)及びルギン
管(16)をそれぞれシリコン栓(12) (18) で封じて測定用
セルを作製した。
A charge / discharge capacity measuring cell was prepared as shown in FIG. 1 and charged / discharged as follows. That is, referring to FIG. 1, a stainless wire was placed in a beaker (11) so as to face the electrode (13) prepared above and the surface of the electrode (13) on which the active material layer (13a) was formed. A counter electrode (14) using a connected lithium plate and a lugine tube (16) having a similar reference electrode (15) were arranged. As the electrolytic solution (17), a solution prepared by dissolving 1 mol / l of lithium perchlorate as an electrolyte salt in a 1: 1 (volume ratio) mixed solvent of ethylene carbonate and diethyl carbonate is used, and a beaker (11) and a lugine tube ( 16) were sealed with silicon stoppers (12) and (18), respectively, to prepare measurement cells.

【0043】そしてこのセルに、1mAの定電流で終止
電圧4.2V(Potentialvs. Li/Li+
の条件で充電を行い、1mAの定電流で終止電圧3.0
V(Potential vs. Li/Li+ )の条件で
放電を行い、充放電容量を求めた。正極の放電容量は1
88mA/gで、初期効率KP1=(最初の放電容量)/
(最初の充電容量)=0.88であった。
Then, a final voltage of 4.2 V (Potentialvs. Li / Li + ) was applied to this cell at a constant current of 1 mA.
And a final voltage of 3.0 at a constant current of 1 mA.
Discharge was performed under the condition of V (Potential vs. Li / Li + ), and the charge / discharge capacity was determined. The discharge capacity of the positive electrode is 1
At 88 mA / g, the initial efficiency K P1 = (initial discharge capacity) /
(Initial charge capacity) = 0.88.

【0044】(負極の作製)以下の配合組成の負極用合
剤塗料を調製した。
(Preparation of Negative Electrode) A negative electrode mixture paint having the following composition was prepared.

【0045】 (配合組成) 負極活物質:難黒鉛化性炭素(平均粒径11μm) 82重量部 導電剤:LONZA製GraphiteKS25 9重量部 結合剤:エルフアトケムジャパンKYNAR741 9重量部 ポリフッ化ビニリデン(PVDF) 溶剤:N−メチル−2−ピロリドン(NMP) 150重量部(Blending composition) Negative electrode active material: non-graphitizable carbon (average particle size: 11 μm) 82 parts by weight Conductive agent: 9 parts by weight of Graphite KS25 manufactured by LONZA Binder: 9 parts by weight of Elphatochem Japan KYNAR741 polyvinylidene fluoride (PVDF) Solvent: 150 parts by weight of N-methyl-2-pyrrolidone (NMP)

【0046】PVDF9重量部をNMP81重量部に溶
解し、結合剤溶液90重量部を作製した。活物質82重
量部と導電材9重量部をハイパーミキサーで乾式混合
し、この混合物を加圧ニーダーに投入した。この混合物
に上記結合剤溶液50重量部を加え、加圧ニーダーのジ
ャケットを水冷しながら、60分間混練した。この混練
物を取り出し、結合剤溶液40重量部とNMP69重量
部を加えて、ハイパーミキサーにて溶解し、活物質合剤
塗料を得た。
9 parts by weight of PVDF was dissolved in 81 parts by weight of NMP to prepare 90 parts by weight of a binder solution. 82 parts by weight of the active material and 9 parts by weight of the conductive material were dry-mixed with a hyper mixer, and the mixture was charged into a pressure kneader. 50 parts by weight of the binder solution was added to the mixture, and the mixture was kneaded for 60 minutes while cooling the jacket of the pressure kneader with water. The kneaded product was taken out, 40 parts by weight of a binder solution and 69 parts by weight of NMP were added, and dissolved with a hyper mixer to obtain an active material mixture paint.

【0047】調製された合剤塗料を、ブレードコーター
にて18μm厚の圧延銅泊からなる集電体の片面に塗布
・乾燥した後、ローラープレス機にて圧縮成型し、所定
の大きさに切断して、単位体積中の活物質量が1g/c
3 、合剤層厚さ83μmの電極(N1)を得た。
The prepared mixture paint is applied to one side of a current collector made of rolled copper foil having a thickness of 18 μm by a blade coater, dried and then compression-molded by a roller press, and cut into a predetermined size. And the amount of active material per unit volume is 1 g / c
An electrode (N1) having m 3 and a mixture layer thickness of 83 μm was obtained.

【0048】(負極特性の評価)電極(N1)を、縦2
5mm、横20mmに切断し、上端部を5mmの幅で電
極層を除去して20mm角の電極層を残した。電極層を
除去した上端部にリードとしてステンレス線をスポット
溶接した。さらに、電極の裏面(集電体の活物質層が形
成されていない面)にPVDFのラッカーを塗布して乾
燥させPVDF被膜を形成して、評価用電極(作用極)
を作製した。
(Evaluation of Negative Electrode Characteristics) The electrode (N1) was
It was cut into 5 mm and 20 mm in width, and the upper end was removed with a width of 5 mm to leave a 20 mm square electrode layer. A stainless wire was spot-welded as a lead to the upper end from which the electrode layer was removed. Furthermore, a PVDF lacquer is applied to the back surface of the electrode (the surface on which the active material layer of the current collector is not formed) and dried to form a PVDF coating, and the electrode for evaluation (working electrode)
Was prepared.

【0049】図1に示したのと同様な充放電容量測定用
セルを作製した。すなわち、図1における電極(13)の代
わりに、前記評価用電極を配置した以外は同様のセルを
作製した。このセルにおいて、対極(14)は、評価用電極
の活物質層が形成された面に向かい合うように配置し
た。
A charge / discharge capacity measuring cell similar to that shown in FIG. 1 was prepared. That is, a similar cell was prepared except that the electrode for evaluation was arranged instead of the electrode (13) in FIG. In this cell, the counter electrode (14) was arranged so as to face the surface of the evaluation electrode on which the active material layer was formed.

【0050】そしてこのセルに、1mAの定電流で終止
電圧0.0V(Potentialvs. Li/Li+
の条件で放電を行い、1mAの定電流で終止電圧2.0
V(Potential vs. Li/Li+ )の条件で
充電を行い、充放電容量を求めた。負極の充電容量は3
98mA/gで、初期効率KN1=(最初の充電容量)/
(最初の放電容量)=0.81であった。
The final voltage of the cell was 0.0 V at a constant current of 1 mA (Potentialvs. Li / Li + ).
And discharge at a constant current of 1 mA and a cut-off voltage of 2.0.
The battery was charged under the condition of V (potential vs. Li / Li + ), and the charge / discharge capacity was determined. The charge capacity of the negative electrode is 3
At 98 mA / g, the initial efficiency K N1 = (initial charge capacity) /
(Initial discharge capacity) = 0.81.

【0051】(電池の作製及び電池特性の評価)上記正
極(P1)及び負極(N1)を用いて、非水電解質二次
電池の一例として、図2に示すようなコイン型電池を作
製した。正極(P1)を直径15mmに打ち抜き、負極
(N1)を直径15.5mmに打ち抜いた。そして、エ
チレンカーボネートとジエチルカーボネートの1:1
(容量比)混合液にLiPF6 を1モル/リットルなる
濃度で溶解した非水電解液を用意した。
(Production of Battery and Evaluation of Battery Characteristics) Using the positive electrode (P1) and the negative electrode (N1), a coin-type battery as shown in FIG. 2 was produced as an example of a non-aqueous electrolyte secondary battery. The positive electrode (P1) was punched to a diameter of 15 mm, and the negative electrode (N1) was punched to a diameter of 15.5 mm. Then, 1: 1 of ethylene carbonate and diethyl carbonate
(Volume ratio) A non-aqueous electrolyte solution was prepared by dissolving LiPF 6 at a concentration of 1 mol / l in the mixed solution.

【0052】この非水電解液、正極及び負極と、ポリプ
ロピレン製の薄膜セパレーター、負極カップ、正極缶、
ガスケットとを用いて、図2に示すような直径20mm
×厚さ2.5mmのコイン型電池を作製した。図2にお
いて、このコイン型電池は、正極缶(6) 内に収容された
正極(P1)(4) と負極カップ(1) 内に収容された負極
(N1)(2) とがセパレーター(3) を介して積層され、
正極缶(6) と負極カップ(1) とがガスケット(5) を介し
てかしめられ、密閉されてなるものである。なお、集電
体の図示は省略してある。
The nonaqueous electrolyte, the positive electrode and the negative electrode, a polypropylene thin film separator, a negative electrode cup, a positive electrode can,
Using a gasket, a diameter of 20 mm as shown in FIG.
X A coin-type battery having a thickness of 2.5 mm was produced. In FIG. 2, in this coin-type battery, a positive electrode (P1) (4) housed in a positive electrode can (6) and a negative electrode (N1) (2) housed in a negative electrode cup (1) have a separator (3). ) Is laminated through
The positive electrode can (6) and the negative electrode cup (1) are caulked via a gasket (5) and sealed. The illustration of the current collector is omitted.

【0053】このようにして作製された電池について、
電池電圧4.2Vとなるまで、充電電流1mAで充電を
行い、その後、電池電圧が4.2Vとなるように充電時
間20時間なる条件で充電を行い、放電電流1mA、終
止電圧2.5Vなる条件で放電を行い、放電容量を求め
た。容量は5.9mAhであった。
With respect to the battery thus manufactured,
The battery is charged at a charging current of 1 mA until the battery voltage becomes 4.2 V, and then the battery is charged under the condition of a charging time of 20 hours so that the battery voltage becomes 4.2 V. Discharge was performed under the conditions, and the discharge capacity was determined. The capacity was 5.9 mAh.

【0054】[実施例2] (正極の作製)実施例1で用いたLiNi0.8 Co0.2
2 の代わりにLi1.17Ni0.8 Co0.2 2 を活物質
として用いた以外は、実施例1と同様にして、単位体積
中の活物質量が3g/cm3 、合剤層厚さ64μmの電
極(P2)を得た。この正極の放電容量は187mA/
gで、初期効率KP2=0.72であった。
[Example 2] (Preparation of positive electrode) LiNi 0.8 Co 0.2 used in Example 1
Except that in place of O 2 with Li 1.17 Ni 0.8 Co 0.2 O 2 as the active material, the same procedure as in Example 1, the active material content in unit volume 3 g / cm 3, the mixture layer thickness 64μm An electrode (P2) was obtained. The discharge capacity of this positive electrode was 187 mA /
g, the initial efficiency K P2 was 0.72.

【0055】(負極の作製)実施例1で用いた難黒鉛化
性炭素(平均粒径11μm)の代わりに難黒鉛化性炭素
(平均粒径4.2μm)を活物質として用いた以外は、
実施例1と同様にして、単位体積中の活物質量が1g/
cm3 、合剤層厚さ86μmの電極(N2)を得た。こ
の負極の充電容量は397mA/gで、初期効率KN2
0.72であった。
(Preparation of Negative Electrode) Except that non-graphitizable carbon (average particle size: 4.2 μm) was used as an active material instead of non-graphitizable carbon (average particle size: 11 μm) used in Example 1.
In the same manner as in Example 1, the amount of the active material per unit volume was 1 g /
cm 3, to give the mixture layer thickness 86μm electrode (N2). The charge capacity of this negative electrode was 397 mA / g, and the initial efficiency K N2 =
0.72.

【0056】(電池の作製及び電池特性の評価)正極
(P2)及び負極(N2)を用いて、実施例1と同様に
して、コイン型電池を作製した。放電容量を求めたとこ
ろ、容量は6.0mAhであった。
(Production of Battery and Evaluation of Battery Characteristics) A coin-type battery was produced in the same manner as in Example 1 using the positive electrode (P2) and the negative electrode (N2). When the discharge capacity was determined, the capacity was 6.0 mAh.

【0057】[実施例3] (正極の作製)実施例2と同じ組成であるが、単位体積
中の活物質量が3g/cm3 、合剤層厚さ60μmの電
極(P3)を得た。この正極の放電容量は187mA/
gで、初期効率KP3=0.72であった。
Example 3 (Preparation of Positive Electrode) An electrode (P3) having the same composition as in Example 2 but having an active material amount per unit volume of 3 g / cm 3 and a mixture layer thickness of 60 μm was obtained. . The discharge capacity of this positive electrode was 187 mA /
g, the initial efficiency K P3 = 0.72.

【0058】(負極の作製)活物質として、実施例1で
用いた難黒鉛化性炭素(平均粒径11μm)64重量部
と、実施例2で用いた難黒鉛化性炭素(平均粒径4.2
μm)16重量部との混合物を用いた以外は、実施例1
と同様にして、単位体積中の活物質量が1g/cm3
合剤層厚さ90μmの電極(N3)を得た。この負極の
充電容量は398mA/gで、初期効率KN3=0.79
であった。
(Preparation of Negative Electrode) As active materials, 64 parts by weight of non-graphitizable carbon (average particle size 11 μm) used in Example 1 and non-graphitizable carbon (average particle size 4 .2
Example 1 except that a mixture with 16 .mu.m) was used.
In the same manner as described above, the amount of active material per unit volume is 1 g / cm 3 ,
An electrode (N3) having a mixture layer thickness of 90 μm was obtained. The charge capacity of this negative electrode was 398 mA / g, and the initial efficiency K N3 was 0.79.
Met.

【0059】(電池の作製及び電池特性の評価)正極
(P3)及び負極(N3)を用いて、実施例1と同様に
して、コイン型電池を作製した。放電容量を求めたとこ
ろ、容量は5.8mAhであった。
(Production of Battery and Evaluation of Battery Characteristics) A coin-type battery was produced in the same manner as in Example 1 using the positive electrode (P3) and the negative electrode (N3). When the discharge capacity was determined, the capacity was 5.8 mAh.

【0060】[実施例4] (正極の作製)活物質として、実施例1で用いたLiN
0.8 Co0.2 2 74重量部と、実施例2で用いた
Li1.17Ni0.8 Co0.2 2 19重量部との混合物
を用いた以外は、実施例1と同様にして、単位体積中の
活物質量が3g/cm3 、合剤層厚さ65μmの電極
(P4)を得た。この正極の放電容量は188mA/g
で、初期効率KP4=0.85であった。
Example 4 (Preparation of Positive Electrode) As an active material, LiN used in Example 1 was used.
In the same manner as in Example 1, except that a mixture of 74 parts by weight of i 0.8 Co 0.2 O 2 and 19 parts by weight of Li 1.17 Ni 0.8 Co 0.2 O 2 used in Example 2, was used. An electrode (P4) having a substance amount of 3 g / cm 3 and a mixture layer thickness of 65 μm was obtained. The discharge capacity of this positive electrode was 188 mA / g
The initial efficiency K P4 was 0.85.

【0061】(負極の作製)実施例1で用いたのと同じ
配合組成の負極用合剤塗料を、ブレードコーターにて1
8μm厚の圧延銅泊からなる集電体の片面に塗布・乾燥
した後、ローラープレス機にて圧縮成型し、所定の大き
さに切断して、単位体積中の活物質量が1g/cm3
合剤層厚さ85μmの電極(N4)を得た。この負極の
充電容量は398mA/gで、初期効率KN4=0.81
であった。
(Preparation of Negative Electrode) A negative electrode mixture paint having the same compounding composition as that used in Example 1 was applied to a blade coater.
After coating and drying on one side of a current collector made of a rolled copper foil having a thickness of 8 μm, it is compression-molded by a roller press, cut into a predetermined size, and the amount of active material in a unit volume is 1 g / cm 3. ,
An electrode (N4) having a mixture layer thickness of 85 μm was obtained. The charge capacity of this negative electrode was 398 mA / g, and the initial efficiency K N4 was 0.81.
Met.

【0062】(電池の作製及び電池特性の評価)正極
(P4)及び負極(N4)を用いて、実施例1と同様に
して、コイン型電池を作製した。放電容量を求めたとこ
ろ、容量は6.0mAhであった。
(Production of Battery and Evaluation of Battery Characteristics) A coin-type battery was produced in the same manner as in Example 1 using the positive electrode (P4) and the negative electrode (N4). When the discharge capacity was determined, the capacity was 6.0 mAh.

【0063】[比較例1] (正極の作製)実施例1で用いたのと同じ配合組成の正
極用合剤塗料を、ブレードコーターにて20μm厚のア
ルミニウム箔からなる集電体の片面に塗布・乾燥した
後、ローラープレス機にて圧縮成型し、所定の大きさに
切断して、単位体積中の活物質量が3g/cm3 、合剤
層厚さ71μmの電極(P5)を得た。この正極の放電
容量は188mA/gで、初期効率KP5=0.88であ
った。
Comparative Example 1 (Preparation of Positive Electrode) A positive electrode mixture paint having the same composition as that used in Example 1 was applied to one surface of a current collector made of an aluminum foil having a thickness of 20 μm using a blade coater. and drying and then, compression molding at a roller press machine and cut into a given size, amount of the active material per unit volume is 3 g / cm 3, to give the mixture layer thickness 71μm electrode (P5) . The discharge capacity of this positive electrode was 188 mA / g, and the initial efficiency was K P5 = 0.88.

【0064】(負極の作製)実施例2で用いたのと同じ
配合組成の負極用合剤塗料を、ブレードコーターにて1
8μm厚の圧延銅泊からなる集電体の片面に塗布・乾燥
した後、ローラープレス機にて圧縮成型し、所定の大き
さに切断して、単位体積中の活物質量が1g/cm3
合剤層厚さ79μmの電極(N5)を得た。この負極の
充電容量は397mA/gで、初期効率KN5=0.72
であった。
(Preparation of Negative Electrode) A negative electrode mixture paint having the same compounding composition as that used in Example 2 was applied to a blade coater to prepare a mixture.
After coating and drying on one side of a current collector made of a rolled copper foil having a thickness of 8 μm, it is compression-molded by a roller press, cut into a predetermined size, and the amount of active material in a unit volume is 1 g / cm 3. ,
An electrode (N5) having a mixture layer thickness of 79 μm was obtained. The charge capacity of this negative electrode was 397 mA / g, and the initial efficiency K N5 was 0.72.
Met.

【0065】(電池の作製及び電池特性の評価)正極
(P5)及び負極(N5)を用いて、実施例1と同様に
して、コイン型電池を作製した。放電容量を求めたとこ
ろ、容量は5.6mAhであった。
(Production of Battery and Evaluation of Battery Characteristics) A coin-type battery was produced in the same manner as in Example 1 using the positive electrode (P5) and the negative electrode (N5). When the discharge capacity was determined, the capacity was 5.6 mAh.

【0066】[比較例2] (正極の作製)実施例2で用いたのと同じ配合組成の正
極用合剤塗料を、ブレードコーターにて20μm厚のア
ルミニウム箔からなる集電体の片面に塗布・乾燥した
後、ローラープレス機にて圧縮成型し、所定の大きさに
切断して、単位体積中の活物質量が3g/cm3 、合剤
層厚さ60μmの電極(P6)を得た。この正極の放電
容量は187mA/gで、初期効率KP6=0.72であ
った。
Comparative Example 2 (Preparation of Positive Electrode) A mixture for the positive electrode having the same composition as that used in Example 2 was applied to one surface of a current collector made of an aluminum foil having a thickness of 20 μm using a blade coater. and drying and then, compression molding at a roller press machine and cut into a given size, amount of the active material per unit volume is 3 g / cm 3, to give the mixture layer thickness 60μm electrode (P6) . The discharge capacity of this positive electrode was 187 mA / g, and the initial efficiency was K P6 = 0.72.

【0067】(負極の作製)実施例1で用いたのと同じ
配合組成の負極用合剤塗料を、ブレードコーターにて1
8μm厚の圧延銅泊からなる集電体の片面に塗布・乾燥
した後、ローラープレス機にて圧縮成型し、所定の大き
さに切断して、単位体積中の活物質量が1g/cm3
合剤層厚さ90μmの電極(N6)を得た。この負極の
充電容量は398mA/gで、初期効率KN6=0.81
であった。
(Preparation of Negative Electrode) A negative electrode mixture paint having the same compounding composition as used in Example 1 was applied with a blade coater to prepare a 1
After coating and drying on one side of a current collector made of a rolled copper foil having a thickness of 8 μm, it is compression-molded by a roller press, cut into a predetermined size, and the amount of active material in a unit volume is 1 g / cm 3. ,
An electrode (N6) having a mixture layer thickness of 90 μm was obtained. The charge capacity of this negative electrode was 398 mA / g, and the initial efficiency K N6 was 0.81.
Met.

【0068】(電池の作製及び電池特性の評価)正極
(P6)及び負極(N6)を用いて、実施例1と同様に
して、コイン型電池を作製した。充放電容量を求めたと
ころ、容量は5.6mAhであった。以上の結果を表1
にまとめて示す。
(Production of Battery and Evaluation of Battery Characteristics) A coin-type battery was produced in the same manner as in Example 1 using the positive electrode (P6) and the negative electrode (N6). When the charge / discharge capacity was determined, the capacity was 5.6 mAh. Table 1 shows the above results.
Are shown together.

【0069】[0069]

【表1】 [Table 1]

【0070】表1より、実施例1〜4の電池はいずれ
も、高容量で優れている。とくに、実施例2では、正極
及び負極の初期効率は0.72とそれ程良くはないにも
かかわらず、電池の容量は高い。比較例1〜2の電池
は、正極と負極の組み合わせが良くないので、実施例の
電池に比べ、容量が小さい。
As shown in Table 1, the batteries of Examples 1 to 4 are all excellent in high capacity. In particular, in Example 2, although the initial efficiency of the positive electrode and the negative electrode was 0.72, which was not so good, the capacity of the battery was high. Since the combination of the positive electrode and the negative electrode was not good in the batteries of Comparative Examples 1 and 2, the capacity was smaller than the batteries of the Examples.

【0071】実施例においては、非水電解質二次電池の
一例として、コイン型電池を作製したが、円筒型、ピン
型、ペーパー型など種々の形状の電池も本発明を用いて
作製できる。
In the examples, coin type batteries were manufactured as an example of the non-aqueous electrolyte secondary battery. However, batteries of various shapes such as a cylindrical type, a pin type, and a paper type can be manufactured using the present invention.

【0072】[0072]

【発明の効果】以上のように、本発明の非水電解質二次
電池によれば、正極の初期効率をKp、負極の初期効率
をKnとしたときに、0.9≦Kp/Kn≦1.1の関
係を満たすように、正極及び負極が組み合わせられたも
のであるので、高容量で充放電特性に優れる。本発明
は、非水電解質二次電池の高容量化で充放電特性向上に
貢献する。
As described above, according to the nonaqueous electrolyte secondary battery of the present invention, when the initial efficiency of the positive electrode is Kp and the initial efficiency of the negative electrode is Kn, 0.9 ≦ Kp / Kn ≦ 1. Since the positive electrode and the negative electrode are combined so as to satisfy the relationship of 0.1, the battery has high capacity and excellent charge / discharge characteristics. The present invention contributes to improving the charge / discharge characteristics by increasing the capacity of the nonaqueous electrolyte secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 正極特性及び負極特性測定用セルの概略図で
ある。
FIG. 1 is a schematic diagram of a cell for measuring a positive electrode characteristic and a negative electrode characteristic.

【図2】 本発明の非水電解質二次電池の一例としての
コイン型電池の断面図である。
FIG. 2 is a sectional view of a coin-type battery as an example of the non-aqueous electrolyte secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

(1) 負極カップ (2) 負極 (3) セパレーター (4) 正極 (5) ガスケット (6) 正極缶 (1) Negative cup (2) Negative electrode (3) Separator (4) Positive electrode (5) Gasket (6) Positive electrode can

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンをドープ、脱ドープ可能
な正極及び負極を備える非水電解質二次電池において、
正極及び負極は、正極の初期効率をKp、負極の初期効
率をKnとしたときに、0.9≦Kp/Kn≦1.1の
関係を満たすように組み合わせられたものであることを
特徴する、非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of doping and undoping lithium ions,
The positive electrode and the negative electrode are characterized by being combined so as to satisfy the relationship of 0.9 ≦ Kp / Kn ≦ 1.1, where Kp is the initial efficiency of the positive electrode and Kn is the initial efficiency of the negative electrode. , Non-aqueous electrolyte secondary batteries.
【請求項2】 正極の活物質は、Lix Niy z 2
(ここで、xは0.8<x<1.5、y+zは0.8<
y+z<1.2、zは0≦z<0.35である。Mは、
Co、Mg、Ca、Sr、Al、Mn及びFeから選ば
れる少なくとも1種の元素を表す。)なる組成のリチウ
ム複合酸化物からなる、請求項1に記載の非水電解質二
次電池。
2. The active material of the positive electrode is Li x Ni y M z O 2.
(Where x is 0.8 <x <1.5, y + z is 0.8 <
y + z <1.2, z is 0 ≦ z <0.35. M is
It represents at least one element selected from Co, Mg, Ca, Sr, Al, Mn and Fe. 2. The non-aqueous electrolyte secondary battery according to claim 1, comprising a lithium composite oxide having the following composition:
JP10161506A 1997-05-27 1998-05-27 Nonaqueous electrolytic secondary battery Withdrawn JPH1145742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10161506A JPH1145742A (en) 1997-05-27 1998-05-27 Nonaqueous electrolytic secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-136665 1997-05-27
JP13666597 1997-05-27
JP10161506A JPH1145742A (en) 1997-05-27 1998-05-27 Nonaqueous electrolytic secondary battery

Publications (1)

Publication Number Publication Date
JPH1145742A true JPH1145742A (en) 1999-02-16

Family

ID=26470174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10161506A Withdrawn JPH1145742A (en) 1997-05-27 1998-05-27 Nonaqueous electrolytic secondary battery

Country Status (1)

Country Link
JP (1) JPH1145742A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001067536A1 (en) * 2000-03-07 2001-09-13 Teijin Limited Lithium ion secondary cell, separator, cell pack, and charging method
US6881438B2 (en) 2000-03-07 2005-04-19 Teijin Limited Process for production of composite porous film
US7094497B2 (en) 2000-03-07 2006-08-22 Teijin Limited Separator for lithium ion secondary battery
EP2665111A2 (en) 2012-05-18 2013-11-20 Shin-Etsu Chemical Co., Ltd. Lithium ion secondary battery
JP2021022543A (en) * 2019-07-30 2021-02-18 株式会社Gsユアサ Power storage element
WO2022092273A1 (en) * 2020-10-30 2022-05-05 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818352B2 (en) 1999-03-07 2004-11-16 Teijin Limited Lithium secondary cell, separator, cell pack, and charging method
WO2001067536A1 (en) * 2000-03-07 2001-09-13 Teijin Limited Lithium ion secondary cell, separator, cell pack, and charging method
US6881438B2 (en) 2000-03-07 2005-04-19 Teijin Limited Process for production of composite porous film
US7094497B2 (en) 2000-03-07 2006-08-22 Teijin Limited Separator for lithium ion secondary battery
EP2665111A2 (en) 2012-05-18 2013-11-20 Shin-Etsu Chemical Co., Ltd. Lithium ion secondary battery
JP2013242997A (en) * 2012-05-18 2013-12-05 Shin Etsu Chem Co Ltd Lithium ion secondary battery
EP2665111A3 (en) * 2012-05-18 2016-03-16 Shin-Etsu Chemical Co., Ltd. Lithium ion secondary battery
JP2021022543A (en) * 2019-07-30 2021-02-18 株式会社Gsユアサ Power storage element
WO2022092273A1 (en) * 2020-10-30 2022-05-05 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP3726163B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP4061668B2 (en) Lithium ion non-aqueous electrolyte secondary battery
JP4096754B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP3982658B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP2015015244A (en) Positive electrode active material for lithium secondary batteries, method for manufacturing the same, positive electrode for lithium secondary batteries including the same, and lithium secondary battery
JP2008153017A (en) Positive active material for nonaqueous electrolyte secondary battery
JPH09180758A (en) Nonaqueous secondary battery
JPH1040921A (en) Nonaqueous secondary battery
JP2011001256A (en) Method for producing nitrided lithium-transition metal compound oxide, nitrided lithium-transition metal compound oxide and lithium battery
JP2003034534A (en) Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same
JP2008066028A (en) Lithium manganate for lithium secondary battery positive electrode secondary active material, and manufacturing method of lithium manganate, lithium secondary battery positive electrode active material, and lithium secondary battery
JP3819940B2 (en) Nonaqueous electrolyte secondary battery
JP3555213B2 (en) Non-aqueous secondary battery
JP3244227B2 (en) Non-aqueous electrolyte secondary battery
JP3644106B2 (en) Non-aqueous secondary battery
JPH08298135A (en) Nonaqueous secondary battery
JP2003017056A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and lithium secondary battery using the same
JPH07312219A (en) Nonaqueous secondary battery and charging method
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JPH09129217A (en) Nonaqueous secondary battery
JP2001256975A (en) Lithium nickel compound oxide for lithium secondary battery positive electrode active material, manufacturing method thereof, and lithium secondary battery using the same
JPH09245771A (en) Non-aqueous secondary battery
JPH1145742A (en) Nonaqueous electrolytic secondary battery
JP2004284845A (en) Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery
JPH1145716A (en) Manufacture of electrode for nonaqueous electrolytic battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802