JPH09272956A - Seawater resistant precipitation hardening type high alloy steel and its production - Google Patents

Seawater resistant precipitation hardening type high alloy steel and its production

Info

Publication number
JPH09272956A
JPH09272956A JP8387496A JP8387496A JPH09272956A JP H09272956 A JPH09272956 A JP H09272956A JP 8387496 A JP8387496 A JP 8387496A JP 8387496 A JP8387496 A JP 8387496A JP H09272956 A JPH09272956 A JP H09272956A
Authority
JP
Japan
Prior art keywords
less
phase
precipitation
alloy steel
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8387496A
Other languages
Japanese (ja)
Inventor
Hideto Kimura
秀途 木村
Minoru Suwa
稔 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP8387496A priority Critical patent/JPH09272956A/en
Publication of JPH09272956A publication Critical patent/JPH09272956A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an Fe-Cr-Ni austenitic high alloy steel capable of inexpen sively obtaining an Fe-Cr-Ni alloy having a sufficient long term service life as a seawater resistant material, capable of welding and having high strength of a 100kgf/mm<2> level at an extremely low cost with high yield, and to provide a method for producing the same. SOLUTION: This seawater resistant precipitation hardening type high alloy steel has a compsn. substantially contg., by weight, 0.02% C, 1.0% Si, 1.5% Mn, <=0.04% P, <=0.01% S, 18 to 26% Cr, 18 to 40% Ni, <=0.5% sol.Al, <=0.02% N, one or two kinds of <=4% Ti and 8% Nb, one or two kinds of 0.5 to 7% Mo and 0.5 to 14% W, and the balance Fe with inevitable impurities and satisfying the following inequalities of I and II: the inequality I: 0<=α<=6 in the case of α=Cr+Mo+W-Ni+3 (59/48Ti+59/27Al+59/93Nb) and the inequality II: PT>=38 in the case of PT=Cr+3.3Mo+1.7W.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、臨海構造物、橋
梁、水門、海水利用熱交換器、海水淡水化装置等の、耐
海水性と構造強度を同時に要求される用途向けの析出強
化型高合金鋼およその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precipitation-strengthened type high-strength type for applications where seawater resistance and structural strength are required at the same time, such as coastal structures, bridges, sluices, heat exchangers utilizing seawater, and desalination equipment. The present invention relates to an alloy steel manufacturing method.

【0002】[0002]

【従来の技術】近年、臨海地域の利用開発、水回り用途
の構造材もしくは海水利用装置等のメンテナンスフリー
化等の需要の増大に伴い、耐海水性を有し構造材として
使用できる高強度材が求められている。現在、主として
海洋構造物等の部材は、構造用鋼に重防食塗装をして使
用されているが、頻繁な塗り替え等で発生する莫大なラ
ンニングコストの低減が課題となっており、また、機能
上あるいは外観上の理由から無塗装使用せざるを得ない
場合もあり、耐海水性が高く溶接性にも問題の少ない高
合金での対応に期待がかかっている。しかし、一般に、
海水に耐える高耐蝕性を有する合金鋼種は強度が高くは
なく、ASTM N06625(21%Cr−9%Mo
−4%Nb−64%Ni)、N08825(22%Cr
−3%Mo−1.7%Cu−30Fe−42%Ni)な
ど、いずれも引張破断強度では高々500MPa程度を
有するに過ぎない。
2. Description of the Related Art In recent years, along with the increasing demand for development of waterfront areas, structural materials for water supply, and maintenance-free use of seawater utilization equipment, etc., high-strength materials that are resistant to seawater and can be used as structural materials. Is required. Currently, components such as offshore structures are mainly used for structural steel with heavy anticorrosion coating, but the enormous reduction of running cost caused by frequent repainting etc. has become an issue, and the function In some cases, there is no choice but to use unpainted for reasons of appearance or appearance, and it is hoped that high alloys with high seawater resistance and weldability will be used. However, in general,
Alloy steel grades with high corrosion resistance to withstand seawater are not high in strength, and ASTM N06625 (21% Cr-9% Mo)
-4% Nb-64% Ni), N08825 (22% Cr
-3% Mo-1.7% Cu-30Fe-42% Ni) and the like have tensile rupture strengths of at most about 500 MPa.

【0003】[0003]

【発明が解決しようとする課題】以上を背景に、特開平
7-207401号公報では、製油プラント向け高合金として、
0.5−1.0%のAl、1.5−2.5%のTiを添
加して、高耐食性の母相をγ′相析出強化し、もって耐
食性と高強度を両立させようとする試みが行なわれてい
る。しかしこの技術では相安定性の確保からNi量を4
2%〜49%まで高める必要があり、得られる合金は高
価なものとなる。また、特開昭57-203738号公報乃至203
740号公報に開示されている高強度油井管用の合金で
は、高耐食性と高強度は両立させているものの、熱間加
工性に関する配慮が不十分である。即ち、主に油井管を
はじめとする継目無管の製造を目的として熱間押出し加
工のような短時間加工を用いる場合では良好に製品とな
し得ても、一般の構造物部材を得るための鍛造、圧延等
の温度低下を伴う加工法においては実用的でなく、目的
とする高強度部材の製造をおこなうことは困難であっ
た。
SUMMARY OF THE INVENTION With the above as a background,
In 7-207401 publication, as a high alloy for an oil refinery plant,
0.5-1.0% Al and 1.5-2.5% Ti are added to strengthen the high corrosion resistant matrix phase by γ'phase precipitation strengthening, thereby attempting to achieve both corrosion resistance and high strength. Attempts are being made. However, with this technology, the Ni content was set to 4 to secure phase stability.
It is necessary to increase it to 2% to 49%, and the resulting alloy becomes expensive. Further, JP-A-57-203738 or 203
The alloy for high-strength oil country tubular good disclosed in Japanese Patent No. 740 achieves both high corrosion resistance and high strength, but insufficient consideration for hot workability. That is, when a short-time processing such as hot extrusion is mainly used for the purpose of manufacturing a seamless tube including an oil country tubular good, even if a good product can be obtained, a general structural member is obtained. It is not practical in a working method involving temperature decrease such as forging and rolling, and it is difficult to manufacture a target high-strength member.

【0004】[0004]

【課題を解決するための手段】発明者らは、この課題を
解決するために、鋭意研究を行い、以下の知見を得た。
まず母相の十分な耐海水性を確保する為には十分なC
r、Mo、Wの添加が必要であるとの従来知見から、こ
れらの添加量が(2)式を満足するとき、即ち PT=Cr+3.3Mo+1.7W≧38…(2) であれば十分な耐海水性が確保できる。しかし、これを
満足する組成では、Cr、Mo、Wがいずれもフェライ
ト安定化元素であることから、前述したように少なくと
も40%程度以上のNiを添加しないとオーステナイト
単相は維持されず、時効加熱中にσ相を析出して、靭性
のみならず著しい耐孔食性の劣化に繋がることは広く知
られるところである。
[Means for Solving the Problems] In order to solve this problem, the inventors have conducted extensive studies and obtained the following findings.
First, in order to secure sufficient seawater resistance of the parent phase, sufficient C
From the conventional knowledge that it is necessary to add r, Mo, and W, it is sufficient if these addition amounts satisfy the expression (2), that is, PT = Cr + 3.3Mo + 1.7W ≧ 38 (2) Seawater resistance can be secured. However, in a composition satisfying this, since Cr, Mo, and W are all ferrite stabilizing elements, as described above, the austenite single phase is not maintained unless Ni is added at least about 40%, and the aging It is widely known that σ phase is precipitated during heating, leading to not only toughness but also significant deterioration in pitting corrosion resistance.

【0005】さらに、発明者らは、合金の経済性を向上
させるため、Niの減量と時効熱処理について種々検討
した結果、少ないNi添加によってオーステナイトの安
定性が多少損なわれていても、耐海水性に影響の少ない
γ′相の析出が、σ相の析出より安定して先行する条件
のあることを見いだした。上記が成立するのは特定量の
γ′相析出が起こる場合に限られ、従って、添加するN
i、Al、Ti量のそれぞれに制限が必要となると同時
に、特に母相のCr当量/Ni当量バランスが大きくC
r側に傾き過ぎると、いかなる時効条件でもσ相析出が
γ′相析出に先行してしまう。また、Niを過剰添加す
れば、平衡状態まで加熱してもσ相の析出しない状態は
得られるが、合金の経済性は従来技術から全く改善され
ない。
Furthermore, as a result of various studies on the reduction of Ni and the aging heat treatment in order to improve the economic efficiency of the alloy, the inventors have found that even if the addition of a small amount of Ni slightly deteriorates the stability of austenite, the seawater resistance is improved. It was found that the precipitation of the γ ′ phase, which has little influence on the γ phase, precedes the precipitation of the σ phase more stably. The above holds only when a certain amount of γ'phase precipitation occurs, and therefore the N added
At the same time, it is necessary to limit the amounts of i, Al, and Ti, and at the same time, the Cr equivalence / Ni equivalence balance of the mother phase is large and C
If it is inclined to the r side too much, the σ phase precipitation precedes the γ ′ phase precipitation under any aging condition. Further, if Ni is added excessively, a state in which the σ phase does not precipitate can be obtained even when heated to the equilibrium state, but the economical efficiency of the alloy is not improved at all from the prior art.

【0006】発明者らの試行を総括すれば、上記は成分
組成的に以下の整理で集約される。即ち、フェライト安
定化元素の和、つまりCr当量を(5)式、γ′相析出
後の有効Ni当量を(6)式で示すと、 A=Cr+Mo+W…(5) B=Ni−3(59/48Ti+59/27Al+59/93Nb)…(6) その差α=A−Bが 0≦α≦6…(1) の範囲にあることが成分的にまず必要であり、しかも、
最終熱処理条件として下記(3)、(4)式が満たされ
るときに、σ相析出よりγ′相析出が先行して起こるこ
とが新しい知見であった。ただし最終熱処理条件をT℃
×t(時間)とする。 21200≦L≦21600…(3) ただしL=(T+273)(20+log t) T≦775(℃)…(4) さて、実際の構造材製造過程においては、熱間加工性が
重要である。Ca、Mg、B、Zr、Y、La、Ceの
添加は、すべて粒界割れの低減に有効であることが明か
となったが、これらはいずれも、合金が厚板圧延等の徐
冷過程を経て加工される場合、選択添加が必須となる元
素である。高強度高合金において熱間加工に問題の生じ
る場合があるのは、一部のγ′相が冷却中に結晶粒内析
出し、粒内強度が上昇するためであって、粒界強度を上
げる元素が有効であったものと考えられた。
Summarizing the trials of the inventors, the above can be summarized by the following arrangement in terms of component composition. That is, when the sum of ferrite stabilizing elements, that is, the Cr equivalent is represented by the formula (5) and the effective Ni equivalent after the γ'phase precipitation is represented by the formula (6), A = Cr + Mo + W (5) B = Ni-3 (59) / 48Ti + 59 / 27Al + 59 / 93Nb) (6) It is necessary that the difference α = A−B is within the range of 0 ≦ α ≦ 6 (1).
It was a new finding that γ ′ phase precipitation precedes σ phase precipitation when the following equations (3) and (4) are satisfied as final heat treatment conditions. However, the final heat treatment condition is T ° C
Xt (time). 21200 ≦ L ≦ 21600 (3) However, L = (T + 273) (20 + log t) T ≦ 775 (° C.) (4) Now, hot workability is important in the actual manufacturing process of the structural material. It was revealed that additions of Ca, Mg, B, Zr, Y, La, and Ce are all effective in reducing intergranular cracking. However, in all of these, the alloy is a slow cooling process such as thick plate rolling. When processed through, it is an element that must be selectively added. The problem of hot working in high-strength and high-alloy may occur because a part of the γ'phase precipitates in the crystal grains during cooling, increasing the intragranular strength. It was considered that the element was effective.

【0007】本発明は以上の知見に基づいて完成された
もので、第一の発明は平衡状態でσ相析出を生じる成分
組成を有した高合金鋼であって、熱処理によりσ相析出
を抑えγ′析出相のみが析出しているFe−Cr−Ni
系オーステナイト高合金鋼である。
The present invention has been completed based on the above findings. The first invention is a high alloy steel having a composition that causes σ phase precipitation in an equilibrium state, and suppressing σ phase precipitation by heat treatment. Fe-Cr-Ni in which only the γ'precipitated phase is precipitated
Austenitic high alloy steel.

【0008】第二の発明は、重量%で、実質的に、C:
0.02%以下、Si:1.0 %以下、Mn:1.5 %以下、
P:0.04%以下、S:0.01%以下、Cr:18%〜26%、
Ni:18%〜40%、sol.Al:0.5 %以下、N:0.02%
以下、Ti:4 %以下とNb:8 %のうち1種または2
種、Mo:0.5 %〜7 %とW:0.5 %〜14%のうち1種
または2種、及び残部Feおよび不可避不純物からな
り、下式(1)、(2)を満たす耐海水用析出強化型高
合金鋼である。
The second invention is, by weight percent, substantially C:
0.02% or less, Si: 1.0% or less, Mn: 1.5% or less,
P: 0.04% or less, S: 0.01% or less, Cr: 18% to 26%,
Ni: 18% -40%, sol.Al: 0.5% or less, N: 0.02%
1 or 2 of Ti: 4% or less and Nb: 8%
, Mo: 0.5% to 7% and W: 0.5% to 14%, one or two kinds, and the balance Fe and unavoidable impurities, and precipitation strengthening for seawater satisfying the following formulas (1) and (2) It is a high alloy steel.

【0009】α=Cr+Mo+W−Ni+3(59/4
8Ti+59/27Al+59/93Nb)とすると
き、 0≦α≦6…(1) PT=Cr+3.3Mo+1.7Wとするとき PT≧38…(2) 第三の発明は、第二の発明の成分組成の合金について、
最終熱処理条件をT℃においてt(時間)とするとき、
L=(T+273)(20+log t)が下式(3)、
(4)を満たすように時効熱処理することを特徴とする
耐海水用析出強化型高合金鋼の製造方法である。 21200≦L≦21600…(3) T≦775(℃)…(4)
Α = Cr + Mo + W-Ni + 3 (59/4
8Ti + 59 / 27Al + 59 / 93Nb) 0 ≦ α ≦ 6 (1) PT = Cr + 3.3Mo + 1.7W PT ≧ 38 (2) The third invention is the composition of the second invention. For alloys,
When the final heat treatment condition is t (hour) at T ° C,
L = (T + 273) (20 + log t) is the following formula (3),
A method for producing a precipitation-strengthened high-alloy steel for seawater resistance, which comprises aging heat treatment so as to satisfy (4). 21200 ≦ L ≦ 21600 (3) T ≦ 775 (° C.) (4)

【0010】[0010]

【発明の実施の形態】以下に、本発明の含有元素の含有
理由および含有範囲の限定理由を述べる。Cは、Cr炭
化物を形成して合金の耐蝕性を低下させる元素であり、
添加量は少ない方がよいが0.02%以下であれば耐蝕
性の劣化は許容できるので、その含有量は0.02%以
下とする。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for containing the contained element of the present invention and the reasons for limiting the content range will be described below. C is an element that forms Cr carbide and reduces the corrosion resistance of the alloy,
It is better to add a small amount, but if the content is 0.02% or less, deterioration of corrosion resistance is acceptable, so the content is made 0.02% or less.

【0011】Siは、脱酸に有効な元素であるため1.
0%以下を含んでもよいが、1.0%を超えて含有する
と、シグマ相の生成能が大きく相安定性を維持するのが
困難となるため、含有量は1.0%以下とする。
Since Si is an element effective for deoxidation, 1.
Although the content may be 0% or less, if the content exceeds 1.0%, the sigma phase forming ability is large and it becomes difficult to maintain phase stability, so the content is set to 1.0% or less.

【0012】Mnは、相安定性に有効な元素であるため
1.5%以下を含んでよいが、1.5%を超えて含有す
ると熱間加工性に有無となるので、含有量は1.5%以
下とする。
Since Mn is an element effective for phase stability, it may be contained in an amount of 1.5% or less. However, if it is contained in an amount exceeding 1.5%, it has no hot workability. 0.5% or less.

【0013】Pは、粒界偏析して圧延時の延性を害する
元素であって、その含有量は少ないほど良い。そこで、
圧延時における延性の低下による割れを防止するため、
その含有量を0.04%以下とする。
P is an element that segregates at grain boundaries and impairs ductility during rolling. The smaller the content, the better. Therefore,
In order to prevent cracking due to reduced ductility during rolling,
The content is 0.04% or less.

【0014】SもP同様に、粒界偏析して圧延時の延性
を害する元素である。その含有量は少ないほど良い。そ
こで、圧延時における延性の低下による割れを防止する
ため、その含有量を0.01%以下とする。
Like P, S is an element that segregates at the grain boundaries and impairs ductility during rolling. The smaller the content, the better. Therefore, in order to prevent cracking due to a decrease in ductility during rolling, the content is set to 0.01% or less.

【0015】Crは、合金に耐海水性を与える基本元素
として重要である。その含有量は18%未満の場合は、
耐海水性に有効なMo、Wを併せて添加しても十分な特
性を得ることができない。一方、26%を超えて含有す
るとオーステナイト相が不安定になりすぎるため、含有
量は18%以上、26%以下とする。
Cr is important as a basic element that imparts seawater resistance to the alloy. If the content is less than 18%,
Even if Mo and W effective for seawater resistance are added together, sufficient characteristics cannot be obtained. On the other hand, if the content exceeds 26%, the austenite phase becomes too unstable, so the content is set to 18% or more and 26% or less.

【0016】Niは、オーステナイト安定性を高める元
素であり、その含有量は本発明の特徴の一つとするとこ
ろである。含有量は、他の含有元素との関係から少なく
とも18%以上を必要とするが、40%を超えて添加し
ても、本発明で既に規定した熱処理条件を適用する場
合、σ脆化抑制効果は認められず、かえって合金の経済
性を損なう結果となるため、含有量は18%以上、40
%以下とする。
Ni is an element that enhances the stability of austenite, and the content thereof is one of the features of the present invention. The content needs to be at least 18% or more due to the relationship with other contained elements, but even if it is added in excess of 40%, when the heat treatment conditions already defined in the present invention are applied, the σ embrittlement suppression effect Content is 18% or more and 40% or less.
% Or less.

【0017】Alは、Niを含む母相中でTiとともに
金属間化合物γ′−Ni3 (Al、Ti)を形成し、母
相を析出強化させる主役となる元素である。しかし、固
溶Al量が0.5%を超えると合金の靭性、延性、熱間
加工性が低下することから、Alの含有量は0.5%以
下とする。
Al is an element that forms an intermetallic compound γ'-Ni 3 (Al, Ti) together with Ti in a matrix containing Ni and plays a main role in precipitation strengthening the matrix. However, if the amount of solute Al exceeds 0.5%, the toughness, ductility, and hot workability of the alloy deteriorate, so the Al content is made 0.5% or less.

【0018】Nは、AlとAlNなる窒化物を形成し、
合金の靭性を損なう元素であり、含有量は少ないほうが
よい。0.02%以下であれば靭性の低下は許容できる
ので、含有量は0.02%以下とする。
N forms a nitride of Al and AlN,
It is an element that impairs the toughness of the alloy, and the lower the content, the better. If the content is 0.02% or less, a decrease in toughness is acceptable, so the content is set to 0.02% or less.

【0019】Ti、Nbは、Alとともに、Niを含む
母相中でNi3 (Al、Ti)、またはNi3 (Al、
Nb)、もしくはNi3 (Al、Ti、Nb)なる金属
間化合物を形成し、母相を析出強化させる作用を持つ元
素である。しかし、過剰の添加は合金の靭性、延性、熱
間加工性低下につながることから、添加量を4%以下の
Ti、8%以下のNbの1〜2種とする。
Ti and Nb are, together with Al, Ni 3 (Al, Ti) or Ni 3 (Al,
Nb) or Ni 3 (Al, Ti, Nb) is an element that forms an intermetallic compound and has the action of strengthening the precipitation of the parent phase. However, excessive addition leads to deterioration in toughness, ductility, and hot workability of the alloy, so the addition amount is made 1 to 2 kinds of 4% or less of Ti and 8% or less of Nb.

【0020】Mo、Wは、Crと同様に、合金に耐海水
性を与える元素である。その含有量が少なすぎる場合は
十分な特性を得ることができず、過剰に含有するとオー
ステナイト相が不安定になりすぎるため、含有量は0.
5%〜7%のMo、0.5〜14%のWの1〜2種とす
る。
Mo and W, like Cr, are elements that impart seawater resistance to the alloy. If the content is too small, sufficient properties cannot be obtained, and if the content is excessive, the austenite phase becomes too unstable, so the content is 0.
5% to 7% of Mo and 0.5 to 14% of W are 1-2 kinds.

【0021】また、Ca、Mg、B、Zr、Y、La、
Ceは熱間加工性を改善するために必要に応じて添加す
ることができる。Caは微量添加すると脱硫、脱酸効果
により熱間加工性を改善する元素として有効であるが、
0.005%を超えると清浄性を損ない熱間加工性を低
下するため、含有量は0.005%以下とする。
Further, Ca, Mg, B, Zr, Y, La,
Ce can be added as necessary in order to improve hot workability. Although Ca is effective as an element for improving hot workability by the effect of desulfurization and deoxidation when added in a small amount,
If it exceeds 0.005%, the cleanability is impaired and the hot workability is deteriorated, so the content is made 0.005% or less.

【0022】Mgは微量添加すると脱酸効果により熱間
加工性を改善する元素として有効であるが、0.05%
を超えると熱間加工性を低下するため0.05%以下と
する。
When Mg is added in a small amount, it is effective as an element for improving hot workability due to the deoxidizing effect, but 0.05%
If it exceeds 0.1%, the hot workability is deteriorated, so the content is made 0.05% or less.

【0023】B、Zrは、粒界を強化し熱間加工性を改
善するのに有効な元素であるが、過剰に添加すると熱間
加工性、溶接性を劣化させるので、Bは0.03%以
下、Zrは0.3%以下とする。
B and Zr are effective elements for strengthening grain boundaries and improving hot workability. However, if added excessively, hot workability and weldability deteriorate, so B is 0.03. % And Zr is 0.3% or less.

【0024】Y、La、Ce等の希土類元素は、脱硫、
脱酸効果により熱間加工性を改善する元素であり、これ
らのうち一種以上を含有してもよい。含有量は、合計で
0.04%を超えて含有すると、逆に熱間加工性を害す
るので、合計量0.04%以下とする。
Rare earth elements such as Y, La and Ce are desulfurized,
It is an element that improves hot workability by a deoxidizing effect, and may contain one or more of these elements. If the total content exceeds 0.04%, the hot workability is adversely affected. Therefore, the total content is 0.04% or less.

【0025】以上に加え、前述したようにオーステナイ
ト安定性については、時効熱処理時の耐σ脆化の観点か
ら、(1)式を満足することが必要である。即ち α=Cr+Mo+W−Ni+3(59/48Ti+59/27A
l+59/93Nb) とするとき、αの値が大きすぎると耐σ脆性が劣化し、
6<αのとき、σ相析出の抑制を狙った熱処理条件で析
出強化しなくなる。一方、α<0ではσ相の析出抑制効
果は飽和する一方、合金の経済性は低下する。従って、
本発明の範囲を下記のようにした。 0≦α≦6…(1) また、耐海水性の確保には、Cr、Mo、Wの添加量に
ついて、さらに(2)式の規定範囲内に添加することが
必要である。即ち PT=Cr+3.3Mo+1.7W とするとき、PT<38では耐海水性が不十分である。
従って、請求の範囲を下記のようにした。 PT≧38…(2) さらに、最終熱処理条件として下記(3)、(4)式が
満たされるときに、σ相析出よりγ′相析出が先行して
起こることから、これを規定条件とする。即ち最終熱処
理条件をT℃においてt(時間)、L=(T+273)
(20+logt)とするとき、 21200≦L≦21600…(3) T≦775(℃)…(4) L<21200の時は、効果的な析出強化が起こらず、
合金の強度が不足する。また、21800<Lの時は、
析出強化は起こるもののσ相析出がこれに伴うため、合
金の靭性が著しく低下する。
In addition to the above, regarding the austenite stability, it is necessary to satisfy the formula (1) from the viewpoint of σ embrittlement resistance during aging heat treatment. That is, α = Cr + Mo + W-Ni + 3 (59 / 48Ti + 59 / 27A
1 + 59/93 Nb), if the value of α is too large, the σ brittleness resistance deteriorates,
When 6 <α, precipitation strengthening does not occur under heat treatment conditions aimed at suppressing σ phase precipitation. On the other hand, when α <0, the effect of suppressing the precipitation of the σ phase saturates, but the economical efficiency of the alloy decreases. Therefore,
The scope of the present invention is as follows. 0 ≦ α ≦ 6 (1) Further, in order to secure seawater resistance, it is necessary to add Cr, Mo, and W within the specified range of the formula (2). That is, when PT = Cr + 3.3Mo + 1.7W, seawater resistance is insufficient when PT <38.
Therefore, the claims are set forth below. PT ≧ 38 (2) Further, when the following equations (3) and (4) are satisfied as the final heat treatment conditions, γ ′ phase precipitation precedes σ phase precipitation, so this is defined condition. . That is, the final heat treatment condition is t (hour) at T ° C., L = (T + 273)
When (20 + logt), 21200 ≦ L ≦ 21600 (3) T ≦ 775 (° C.) (4) When L <21200, effective precipitation strengthening does not occur,
The strength of the alloy is insufficient. When 21800 <L,
Although precipitation strengthening occurs, σ-phase precipitation accompanies this, resulting in a marked decrease in toughness of the alloy.

【0026】775<Tの時は析出強化が起こらない。
これは当該合金の主要な析出相であるγ′−Ni3 (A
l,Ti)の母相への固溶温度が775℃付近であるた
めであり、これより高温は析出強化に使用できない温度
領域である。
When 775 <T, precipitation strengthening does not occur.
This is the major precipitation phase of the alloy, γ'-Ni 3 (A
This is because the solid solution temperature of (l, Ti) in the parent phase is around 775 ° C., and higher temperatures are temperatures that cannot be used for precipitation strengthening.

【0027】[0027]

【実施例】次に本発明の実施例について説明する。表
1、表2と表5,表6に検討を行った鋼の化学成分を示
す。表中には同時に、適用した熱処理条件も示す。表1
は本発明の成分範囲を満足する発明鋼種であり、表3は
比較鋼種である。両表中には、(1)式で定義される
α、(2)式で定義されるPT、(3)式で定義される
Lの値も併せて示した。
Next, an embodiment of the present invention will be described. Tables 1 and 2 and Tables 5 and 6 show the chemical compositions of the examined steels. The heat treatment conditions applied are also shown in the table at the same time. Table 1
Is an invention steel grade that satisfies the composition range of the present invention, and Table 3 is a comparative steel grade. The values of α defined by the equation (1), PT defined by the equation (2), and L defined by the equation (3) are also shown in both tables.

【0028】これらの成分に対して、50kgw真空溶
解炉で溶製/鋳造後、1125℃に加熱して熱間圧延
し、複数パスで圧下比10を加えて板厚8mmまで85
0℃以上で仕上げた後冷却し、圧延に伴う板の耳割れ最
大長さを測定した。この後、1100℃で10分間の溶
体化熱処理を行い、表2,表6の右欄に示す時効強化熱
処理を施して試験片を切り出し、JISG0578によ
る臨界孔食発生温度測定、引張試験、衝撃試験を実施し
た。結果として、圧延板の耳割れ最大長さ(単位m
m)、臨界孔食温度(CPT、単位℃)、引張長さ(単
位MPa)、破断伸び(単位%)、0℃衝撃値(単位J
/cm2 )を表にまとめて示す。表1,表2の結果を表
3に、表4,表5の結果を表6に示す。
These components were melted / cast in a 50 kgw vacuum melting furnace, then heated to 1125 ° C. and hot rolled, and a reduction ratio of 10 was applied in multiple passes to a plate thickness of 85 mm.
After finishing at 0 ° C. or higher, the plate was cooled, and the maximum length of the edge crack of the plate due to rolling was measured. After this, solution heat treatment is performed at 1100 ° C. for 10 minutes, and aging strengthening heat treatment shown in the right column of Table 2 and Table 6 is performed to cut out the test piece, and the critical pitting corrosion temperature measurement according to JIS G0578, tensile test, impact test Was carried out. As a result, the maximum length of the edge crack of the rolled plate (unit: m
m), critical pitting temperature (CPT, unit ° C), tensile length (unit MPa), elongation at break (unit%), 0 ° C impact value (unit J)
/ Cm 2 ) is summarized in the table. The results of Tables 1 and 2 are shown in Table 3, and the results of Tables 4 and 5 are shown in Table 6.

【0029】表3から判るように、No.1からNo.
29の発明鋼は、耳割れ長さ2mm以下と良好な熱間加
工性を示した。臨界孔食温度は海水耐用の目安として考
えられる60℃以上を何れも満足し、耐海水性は十分で
ある。これは一定量以上のCr、Mo、Wを含有して十
分なPT値を満たしていることによるもので、PT値と
CPTの関係を図2に示す。一方、発明鋼は一定量以上
のNi、AlとTi+Nbを含有する成分系に、
(3)、(4)式を満たす適正な条件で時効強化を施す
ことにより、何れも100kgf/mm2 (980MP
a)以上の良好な強度特性を示し、しかも30J/cm
2 以上の、良好な0℃衝撃値を両立させている。
As can be seen from Table 3, No. No. 1 to No.
The invention steel No. 29 showed a good hot workability with an edge crack length of 2 mm or less. The critical pitting temperature satisfies 60 ° C. or higher, which is considered as a guideline for seawater durability, and the seawater resistance is sufficient. This is because it contains a certain amount or more of Cr, Mo, and W and satisfies a sufficient PT value. The relationship between the PT value and CPT is shown in FIG. On the other hand, the invention steel has a component system containing a certain amount or more of Ni, Al and Ti + Nb,
Both are 100 kgf / mm 2 (980MPf by applying aging strengthening under appropriate conditions that satisfy the expressions (3) and (4).
Good strength characteristics above a) and 30 J / cm
Achieved a good impact value of 0 ° C of 2 or more.

【0030】これに対し、比較鋼No.30〜No.5
5の成分と熱処理条件、および評価試験結果を表4、表
5にそれぞれ示す。比較鋼No.30はCの過多によ
り、PT値は十分であるにも拘らず十分な耐食性が得ら
れていない。比較鋼No.31はSiの過多により、時
効熱処理でσ相の析出を生じ、靭性が低下した。
On the other hand, Comparative Steel No. 30-No. 5
The components of No. 5, heat treatment conditions, and evaluation test results are shown in Tables 4 and 5, respectively. Comparative steel No. In the case of No. 30, due to an excessive amount of C, the PT value was sufficient, but sufficient corrosion resistance was not obtained. Comparative steel No. In No. 31, due to an excessive amount of Si, precipitation of σ phase occurred in the aging heat treatment, and the toughness decreased.

【0031】比較鋼No.32、45、46、47、4
8、50、51、52、54は、Mn、S、Ca、M
g、P、B、Zr、Y、La(過剰に添加すると熱間加
工性を劣化させる元素)のそれぞれの添加量過多によ
り、熱間圧延時に大きな耳割れが生じている。比較鋼N
o.49(Mg+Ca)、53(La+Ce)、55
(Y+Ce)のように、複数の元素の含有量の和が過剰
である場合も同様である。
Comparative steel No. 32, 45, 46, 47, 4
8, 50, 51, 52 and 54 are Mn, S, Ca and M
Large addition of g, P, B, Zr, Y, and La (elements that deteriorate hot workability when added excessively) causes large edge cracks during hot rolling. Comparative steel N
o. 49 (Mg + Ca), 53 (La + Ce), 55
The same applies when the sum of the contents of a plurality of elements is excessive, such as (Y + Ce).

【0032】比較鋼No.33では、Ni量の少ない同
様の成分の発明鋼、No.4と比較して耐食性も殆ど変
わらず、強度、靭性はむしろ低下しており、成分系から
見た経済性への悪影響は明らかである。
Comparative steel No. No. 33, the invention steel of the same composition with a small amount of Ni, No. 33. Compared with No. 4, the corrosion resistance was almost unchanged, and the strength and toughness were rather lowered, and the adverse effect on the economic efficiency from the viewpoint of the component system is clear.

【0033】また、析出強化に働く第二相γ′−Ni3
(Al,Ti,Nb)の形成元素が過多であると、熱間
加工性、破断延性、靭性がいずれも著しく低下する結果
となる。比較鋼No.34、35、39はその例であっ
て、それぞれAl、Ti、Nbが過剰であったため、熱
間加工性、時効後の破断延性、靭性がいずれも低い値を
示した。
The second phase γ'-Ni 3 which acts for precipitation strengthening
If the amount of (Al, Ti, Nb) forming elements is excessive, hot workability, fracture ductility, and toughness all decrease significantly. Comparative steel No. 34, 35, and 39 are examples, and since Al, Ti, and Nb were excessive, respectively, hot workability, fracture ductility after aging, and toughness all showed low values.

【0034】一方、比較鋼No.36、40は、それぞ
れCr、Mo+Wの添加量が不足で、十分な耐食性が得
られなかった。これらの合計で評価されるPT値が不足
した比較鋼No.42でも、同様である。逆に、添加が
多すぎると相安定性に問題を生じ、比較鋼No.37、
38、43に見られるように(それぞれMo、W、Cr
が過多)、時効後σ相析出により靭性が劣化する。比較
鋼No.44のように、Niの不足でα値が高すぎる場
合も同様である。
On the other hand, comparative steel No. In Nos. 36 and 40, the amounts of Cr and Mo + W added were insufficient, and sufficient corrosion resistance could not be obtained. Comparative steel Nos. Having insufficient PT values evaluated by these totals. The same applies to 42. On the contrary, if the addition amount is too large, a problem occurs in the phase stability, and the comparative steel No. 37,
38, 43 (Mo, W, Cr respectively)
Is too large), and the toughness deteriorates due to σ phase precipitation after aging. Comparative steel No. The same applies when the α value is too high due to lack of Ni as in 44.

【0035】次に、熱処理条件を変化させて同じ評価試
験を行なった。鋼種は、発明鋼No.7、8、20、比
較鋼44を用い、700〜775℃で時効処理後に評価
試験を実施した。成分と熱処理条件を表7,表8に、得
られた臨界孔食温度(CPT、単位℃)、引張強さ(単
位MPa)、破断伸び(単位%)、0℃衝撃値(単位J
/cm2 )を表9にまとめて示す。熱処理番号およびL
値に下線を引いた条件は、本発明条件外であることを示
す。
Next, the same evaluation test was conducted by changing the heat treatment conditions. The steel type is invention steel No. Evaluation tests were carried out after aging treatment at 700 to 775 ° C. using 7, 8, 20, and Comparative Steel 44. The components and heat treatment conditions are shown in Tables 7 and 8, and the obtained critical pitting temperature (CPT, unit: ° C), tensile strength (unit: MPa), elongation at break (unit:%), 0 ° C impact value (unit: J).
/ Cm 2 ) is summarized in Table 9. Heat treatment number and L
The underlined condition indicates that the condition is outside the present invention.

【0036】結果を図1に示すように、本発明鋼におい
ては、L値が21200以上で980MPa以上の高い
強度を示す一方、21600を超える条件では、急激な
靭性の低下が生じるのが理解できる。比較鋼においては
熱処理条件を工夫しても、強度特性、靭性の両者におい
て、発明鋼と同等の特性を発揮することはできない(図
中のNo.44のプロット“◇”参照) 以上の実施例及び比較例から明らかなように、発明鋼の
成分設定および熱処理条件によれば、経済性の高い成分
でありながら、高い耐海水性、強度特性が得られ、また
時効熱処理時の組織安定性が保たれるため靭性の劣化が
なく、かつ圧延製造時の熱間加工性の優れた合金を得る
ことが出来る。なお、本発明鋼は溶接時には既存のUN
S N06625系の溶接材料を適用することとが可能
で、溶接性はきわめて良好である。
As shown in the results in FIG. 1, it can be understood that the steel of the present invention exhibits a high strength of L value of 21200 or more and 980 MPa or more, while a sharp decrease in toughness occurs under the condition of 21600 or more. . In the comparative steel, even if the heat treatment conditions are devised, it is not possible to exhibit the same characteristics as the invention steel in both the strength characteristics and the toughness (see the plot “◇” of No. 44 in the figure). And, as is clear from the comparative examples, according to the composition setting and heat treatment conditions of the invention steel, it is possible to obtain high seawater resistance and strength characteristics even though the composition is highly economical, and the structural stability during aging heat treatment is high. Since it is maintained, toughness does not deteriorate, and an alloy having excellent hot workability during rolling production can be obtained. It should be noted that the steel of the present invention is
It is possible to apply a SN06625-based welding material, and the weldability is extremely good.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 [Table 5]

【0042】[0042]

【表6】 [Table 6]

【0043】[0043]

【表7】 [Table 7]

【0044】[0044]

【表8】 [Table 8]

【0045】[0045]

【表9】 [Table 9]

【0046】[0046]

【発明の効果】本発明によれば、耐海水用途の材料とし
て十分な長期耐用性があり、溶接が可能で100kgf
/mm2 レベルの高強度を有するFe−Cr−Ni系合
金をきわめて安価に、かつ歩留まり良く得ることができ
る。
According to the present invention, there is sufficient long-term durability as a material for seawater resistance, welding is possible, and 100 kgf.
It is possible to obtain an Fe-Cr-Ni-based alloy having a high strength of 1 / mm 2 level at a very low cost and with a high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で規定する熱処理条件のパラメータL値
と、引張強さ、および靭性の関係を示す図。
FIG. 1 is a diagram showing a relationship between a parameter L value of a heat treatment condition defined in the present invention, tensile strength, and toughness.

【図2】本発明で規定する成分のパラメータPT値と、
臨界孔食発生温度の関係を示す図。
FIG. 2 is a parameter PT value of a component defined by the present invention,
The figure which shows the relationship of critical pitting corrosion generation temperature.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平衡状態でσ相析出を生じる成分組成を
有した高合金鋼であって、熱処理によりσ相析出を抑え
γ′析出相のみが析出しているFe−Cr−Ni系オー
ステナイト高合金鋼。
1. A high-alloy steel having a composition that causes σ-phase precipitation in an equilibrium state, in which the σ-phase precipitation is suppressed by heat treatment, and only the γ'-precipitation phase is precipitated. Alloy steel.
【請求項2】 重量%で、実質的に、C:0.02%以下、
Si:1.0 %以下、Mn:1.5 %以下、P:0.04%以
下、S:0.01%以下、Cr:18%〜26%、Ni:18%〜
40%、sol.Al:0.5 %以下、N:0.02%以下、Ti:
4 %以下とNb:8 %のうち1種または2種、Mo:0.
5 %〜7 %とW:0.5 %〜14%のうち1種または2種、
及び残部Feおよび不可避不純物からなり、下式
(1)、(2)を満たす耐海水用析出強化型高合金鋼。 α=Cr+Mo+W−Ni+3(59/48Ti+59
/27Al+59/93Nb)とするとき、 0≦α≦6…(1) PT=Cr+3.3Mo+1.7Wとするとき PT≧38…(2)
2. By weight%, substantially C: 0.02% or less,
Si: 1.0% or less, Mn: 1.5% or less, P: 0.04% or less, S: 0.01% or less, Cr: 18% to 26%, Ni: 18% to
40%, sol.Al: 0.5% or less, N: 0.02% or less, Ti:
One or two of 4% or less and Nb: 8%, Mo: 0.
5% to 7% and W: 0.5% to 14%, one or two,
And a balance of Fe and unavoidable impurities, and a precipitation strengthening high alloy steel for seawater, which satisfies the following formulas (1) and (2). α = Cr + Mo + W-Ni + 3 (59 / 48Ti + 59
/ 27Al + 59 / 93Nb) 0 ≦ α ≦ 6 (1) PT = Cr + 3.3Mo + 1.7W PT ≧ 38 (2)
【請求項3】 請求項2の成分組成の合金について、最
終熱処理条件をT℃においてt(時間)とするとき、L
=(T+273)(20+log t)が下式(3)、
(4)を満たすように時効熱処理することを特徴とする
耐海水用析出強化型高合金鋼の製造方法。 21200≦L≦21600…(3) T≦775(℃)…(4)
3. When the final heat treatment condition is t (hour) at T ° C. for the alloy having the composition of claim 2, L
= (T + 273) (20 + log t) is expressed by the following formula (3),
A method for producing a precipitation-strengthened high-alloy steel for seawater resistance, which comprises performing an aging heat treatment so as to satisfy (4). 21200 ≦ L ≦ 21600 (3) T ≦ 775 (° C.) (4)
JP8387496A 1996-04-05 1996-04-05 Seawater resistant precipitation hardening type high alloy steel and its production Pending JPH09272956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8387496A JPH09272956A (en) 1996-04-05 1996-04-05 Seawater resistant precipitation hardening type high alloy steel and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8387496A JPH09272956A (en) 1996-04-05 1996-04-05 Seawater resistant precipitation hardening type high alloy steel and its production

Publications (1)

Publication Number Publication Date
JPH09272956A true JPH09272956A (en) 1997-10-21

Family

ID=13814813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8387496A Pending JPH09272956A (en) 1996-04-05 1996-04-05 Seawater resistant precipitation hardening type high alloy steel and its production

Country Status (1)

Country Link
JP (1) JPH09272956A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000024944A1 (en) * 1998-10-23 2000-05-04 Inco Alloys International, Inc. High strength corrosion resistant fe-ni-cr alloy
CN102953015A (en) * 2012-11-20 2013-03-06 无锡康柏斯机械科技有限公司 Steel rope rigging
JP2013227644A (en) * 2012-03-28 2013-11-07 Nippon Steel & Sumitomo Metal Corp Austenite-based heat resistant alloy
EP2426226A3 (en) * 2003-10-02 2014-02-26 Sandvik Intellectual Property AB Iron-nickel based alloy for high temperature use
JP2015200008A (en) * 2014-04-04 2015-11-12 新日鐵住金株式会社 austenitic stainless steel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000024944A1 (en) * 1998-10-23 2000-05-04 Inco Alloys International, Inc. High strength corrosion resistant fe-ni-cr alloy
EP2426226A3 (en) * 2003-10-02 2014-02-26 Sandvik Intellectual Property AB Iron-nickel based alloy for high temperature use
US9260770B2 (en) 2003-10-02 2016-02-16 Sandvik Intellectual Property Ab Austenitic FE-CR-NI alloy for high temperature use
US10683569B2 (en) 2003-10-02 2020-06-16 Sandvik Intellectual Property Ab Austenitic Fe—Cr—Ni alloy for high temperature
JP2013227644A (en) * 2012-03-28 2013-11-07 Nippon Steel & Sumitomo Metal Corp Austenite-based heat resistant alloy
CN102953015A (en) * 2012-11-20 2013-03-06 无锡康柏斯机械科技有限公司 Steel rope rigging
CN102953015B (en) * 2012-11-20 2015-11-18 江苏高博智融科技有限公司 A kind of cable wire rigging
JP2015200008A (en) * 2014-04-04 2015-11-12 新日鐵住金株式会社 austenitic stainless steel

Similar Documents

Publication Publication Date Title
JP4816642B2 (en) Low alloy steel
JPWO2018181381A1 (en) Clad steel plate and method of manufacturing the same
KR101539520B1 (en) Duplex stainless steel sheet
WO2020004410A1 (en) Clad steel sheet and production method thereof
JP2017202494A (en) Austenitic heat-resistant steel weld metal and weld joint having the same
US5985209A (en) Martensitic steel for line pipe having excellent corrosion resistance and weldability
JPH10280085A (en) Welding material for low cr ferritic steel, excellent in toughness
WO2020166538A1 (en) High-mn steel and method for manufacturing same
JPH1060598A (en) Seawater resistant precipitation strengthening type duplex stainless steel
JPS6119767A (en) Austenite stainless steel for low temperature
JPH06116684A (en) Two-phase stainless steel excellent in corrosion resistance and phase stability
EP0998591B1 (en) Linepipe and structural steel produced by high speed continuous casting
JP6750572B2 (en) Clad steel plate having high strength and excellent low temperature toughness as base material and method for producing the same
JPH09272956A (en) Seawater resistant precipitation hardening type high alloy steel and its production
JPH0543986A (en) High chromium ferritic heat resisting steel reduced in deterioration in strength in weld heat-affected zone
JPWO2018066573A1 (en) Austenitic heat-resistant alloy and welded joint using the same
JPH1060526A (en) Production of seawater resistant precipitation strengthening type duplex stainless steel
EP0835946B1 (en) Use of a weldable low-chromium ferritic cast steel, having excellent high-temperature strength
JP2003226931A (en) Direct-quenched high tensile strength thick steel plate having excellent arrest property
JP5151510B2 (en) Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal
JPH05179378A (en) Ni-base alloy excellent in room temperature and high temperature strength
JP2833385B2 (en) Corrosion resistant austenitic Fe-based alloy
JP7281314B2 (en) Base material for clad steel, clad steel and method for producing clad steel
JP6566166B1 (en) Steel sheet and manufacturing method thereof