JPH08134593A - High strength austenitic alloy excellent in seawater corrosion resistance and hydrogen sulfide corrosion resistance - Google Patents

High strength austenitic alloy excellent in seawater corrosion resistance and hydrogen sulfide corrosion resistance

Info

Publication number
JPH08134593A
JPH08134593A JP27469194A JP27469194A JPH08134593A JP H08134593 A JPH08134593 A JP H08134593A JP 27469194 A JP27469194 A JP 27469194A JP 27469194 A JP27469194 A JP 27469194A JP H08134593 A JPH08134593 A JP H08134593A
Authority
JP
Japan
Prior art keywords
corrosion resistance
hydrogen sulfide
seawater
alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27469194A
Other languages
Japanese (ja)
Other versions
JP3470418B2 (en
Inventor
Masakatsu Ueda
昌克 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27469194A priority Critical patent/JP3470418B2/en
Publication of JPH08134593A publication Critical patent/JPH08134593A/en
Application granted granted Critical
Publication of JP3470418B2 publication Critical patent/JP3470418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To produce a high strength austenitic alloy excellent in seawater corrosion resistance and hydrogen sulfide corrosion resistance by preparing an alloy in which respective contents of components are specified and specific inequalities are satisfied. CONSTITUTION: This austenitic alloy has a composition which consists of, by weight, 0.05-1.0% Si, 1.5-10% Mn, 20-30% Cr, 20-405 Ni, 0.01-0.5% Al, >0.25-0.6% N, 0.2-2.5% Cu, 0.02-1.0% V and/or 0.04-1.0% Nb, 0.2-4% Mo and/or 0.2-8% W, 0-0.1% rare earth elements, 0-0.20% Y, 0-0.10% Mg, 0-0.10% Ca, and the balance Fe with inevitable impurities and in which the contents of C, P, and S among the impurities are regulated to <=0.05%, <=0.03%, and <=0.01%, respectively, and also the relations in inequalities I, II, and III [where the 0.2% proof stress (ksi) is a value in a state of solid solution] are satisfied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、硫化水素を含有する石
油、天然ガスを生産または輸送する際に、外面が海水に
曝される用途などに用いるのに好適な、耐海水腐食性と
耐硫化水素腐食性を有する高強度オーステナイト合金に
関する。
The present invention relates to seawater corrosion resistance and corrosion resistance suitable for use in applications where the outer surface is exposed to seawater during the production or transportation of petroleum and natural gas containing hydrogen sulfide. The present invention relates to a high strength austenitic alloy having hydrogen sulfide corrosiveness.

【0002】[0002]

【従来の技術】耐海水腐食性は、材料表面の不働態皮膜
(Cr酸化物) の安定性で決まる。そして、皮膜破壊がお
こったとき、Mo、W、N等が不働態皮膜の修復を促進す
ると言われており、PREW (Pitting Resistance Equ
ivalent including W )が大きいほど耐食性が良好であ
ることがわかっている(CORROSION/93, NACE Internati
onal,Paper No.125 1993 、参照。以下、文献1と記
す)。なお、PREWは下記の式で定義されている。
2. Description of the Related Art Seawater corrosion resistance is a passive film on the material surface.
It is determined by the stability of (Cr oxide). When film destruction occurs, Mo, W, N, etc. are said to accelerate the repair of the passive film, and PREW (Pitting Resistance Equ
It is known that the larger ivalent including W), the better the corrosion resistance (CORROSION / 93, NACE Internati
See onal, Paper No. 125 1993. Hereinafter referred to as Document 1). PREW is defined by the following formula.

【0003】 PREW=〔Cr+3.3(Mo+ 0.5W) +16N〕 耐硫化水素腐食性に関しては、200 ℃以下の環境下では
応力腐食割れが重大な腐食問題で、Niを含有するNi−Cr
−Mo−Fe合金が高い耐食性を有する。その理由は、材
料表面にNi硫化物がまず生成し、次に、Ni硫化物で硫化
水素が遮断されるので、Ni硫化物の下にCr酸化物が生成
する、このCr酸化物皮膜が破壊されたとき、Moがその
修復を促進する、という現象にあると考えられている
(CORROSION/84, NACE International,Paper No.206 1
984 、参照。以下、文献2と記す)。
PREW = [Cr + 3.3 (Mo + 0.5W) + 16N] With respect to hydrogen sulfide corrosion resistance, stress corrosion cracking is a serious corrosion problem under an environment of 200 ° C. or lower.
-Mo-Fe alloy has high corrosion resistance. The reason is that Ni sulfide is first generated on the surface of the material, and then hydrogen sulfide is blocked by Ni sulfide, so Cr oxide is generated under the Ni sulfide. It is believed that Mo promotes its repair when it is released (CORROSION / 84, NACE International, Paper No.206 1
984, see. Hereinafter referred to as Document 2).

【0004】特開昭57−134544号公報、特開昭57−2071
42号〜同−207144号公報、特開昭57−207147号公報、特
開昭57−207148号公報に示される油井用合金では、使用
環境の温度条件に応じて耐応力腐食割れを付与するため
に、有効成分 (Ni、Cr、Mo、W) の範囲を限定し、さら
にCu、Coを添加して耐食性を高めているが、N、Vおよ
びNbが無添加であるため、耐海水腐食性や強度の点で問
題がある。
JP-A-57-134544 and JP-A-57-2071
No. 42 to No. 207144, JP-A-57-207147, JP-A-57-207148, in the alloy for oil wells, in order to impart stress corrosion cracking resistance in accordance with the temperature conditions of the operating environment. In addition, the range of active ingredients (Ni, Cr, Mo, W) is limited, and Cu and Co are added to enhance the corrosion resistance. However, since N, V and Nb are not added, seawater corrosion resistance There is a problem in strength and strength.

【0005】特開昭57−134544号公報、特開昭57−2037
35号〜同−203737号公報に示される油井用合金において
は、高強度を得るため通常の冷間加工仕上げや析出硬化
の手法が用いられている。特開昭57−203735号〜同−20
3737号公報に示される合金は高Nではあるが、Vおよび
Nbが無添加であるため、強度レベルが不十分となること
がある。また、特開昭57−134544号公報等では、耐食性
の指標としてNiを考慮していない。
JP-A-57-134544 and JP-A-57-2037
In the alloys for oil wells shown in Nos. 35 to 203737, ordinary cold work finishing and precipitation hardening techniques are used to obtain high strength. JP-A-57-203735 to -20
Although the alloy shown in 3737 has a high N, V and
Since Nb is not added, the strength level may be insufficient. Further, in JP-A-57-134544 and the like, Ni is not considered as an index of corrosion resistance.

【0006】特開昭57−203738号公報、特開昭57−2037
39号公報に示される油井用合金においては、VおよびNb
は添加されているがNが無添加であるため、耐海水腐食
性に問題がある。
JP-A-57-203738 and JP-A-57-2037
In the oil well alloy disclosed in Japanese Patent Publication No. 39, V and Nb
However, since N is not added, there is a problem in seawater corrosion resistance.

【0007】特開昭57−207149号公報、特開昭57−2071
50号公報に示される油井用合金は、Nを0.05〜0.25%、
Nbおよび/またはVを 0.5〜4%で含有させ、さらに冷
間加工仕上げや析出硬化法により、耐応力腐食性と高強
度を付与するものである。
JP-A-57-207149, JP-A-57-2071
The alloy for oil wells disclosed in Japanese Patent Publication No. 50 has a N content of 0.05 to 0.25%,
Nb and / or V is contained in an amount of 0.5 to 4%, and stress corrosion resistance and high strength are imparted by cold working finish or precipitation hardening method.

【0008】[0008]

【発明が解決しようとする課題】従来の油井管では、油
井管の内部を流れる腐食流体(H2S、CO2 、Cl- 等) を考
慮して、また、海水環境での耐食材料でも、酸素−Cl-
環境における耐食性に基づいて、それぞれ合金設計がな
されてきた。しかし、最近の海底油井で使用される油井
管では、外面が海水に曝され、内面が生産流体に接す
る。さらに、溶接を考慮すると、溶体化のままで高強度
が得られることが必要となる。
In the conventional oil country tubular goods, in consideration of the corrosive fluid (H 2 S, CO 2 , Cl −, etc.) flowing inside the oil country tubular goods, and even in the case of a corrosion resistant material in a seawater environment, oxygen -Cl -
Each alloy design has been based on its corrosion resistance in the environment. However, in the well tube used in the recent offshore oil well, the outer surface is exposed to seawater and the inner surface is in contact with the produced fluid. Further, in consideration of welding, it is necessary to obtain high strength as it is in solution.

【0009】本発明の目的は、耐海水腐食性、耐硫化水
素腐食性および溶体化のままで高強度を備えたオーステ
ナイト合金を提供することにある。
An object of the present invention is to provide an austenitic alloy having seawater corrosion resistance, hydrogen sulfide corrosion resistance, and high strength as a solution.

【0010】[0010]

【課題を解決するための手段】本発明の要旨は、次の高
強度オーステナイト合金にある。
The gist of the present invention lies in the following high-strength austenitic alloys.

【0011】重量%で、Si:0.05〜1.0 %、Mn: 1.5〜
10%、 Cr:20〜30%、 Ni:20〜40%、Al:0.01〜0.
5 %、N:0.25%を超え 0.6%以下、Cu:0.2 〜2.5
%、V:0.02〜1.0 %およびNb:0.04〜1.0 %のうち1
種または2種、Mo:0.2 〜4%およびW:0.2 〜8%の
うち1種または2種、を含み、希土類元素が0〜0.1
%、Yが0〜0.20%、Mgが0〜0.10%およびCaが0〜0.
10%で、残部はFeと不可避不純物からなり、不純物中の
Cは0.05%以下、Pは0.03%以下、Sは0.01%以下であ
り、かつ、下記式〜の条件を満足することを特徴と
する耐海水腐食性と耐硫化水素腐食性に優れた高強度オ
ーステナイト合金。
% By weight, Si: 0.05-1.0%, Mn: 1.5-
10%, Cr: 20-30%, Ni: 20-40%, Al: 0.01-0.
5%, N: over 0.25% and 0.6% or less, Cu: 0.2-2.5
%, V: 0.02-1.0% and Nb: 0.04-1.0%, 1
Or 2 kinds, one or two kinds of Mo: 0.2 to 4% and W: 0.2 to 8%, and the rare earth element is 0 to 0.1.
%, Y 0 to 0.20%, Mg 0 to 0.10% and Ca 0 to 0.
The balance is 10%, and the balance is Fe and unavoidable impurities. C in the impurities is 0.05% or less, P is 0.03% or less, S is 0.01% or less, and the following conditions (1) to (4) are satisfied. A high-strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance.

【0012】 〔Cr+3.3(Mo+ 0.5W) +16N〕≧40 ・・・・・・・・・・ 〔Cr+3.3(Mo+ 0.5W) +2Ni〕≧70 ・・・・・・・・・・ 0.2%耐力=〔50+17.8× (4C+2N+V+2Nb) 〕≧60・・・ ただし、 0.2%耐力(単位:ksi)は溶体化ままでの値で
あり、〜式中の元素記号は、その元素の含有量 (重
量%) を表す。
[Cr + 3.3 (Mo + 0.5W) + 16N] ≧ 40 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ [Cr + 3.3 (Mo + 0.5W) + 2Ni] ≧ 70 ・ ・ ・ ・ ・ 0.2 % Yield strength = [50 + 17.8 × (4C + 2N + V + 2Nb)] ≧ 60 ・ ・ ・ However, 0.2% yield strength (unit: ksi) is the value in the as-solution state, and the element symbol in the formula is the content of that element. (% By weight)

【0013】本発明の基となった新知見は、次のとおり
である。
The new findings on which the present invention is based are as follows.

【0014】耐海水腐食性:上記式は耐海水腐食性に
係わる指標である。文献1に示されているとおり、海水
中では局部腐食が最も重要な腐食問題であり、式を満
足させることで海水中での耐食性を確保することができ
る。
Seawater corrosion resistance: The above formula is an index relating to seawater corrosion resistance. As shown in Reference 1, local corrosion is the most important corrosion problem in seawater, and by satisfying the formula, corrosion resistance in seawater can be secured.

【0015】耐硫化水素腐食性:上記式は耐硫化水素
腐食性に係わる指標である。硫化水素含有環境では、文
献2に示されているように応力腐食割れが最も重要な腐
食問題であり、外層にNiの硫化物を、内層にCr−O皮膜
をそれぞれ生成させることで、耐食性を保持することが
できる。また、Mo、W、Cuは内層のCr−O皮膜の修復力
を著しく向上させる。
Hydrogen sulfide corrosion resistance: The above formula is an index relating to hydrogen sulfide corrosion resistance. In a hydrogen sulfide-containing environment, stress corrosion cracking is the most important corrosion problem as shown in Document 2, and by forming Ni sulfide in the outer layer and Cr-O film in the inner layer, corrosion resistance is improved. Can be held. Further, Mo, W and Cu remarkably improve the repairing power of the Cr-O film as the inner layer.

【0016】前述のように、特開昭57−134544号公報等
の発明では、Niを耐食性の指標には入れていない。本発
明者らは、高NのNi含有合金の硫化水素環境での耐応力
腐食割れ性に及ぼす成分元素の影響を検討し、(イ)Nは
耐応力腐食割れ性にほとんど影響を及ぼさないこと、
(ロ)Niも耐食性の指標に入れるべきであること、(ハ)Cr、
MoおよびWも耐応力腐食割れ性を向上させること、を見
いだした。すなわち、式を満足させると150 ℃の硫化
水素環境で応力腐食割れが生じなくなる。
As described above, in the inventions of JP-A-57-134544 and the like, Ni is not included in the index of corrosion resistance. The present inventors have examined the effect of the constituent elements on the stress corrosion cracking resistance of a high N Ni-containing alloy in a hydrogen sulfide environment, and (a) N has almost no effect on the stress corrosion cracking resistance. ,
(B) Ni should also be included in the index of corrosion resistance, (c) Cr,
It was found that Mo and W also improve the stress corrosion cracking resistance. That is, when the formula is satisfied, stress corrosion cracking does not occur in a hydrogen sulfide environment at 150 ° C.

【0017】高強度:上記式は溶体化ままでの強度に
係わる指標である。通常のオーステナイト合金は、溶体
化ままの状態では、0.2 %耐力が約35kg/mm2(50ksi) 程
度で強度が低い。冷間加工して高強度化された通常合金
は、溶接すれば強度が非常に低下するため、強度部材と
はなり得ない。Nに加えてさらにVおよび/またはNbを
添加して式を満足させると、固溶強化、析出強化およ
び細粒化効果により溶体化ままで高強度を得ることがで
きる。
High strength: The above formula is an index relating to the strength of the as-solutioned steel. Normal as-solution austenite alloy has a low strength with a 0.2% proof stress of about 35 kg / mm 2 (50 ksi). A normal alloy that has been strengthened by cold working cannot be used as a strength member because the strength of the normal alloy is greatly reduced if it is welded. When V and / or Nb is added in addition to N to satisfy the formula, high strength can be obtained as a solution due to solid solution strengthening, precipitation strengthening and grain refining effects.

【0018】Cu添加:Cuの添加は、硫化水素環境、特に
3程度の低 pH環境での硫化水素および海水環境での耐
食性を向上させることができる。
Addition of Cu: Addition of Cu can improve the corrosion resistance in hydrogen sulfide environment, particularly in hydrogen sulfide in a low pH environment of about 3 and seawater environment.

【0019】その他の合金成分の添加:一定量の希土類
元素、Y、Mg、およびCaのうちの1種または2種以上を
含有させると、熱間加工性がさらに一段と改善される。
Addition of other alloying components: By adding a certain amount of one or more of rare earth elements, Y, Mg and Ca, hot workability is further improved.

【0020】[0020]

【作用】本発明合金の化学組成および特定成分の含有量
のバランスを、前述のように限定した理由を以下に説明
する。
The reason why the balance of the chemical composition and the content of the specific component of the alloy of the present invention is limited as described above will be explained below.

【0021】Si:0.05〜1.0 % Siは脱酸のために必要な成分である。その効果を得るた
めには、Si含有量の下限は 0.05 %とする必要がある。
一方、その含有量が 1.0%を超えると熱間加工性が劣化
するようになることから、その上限を 1.0%とした。
Si: 0.05 to 1.0% Si is a necessary component for deoxidation. In order to obtain that effect, the lower limit of the Si content needs to be 0.05%.
On the other hand, if the content exceeds 1.0%, the hot workability deteriorates, so the upper limit was made 1.0%.

【0022】Mn: 1.5〜10% Mnは本来、脱酸剤であるが、Nの固溶度を上げる元素で
あるので積極的に添加する。この効果を得るにはMn含有
量は1.5 %以上とする必要がある。一方、10%を超える
と応力腐食割れを生じるようになる。よって、Mn含有量
の範囲は 1.5〜10%と定めた。
Mn: 1.5 to 10% Mn is originally a deoxidizing agent, but it is an element that increases the solid solubility of N, so it is positively added. To obtain this effect, the Mn content must be 1.5% or more. On the other hand, if it exceeds 10%, stress corrosion cracking will occur. Therefore, the range of Mn content was set to 1.5-10%.

【0023】Cr:20〜30% Crは、Ni、N、MoおよびWとの共存下で耐海水腐食性お
よび耐硫化水素腐食性( 主に耐応力腐食割れ性 )を向上
させる成分であるが、熱間加工性を阻害する成分でもあ
る。しかし、その含有量を20%未満としても熱間加工性
が改善されるようになるものでもなく、逆に所望の耐海
水腐食性および耐硫化水素腐食性を確保するためには、
MoやWの含有量をそれだけ増加させなければならず、経
済性を損なうため、Cr含有量の下限値は20%と定めた。
一方、Crが30%を超えると、いくらS含有量を低減させ
ても熱間加工性の劣化を避けることができないことか
ら、その上限値は30%と定めた。
Cr: 20-30% Cr is a component which improves seawater corrosion resistance and hydrogen sulfide corrosion resistance (mainly stress corrosion cracking resistance) in the presence of Ni, N, Mo and W. It is also a component that inhibits hot workability. However, even if the content is less than 20%, hot workability will not be improved, and conversely, in order to secure desired seawater corrosion resistance and hydrogen sulfide corrosion resistance,
The lower limit of the Cr content was set to 20% because the Mo and W contents must be increased by that amount, which impairs economic efficiency.
On the other hand, when Cr exceeds 30%, deterioration of hot workability cannot be avoided no matter how much the S content is reduced, so the upper limit was set to 30%.

【0024】Ni:20〜40% Niには耐硫化水素腐食性を向上させる作用があるが、そ
の含有量が20%未満では所望の優れた耐硫化水素腐食性
を確保することができない。一方、40%を超えても耐硫
化水素腐食性をさらに一段と向上させる効果は現れな
い。よって、経済性をも考慮して、Ni含有量の範囲は20
〜40%と定めた。
Ni: 20-40% Ni has the effect of improving the hydrogen sulfide corrosion resistance, but if the content is less than 20%, the desired excellent hydrogen sulfide corrosion resistance cannot be secured. On the other hand, even if it exceeds 40%, the effect of further improving the hydrogen sulfide corrosion resistance does not appear. Therefore, considering economic efficiency, the range of Ni content is 20
-40%.

【0025】Al:0.01〜0.5 % Alは脱酸のために必要である。その効果を得るためにAl
含有量の下限を0.01%とする。一方、Alの含有量が 0.5
%を超えると熱間加工性が劣化する。従って、Alの適正
含有量は0.01〜0.5 %である。
Al: 0.01-0.5% Al is necessary for deoxidation. Al to get that effect
The lower limit of the content is 0.01%. On the other hand, the Al content is 0.5
If it exceeds%, the hot workability deteriorates. Therefore, the proper content of Al is 0.01 to 0.5%.

【0026】N:0.25%を超え 0.6%以下 Nは、耐海水腐食性を著しく向上させると共に、固溶強
化作用により合金の強度を向上させる作用がある。しか
し、N含有量が0.25%以下では所望の高強度を得ること
ができない。一方、0.6 %を超えると窒素が十分固溶せ
ず、Cr窒化物を形成して合金の耐食性を劣化させるよう
になる。よって、N含有量の範囲は0.25%を超え
0.60%までと定めた。
N: more than 0.25% and 0.6% or less N has the effect of notably improving seawater corrosion resistance, but also improving the strength of the alloy by the solid solution strengthening effect. However, if the N content is 0.25% or less, the desired high strength cannot be obtained. On the other hand, if it exceeds 0.6%, nitrogen does not form a solid solution sufficiently to form Cr nitrides and deteriorate the corrosion resistance of the alloy. Therefore, the range of the N content is set to exceed 0.25% and to 0.60%.

【0027】Cu:0.2 〜2.5 % Cuには、特に酸性(pH3程度)の硫化水素および海水環
境下での耐食性を向上させる作用がある。0.2 %未満で
はその効果がない。一方、Cuが 2.5%を超えると熱間加
工性が劣化するため、その上限は 2.5%とした。
Cu: 0.2 to 2.5% Cu has the effect of improving the corrosion resistance especially in acidic (about pH 3) hydrogen sulfide and seawater environments. If it is less than 0.2%, it has no effect. On the other hand, if Cu exceeds 2.5%, the hot workability deteriorates, so the upper limit was made 2.5%.

【0028】本発明合金では加えてさらに、次のVおよ
び/またはNbを含有させることができる。
The alloy of the present invention may further contain the following V and / or Nb.

【0029】V:0.02〜1.0 %、Nb:0.04〜1.0 % これらには、固溶強化、析出強化および細粒化効果によ
り、溶体化ままでの強度を向上させる効果があるので、
1種または2種複合で含有させる。Vが0.02%未満では
上記の効果が得られない。Nbが0.04%未満の場合も同様
である。一方、V、Nbとも 1.0%を超えると鋼の延性お
よび靱性が低下し、かつ熱間加工性も劣化するようにな
る。
V: 0.02 to 1.0%, Nb: 0.04 to 1.0% These have the effect of improving the strength of the as-solution solution by solid solution strengthening, precipitation strengthening and grain refining effects.
One type or a combination of two types is contained. If V is less than 0.02%, the above effect cannot be obtained. The same applies when Nb is less than 0.04%. On the other hand, when both V and Nb exceed 1.0%, the ductility and toughness of the steel deteriorate, and the hot workability also deteriorates.

【0030】Mo:0.2 〜4 %、W:0.2 〜8 % 前記のように、これらの成分には、N、NiおよびCrとの
共存で耐海水腐食性と耐硫化水素腐食性を改善する作用
がある。しかし、MoもWもともにその含有量が0.2 %未
満では効果が小さい。一方、Mo含有量が4%、W含有量
が8%をそれぞれ超えると、温度が 150℃以下の硫化水
素環境では、さらに一段の耐食性改善効果は現れない。
よって、経済性も考慮して、これらを含有させる場合の
上限はMoで4%、Wで8%とした。
Mo: 0.2 to 4%, W: 0.2 to 8% As described above, these components have the function of improving the resistance to seawater corrosion and the resistance to hydrogen sulfide corrosion in the presence of N, Ni and Cr. There is. However, if the content of both Mo and W is less than 0.2%, the effect is small. On the other hand, when the Mo content exceeds 4% and the W content exceeds 8%, further improvement in corrosion resistance does not appear in a hydrogen sulfide environment at a temperature of 150 ° C or lower.
Therefore, in consideration of economic efficiency, the upper limits when these are contained are 4% for Mo and 8% for W.

【0031】本発明合金は、これまでに述べた成分の
外、残部がFeおよび不可避不純物からなるものであって
もよい。不可避不純物の代表的なものは、C、Pおよび
Sであり、これらは下記の許容上限値以下で、可及的に
少ない方がよい。
The alloy of the present invention may comprise, in addition to the components described above, the balance of Fe and inevitable impurities. Typical unavoidable impurities are C, P and S, and these are below the permissible upper limit values below, and it is preferable that they are as small as possible.

【0032】Cは耐応力腐食割れ性を悪化させる不可避
不純物である。その含有量が0.05%を超えると粒界に応
力腐食割れが生じやすくなる。さらにNbおよび/または
Vが存在する場合には、それらの粗大な炭化物を生成さ
せると共に、粒界に連続した炭化物を生じさせるため、
粒界に応力腐食割れが生じやすくなる。よって、C含有
量の上限は0.05%とした。
C is an unavoidable impurity that deteriorates the stress corrosion cracking resistance. If the content exceeds 0.05%, stress corrosion cracking easily occurs at the grain boundary. Further, when Nb and / or V are present, they form coarse carbides thereof and, at the same time, form continuous carbides at grain boundaries,
Stress corrosion cracking easily occurs at grain boundaries. Therefore, the upper limit of the C content is set to 0.05%.

【0033】P:0.03%以下 不可避不純物としてのPには、その含有量が0.03%を超
えると硫化水素環境での耐応力腐食割れ性を悪化させる
作用があるので、上限値は0.03%と定めた。
P: 0.03% or less P as an unavoidable impurity has a function of deteriorating the stress corrosion cracking resistance in a hydrogen sulfide environment if its content exceeds 0.03%, so the upper limit is set to 0.03%. It was

【0034】S:0.01%以下 不可避不純物としてのSには、その含有量が0.01%を超
えると熱間加工性を劣化させる作用があるので、その上
限値を0.01%として熱間加工性の劣化を防止する必要が
ある。このように、S成分には含有量が多くなると熱間
加工性を劣化させる作用があるが、その含有量を0.0007
%まで低減すると、熱間加工性が一段と改善されるよう
になることから、厳しい条件での熱間加工性を必要とす
る場合には、S含有量を0.0007%以下とするのが望まし
い。
S: 0.01% or less S as an unavoidable impurity has a function of deteriorating the hot workability when its content exceeds 0.01%, so that the upper limit is set to 0.01% and the hot workability is degraded. Need to be prevented. As described above, when the S component has a large content, it has an effect of deteriorating the hot workability, but the content is 0.0007
%, The hot workability is further improved. Therefore, when hot workability under severe conditions is required, the S content is preferably 0.0007% or less.

【0035】本発明合金は、これまでに述べて成分に加
えてさらに、次の希土類元素、Y、MgおよびCaのうちか
ら選ばれた1種または2種以上を含有することができ
る。これらの任意添加成分の作用効果と望ましい含有量
は下記のとおりである。
The alloy of the present invention may further contain one or more selected from the following rare earth elements, Y, Mg and Ca, in addition to the components described above. The effects and desirable contents of these optional addition components are as follows.

【0036】希土類元素、Y、MgおよびCa:これらの成
分には、熱間加工性をさらに改善する作用があるので、
厳しい条件で熱間加工性が行われる場合に、必要に応じ
て含有させる。熱間加工性の改善効果を積極的に得たい
場合のそれぞれの含有量の望ましい下限は 0.001%であ
る。
Rare earth elements, Y, Mg and Ca: Since these components have the effect of further improving hot workability,
If hot workability is performed under severe conditions, it is contained as necessary. The desirable lower limit of each content is 0.001% when positively obtaining the effect of improving hot workability.

【0037】一方、希土類元素は 0.1%、Yは 0.2%、
Mgは0.10%、Caは0.10%をそれぞれ超えると上記の効果
は飽和する。
On the other hand, rare earth elements are 0.1%, Y is 0.2%,
When Mg exceeds 0.10% and Ca exceeds 0.10%, the above effect is saturated.

【0038】本発明合金は、上記の化学組成に加え、下
記式〜で示される成分含有量のバランス条件を満足
するものでなければならない。
In addition to the above chemical composition, the alloy of the present invention must satisfy the balance condition of the content of the components represented by the following formulas.

【0039】 〔Cr+3.3(Mo+ 0.5W) +16N〕≧40 ・・・・・・・・・・ 〔Cr+3.3(Mo+ 0.5W) +2Ni〕≧70 ・・・・・・・・・・ 0.2%耐力=〔50+17.8× (4C+2N+V+2Nb) 〕≧60・・・ ただし、 0.2%耐力(単位:ksi)は溶体化ままでの値。[Cr + 3.3 (Mo + 0.5W) + 16N] ≧ 40 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ [Cr + 3.3 (Mo + 0.5W) + 2Ni] ≧ 70 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 0.2 % Yield strength = [50 + 17.8 x (4C + 2N + V + 2Nb)] ≥ 60 ... However, 0.2% yield strength (unit: ksi) is the value as solutionized.

【0040】式の左辺値が40未満であると、所望の耐
海水腐食性を確保することができない。式の左辺値が
70未満であると、所望の耐硫化水素腐食性を確保するこ
とができない。式の左辺値が60未満であると、溶体化
ままでの望ましい 0.2%耐力(60ksi以上) が得られな
い。
If the value on the left side of the equation is less than 40, the desired seawater corrosion resistance cannot be secured. The lvalue of the expression is
If it is less than 70, desired hydrogen sulfide corrosion resistance cannot be secured. If the value on the left side of the formula is less than 60, the desired 0.2% proof stress (60 ksi or more) in the as-solution state cannot be obtained.

【0041】なお、この本発明合金において、不可避不
純物としてB、Sn、As、Sb、Bi、PbおよびZnをそれぞれ
0.1%以下の範囲で含有しても、本発明合金の上記特性
は何ら損なわれるものではない。
In this alloy of the present invention, B, Sn, As, Sb, Bi, Pb and Zn are each inevitable impurities.
The inclusion of 0.1% or less does not impair the above properties of the alloy of the present invention.

【0042】[0042]

【実施例】表1、表2および表3に示す化学組成の鋼を
通常の電気炉で溶解し、さらに窒素含有量と脱硫の制御
の目的でAr−酸素脱炭炉(AOD炉)を使用して溶製し
た後、直径 500mmφのインゴットに鋳造した。
EXAMPLES Steels having chemical compositions shown in Tables 1, 2 and 3 were melted in an ordinary electric furnace, and an Ar-oxygen decarburization furnace (AOD furnace) was used for the purpose of controlling nitrogen content and desulfurization. After being melted, it was cast into an ingot having a diameter of 500 mm.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

【0046】次いでこれらのインゴットを温度1200℃で
熱間鍛造し、直径 150mmφのビレットを製造した。この
とき、熱間加工性を評価する目的でビレットに割れの発
生があるか否かを観察し、引き続いて前記ビレットから
熱間押出加工により直径60mmφ×肉厚5mmの管を製造し
た。さらに、これらの管に1100℃の溶体化処理を施し
た。
Next, these ingots were hot forged at a temperature of 1200 ° C. to manufacture a billet having a diameter of 150 mmφ. At this time, for the purpose of evaluating hot workability, it was observed whether or not the billet had cracks, and subsequently, a tube having a diameter of 60 mm and a wall thickness of 5 mm was manufactured from the billet by hot extrusion. Furthermore, these tubes were subjected to solution treatment at 1100 ° C.

【0047】このようにして得た管から、試験片を加工
し、耐海水腐食性、耐硫化水素腐食性および引張試験を
行った。以下に、各試験条件と試験片の寸法を示す。
Test pieces were processed from the thus obtained pipes, and seawater corrosion resistance, hydrogen sulfide corrosion resistance and tensile test were conducted. Below, each test condition and the size of the test piece are shown.

【0048】(A) 引張試験 試験温度:常温 試験片 : 4.0mmφで平行部長さ20mm (B) 耐海水腐食性試験 ASTM G48に従った塩化第2鉄試験 試験温度:60℃ 試験片 :30mm角、厚さ3mm (C) 耐硫化水素腐食性 試験溶液:20%NaCl+ 0.5%CH3COOH 、10atmH2S+10at
mCO2 試験温度:150 ℃ 浸漬時間:720 時間 付加応力:実0.2 %耐力の100 % 試験片 :幅10mm×厚さ2mm×長さ75mm (中央部に0.25
mmのUノッチ) これらの試験結果と熱間加工性の評価結果を表3に併せ
て示す。なお、割れおよび孔食が生じなかったものを
○、生じたものを×で示した。
(A) Tensile test Test temperature: Normal temperature Test piece: 4.0 mmφ and parallel part length 20 mm (B) Seawater corrosion resistance test Ferric chloride test according to ASTM G48 Test temperature: 60 ° C. Test piece: 30 mm square , Thickness 3mm (C) Hydrogen sulfide corrosion resistance Test solution: 20% NaCl + 0.5% CH 3 COOH, 10atmH 2 S + 10at
mCO 2 Test temperature: 150 ℃ Immersion time: 720 hours Additional stress: Actual 0.2% Proof strength 100% Specimen: Width 10mm x thickness 2mm x length 75mm (0.25 at center)
mm U notch) Table 3 shows the results of these tests and the evaluation results of hot workability. In addition, ◯ indicates that cracking and pitting did not occur, and x indicates that occurred.

【0049】表3に示す結果から、本発明で定める化学
組成、およびさらに式およびを満足している本発明
合金は、耐海水腐食性および耐硫化水素腐食性を兼ね備
えていることが明らかである。一方、化学組成または式
およびが本発明で定める範囲外の比較合金では、い
ずれも十分な耐食性を示さないことがわかる。さらに式
も満足する本発明合金では、溶体化ままで 0.2%耐力
が60 ksi以上となり、所望の高強度が得られることが明
らかである。
From the results shown in Table 3, it is clear that the alloy of the present invention satisfying the chemical composition defined by the present invention, and further satisfying the equations and formulas have both seawater corrosion resistance and hydrogen sulfide corrosion resistance. . On the other hand, it is understood that none of the comparative alloys whose chemical compositions or formulas are out of the ranges defined by the present invention show sufficient corrosion resistance. Furthermore, it is clear that the alloy of the present invention satisfying the formula has a 0.2% proof stress of 60 ksi or more in the as-solution state, and can obtain a desired high strength.

【0050】[0050]

【発明の効果】本発明合金は、外面が海水に曝され、内
面が硫化水素等の腐食性流体に接する油井管用などとし
て好適な、耐食性と溶体化ままで高強度(0.2%耐力が60
ksi 以上)とを有するオーステナイト合金である。
INDUSTRIAL APPLICABILITY The alloy of the present invention is suitable for oil well pipes whose outer surface is exposed to seawater and whose inner surface is in contact with corrosive fluid such as hydrogen sulfide.
ksi or more).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で、Si:0.05〜1.0 %、Mn: 1.5〜
10%、Cr:20〜30%、Ni:20〜40%、Al: 0.01〜0.5
%、N:0.25%を超え 0.6%以下、Cu:0.2〜2.5 %を
含有し、さらにV:0.02〜1.0 %およびNb:0.04〜1.0
%のうち1種または2種、Mo:0.2 〜4%およびW:0.
2 〜8%のうち1種または2種を含み、希土類元素:0
〜0.1 %、Y:0〜0.20%、Mg:0〜0.10%およびCa:
0〜0.10%で、残部はFeと不可避不純物からなり、不純
物中のCは0.05%以下、Pは0.03%以下、Sは0.01%以
下であり、かつ下記式〜の条件を満足することを特
徴とする耐海水腐食性と耐硫化水素腐食性に優れた高強
度オーステナイト合金。 〔Cr+3.3(Mo+ 0.5W) +16N〕≧40 ・・・・・・・・・・ 〔Cr+3.3(Mo+ 0.5W) +2Ni〕≧70 ・・・・・・・・・・ 0.2%耐力=〔50+17.8×(4C+2N+V+2Nb) 〕≧60・・・ ただし、 0.2%耐力(単位:ksi)は溶体化ままでの値。
1. By weight%, Si: 0.05-1.0%, Mn: 1.5-
10%, Cr: 20-30%, Ni: 20-40%, Al: 0.01-0.5
%, N: more than 0.25% and 0.6% or less, Cu: 0.2-2.5%, V: 0.02-1.0% and Nb: 0.04-1.0%.
% Of one or two, Mo: 0.2 to 4% and W: 0.
Rare earth element: 0, containing 1 or 2 of 2 to 8%
~ 0.1%, Y: 0 ~ 0.20%, Mg: 0 ~ 0.10% and Ca:
0 to 0.10%, the balance consisting of Fe and unavoidable impurities, C in the impurities is 0.05% or less, P is 0.03% or less, S is 0.01% or less, and the following conditions (1) to (4) are satisfied. A high-strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance. [Cr + 3.3 (Mo + 0.5W) + 16N] ≧ 40 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ [Cr + 3.3 (Mo + 0.5W) + 2Ni] ≧ 70 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 0.2% proof strength [50 + 17.8 × (4C + 2N + V + 2Nb)] ≧ 60 ・ ・ ・ However, 0.2% proof stress (unit: ksi) is the value in the as-solution state.
JP27469194A 1994-11-09 1994-11-09 High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance Expired - Fee Related JP3470418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27469194A JP3470418B2 (en) 1994-11-09 1994-11-09 High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27469194A JP3470418B2 (en) 1994-11-09 1994-11-09 High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance

Publications (2)

Publication Number Publication Date
JPH08134593A true JPH08134593A (en) 1996-05-28
JP3470418B2 JP3470418B2 (en) 2003-11-25

Family

ID=17545228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27469194A Expired - Fee Related JP3470418B2 (en) 1994-11-09 1994-11-09 High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance

Country Status (1)

Country Link
JP (1) JP3470418B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1605072A1 (en) * 2003-03-20 2005-12-14 Sumitomo Metal Industries Limited Stainless steel for high pressure hydrogen gas, vessel and equipment comprising the steel
US7749431B2 (en) * 2003-03-20 2010-07-06 Sumitomo Metal Industries, Ltd. Stainless steel for high-pressure hydrogen gas
EP2947171A1 (en) * 2014-05-20 2015-11-25 CRS Holdings, Inc. Austenitic stainless steel alloy
CN106636851A (en) * 2016-12-26 2017-05-10 钢铁研究总院 High-chrome austenitic stainless steel
CN114000032A (en) * 2014-02-13 2022-02-01 Vdm金属国际有限公司 Titanium-free alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1605072A1 (en) * 2003-03-20 2005-12-14 Sumitomo Metal Industries Limited Stainless steel for high pressure hydrogen gas, vessel and equipment comprising the steel
EP1605072A4 (en) * 2003-03-20 2007-11-14 Sumitomo Metal Ind Stainless steel for high pressure hydrogen gas, vessel and equipment comprising the steel
US7531129B2 (en) 2003-03-20 2009-05-12 Sumitomo Metal Industries, Ltd. Stainless steel for high-pressure hydrogen gas
US7749431B2 (en) * 2003-03-20 2010-07-06 Sumitomo Metal Industries, Ltd. Stainless steel for high-pressure hydrogen gas
CN114000032A (en) * 2014-02-13 2022-02-01 Vdm金属国际有限公司 Titanium-free alloy
EP2947171A1 (en) * 2014-05-20 2015-11-25 CRS Holdings, Inc. Austenitic stainless steel alloy
CN106636851A (en) * 2016-12-26 2017-05-10 钢铁研究总院 High-chrome austenitic stainless steel

Also Published As

Publication number Publication date
JP3470418B2 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
EP0545753B1 (en) Duplex stainless steel having improved strength and corrosion resistance
JP6304460B1 (en) High strength stainless steel seamless steel pipe for oil well and method for producing the same
JP4705648B2 (en) Austenitic steel and steel
JP4803174B2 (en) Austenitic stainless steel
KR101259686B1 (en) Nickel-based alloy
KR100545301B1 (en) A ferritic-austenitic steel alloy
KR20070073870A (en) Duplex stainless steel
KR20090078813A (en) Duplex stainless steel alloy and use of this alloy
KR102520119B1 (en) Welded structure and its manufacturing method
PL165989B1 (en) Austenitic stainless steel
JP3166798B2 (en) Duplex stainless steel with excellent corrosion resistance and phase stability
EP1263999B1 (en) Corrosion resistant austenitic alloy
JP3470418B2 (en) High strength austenitic alloy with excellent seawater corrosion resistance and hydrogen sulfide corrosion resistance
JPS61113749A (en) High corrosion resistance alloy for oil well
JPH0371506B2 (en)
JPS6363608B2 (en)
JPH0148345B2 (en)
JPH05255784A (en) Ni-base alloy for oil well excellent in corrosion resistance
JPS62158847A (en) Highly corrosion resistant ni-base alloy
JP2833385B2 (en) Corrosion resistant austenitic Fe-based alloy
JPH09272956A (en) Seawater resistant precipitation hardening type high alloy steel and its production
JPS6363606B2 (en)
JPH08176742A (en) Duplex stainless steel excellent in corrosion resistance in hydrogen sulfide atmosphere
JP3890821B2 (en) High strength and high toughness stainless steel with excellent stress corrosion cracking resistance
JPH0366380B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080912

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090912

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100912

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110912

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees