JPS61113749A - High corrosion resistance alloy for oil well - Google Patents

High corrosion resistance alloy for oil well

Info

Publication number
JPS61113749A
JPS61113749A JP23646884A JP23646884A JPS61113749A JP S61113749 A JPS61113749 A JP S61113749A JP 23646884 A JP23646884 A JP 23646884A JP 23646884 A JP23646884 A JP 23646884A JP S61113749 A JPS61113749 A JP S61113749A
Authority
JP
Japan
Prior art keywords
less
corrosion
corrosion resistance
resistance
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23646884A
Other languages
Japanese (ja)
Inventor
Nobuo Totsuka
戸塚 信夫
Mitsuo Kimura
光男 木村
Takao Kurisu
栗栖 孝雄
Yoichi Nakai
中井 揚一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP23646884A priority Critical patent/JPS61113749A/en
Publication of JPS61113749A publication Critical patent/JPS61113749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve the corrosion resistance and the stress corrosion cracking resistance of an alloy for an oil well by limiting the component of a two-phase stainless steel, controlling especially the quantity of C, P and S, and adding the very small quantity of Ca thereon. CONSTITUTION:The high corrosion resistant alloy for the oil well contains <=0.05wt% C, <=1.0% Si, 0.3-2.0% Mn, 18.0-28.0% Cr, 3.0-8.0% Ni, 2.0-5.0% Mo, 0.01-0.10% Al, 0.0005-0.0050% Ca, <=0.020% P, <=0.003% S, 0.03-0.3% N, and <=0.0040% O, and consists of one kind or more among 0.01-0.20% Ti, 0.01-0.25% Zr, and 0.001-0.02% La, and the balance Fe with inevitable impurities. Also, in accordance with necessity, one kind or more among 0.01-0.25% Nb, 0.01-0.25% V, and 0.01-0.25% W are incorporated. According to this composition, the corrosion resistance and stress corrosion cracking resistance of a two-phase stainless steel can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は油井用高耐食性合金に係り、特に耐食性および
耐応力腐食割れ性金著しく改善し71:2相ステンレス
鋼に関し、油井管の分野で利用される。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a highly corrosion-resistant alloy for oil wells, and particularly to a 71:2 phase stainless steel with significantly improved corrosion resistance and stress corrosion cracking resistance, and is used in the field of oil country tubular goods. used.

〔従来の技術〕[Conventional technology]

従来、油井用、天然ガス井用鋼材としては一般に炭素鋼
あるいは低合金鋼が広く用いられているが、近年のエネ
ルギー需要の増大に伴い開発条件の悪い、炭酸ガス(C
ot)あるいは硫化水素ガスTH,S)等の腐食性ガス
を多量に含んだ井戸も多く開発されるようになってきた
Conventionally, carbon steel or low-alloy steel has been widely used as steel for oil wells and natural gas wells, but with the increase in energy demand in recent years, carbon dioxide (C)
Many wells containing large amounts of corrosive gases such as ot) or hydrogen sulfide gas TH, S) have also been developed.

このよりなCO,ガスあるいはH,Sガスを含む環境下
では炭素鋼あるいは低合金鋼は十分な耐食性を保持でき
ない。
Carbon steel or low alloy steel cannot maintain sufficient corrosion resistance in this environment containing CO, gas or H, S gas.

このため近年これらの油井、ガス井開発用に高合金鋼の
使用が検討され、マルテンサイト系ステンレス鋼、2相
ステンレス鋼、オーステナイト系ステンレス鋼、ニッケ
ル基合金等が一部使用されている。
Therefore, in recent years, the use of high alloy steels has been considered for the development of these oil and gas wells, and martensitic stainless steels, duplex stainless steels, austenitic stainless steels, nickel-based alloys, and the like have been used in some cases.

このうち12〜13 % Crを含むマルテンサイト系
ステンレス鋼はCO!ガス腐食に対しては優れt耐食性
を有するが、HISガス分圧が0.1気圧以上となろ環
境では応力腐食割れが発生する友め、使用環境がH,S
ガス分圧0.1気圧以下の環1   境に限定される欠
点がある。
Of these, martensitic stainless steel containing 12-13% Cr is CO! Although it has excellent corrosion resistance against gas corrosion, stress corrosion cracking occurs in environments where the HIS gas partial pressure is 0.1 atm or higher, and the use environment is H, S.
The drawback is that it is limited to environments where the gas partial pressure is 0.1 atm or less.

また、オーステナイト系ステンレス鋼あるいは、インコ
ロイ、ハステロイ等の材料はこのような油井環境での耐
食性が良好であることは予想されるものの、耐応力腐食
割れ性等についての挙動は明らかでない。
Further, although materials such as austenitic stainless steel, Incoloy, and Hastelloy are expected to have good corrosion resistance in such an oil well environment, their behavior in terms of stress corrosion cracking resistance, etc. is not clear.

まt高価なNiを多量に含むため高価な材料となり、か
つ油井管としての必要強度全確保するのが困難であると
いう欠点がある。
Furthermore, since it contains a large amount of expensive Ni, it is an expensive material, and it has the disadvantage that it is difficult to ensure the full strength required for oil country tubular goods.

これに対して、マルテンサイト系ステンレス鋼およびオ
ーステナイト系ステンレス鋼の欠点を克服する材料とし
て2相ステンレス鋼の使用が検討されている。
In contrast, the use of duplex stainless steel is being considered as a material that overcomes the drawbacks of martensitic stainless steel and austenitic stainless steel.

しかし従来の2相ステンレス鋼ではCorrosion
’B 2Paper Al 26に報告逼れているよう
に油井環境のようなH,Sを含む環境中では応力腐食割
れを起し易く、%にH,S分圧が1気圧以上の環境では
容易に6力腐食割れを生じ使用できないという欠点があ
った。
However, with conventional duplex stainless steel, corrosion
As reported in 'B 2 Paper Al 26, stress corrosion cracking is likely to occur in an environment containing H and S, such as an oil well environment, and easily occurs in an environment where the partial pressure of H and S is 1 atm or more. It had the disadvantage that it could not be used due to 6-force corrosion cracking.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は上記従来の2相ステンレス鋼の問題点を
解決し、耐食性および耐応力腐食割れ性を著しく改善し
九油井用高耐食性合金を提供する  ゛)[Kある。
The purpose of the present invention is to solve the above-mentioned problems of conventional duplex stainless steels, to significantly improve corrosion resistance and stress corrosion cracking resistance, and to provide a highly corrosion-resistant alloy for use in oil wells.

〔問題点上解決するための手段および作用〕上記の目的
は次の2発明によって達成される。
[Means and operations for solving the problems] The above objects are achieved by the following two inventions.

第1発明の要旨とするところは次の如くである。The gist of the first invention is as follows.

すなわち、重量比にて、 C:0.05チ以下、  Si:1.0チ以下Mn :
 0.3〜2.0 %、’Cr : 1 &O〜28.
01Ni:3.0〜a01、Mo:!0〜5.O%Al
: 0.01〜0.1(1、Ca : 0.0005〜
0.0050 (iP:0.020−以下、 S:0.
003チ以下N:0.03〜0.3俤、  O:0.0
040−以下を含み、かつTi : 0.01〜0.2
0%、Zr:0.01〜0.25 %、La : 0.
001〜0.02 %のうち少なくとも1種以上を含有
し、残部はFeおよび不可避的不純物より成ること2%
徴とする油井用高耐食性合金、である。
That is, in terms of weight ratio, C: 0.05 inch or less, Si: 1.0 inch or less, Mn:
0.3-2.0%, 'Cr: 1&O-28.
01Ni:3.0~a01, Mo:! 0-5. O%Al
: 0.01~0.1(1, Ca: 0.0005~
0.0050 (iP: 0.020- or less, S: 0.
003 chi or less N: 0.03 to 0.3 tou, O: 0.0
040- or less, and Ti: 0.01 to 0.2
0%, Zr: 0.01-0.25%, La: 0.
0.001 to 0.02%, with the remainder consisting of Fe and unavoidable impurities.
It is a highly corrosion resistant alloy for oil well applications.

第2発明の要旨とするところは、第1発明と同一基本組
成のほかに、更KNb:0.01〜α25%、V : 
0.01〜0.25 %、W:0.01〜o、zs慢の
うち少なくとも1種を含有し残部はFeおよび不可避的
不純物より成ることを特徴とする油井用高耐食性合金で
ある。
The gist of the second invention is that, in addition to the same basic composition as the first invention, further KNb: 0.01 to α25%, V:
This is a highly corrosion-resistant alloy for oil wells, characterized in that it contains at least one of 0.01 to 0.25%, W: 0.01 to 0, and zs, with the remainder consisting of Fe and unavoidable impurities.

本発明者らはこの2相ステンレス鋼の耐応力腐食割れ性
・および耐食性を向上させる方法を検討し次の結果を得
た。
The present inventors investigated methods for improving the stress corrosion cracking resistance and corrosion resistance of this duplex stainless steel, and obtained the following results.

すなわち、2相ステンレス鋼の耐応力腐食割れ性および
耐食性を向上させる方法としては、まずCを低減して腐
食反応のカソード反応サイトとなる炭化物を減少させ、
同時にP、Sの粒界への偏析を抑制することが有効であ
ることが明らか忙なった。
That is, as a method to improve the stress corrosion cracking resistance and corrosion resistance of duplex stainless steel, first reduce C to reduce carbides that serve as cathode reaction sites for corrosion reactions,
At the same time, it has become clear that it is effective to suppress the segregation of P and S to grain boundaries.

まzP、Sの粒界への偏析を防止する具体的方法として
P、S濃度の低減と、Cam加によるSの固定およびT
l、Zr、La添加によるPの固定を同時に行うことが
有効であること全見出した。
Specific methods for preventing the segregation of P and S at grain boundaries include reducing the P and S concentrations, fixing S by adding Cam, and
We have found that it is effective to simultaneously fix P by adding L, Zr, and La.

本発明の特徴は以下の3対策を同時に実施する点にある
。すなわち、 (イ) C−iα05%以下に低減する。
The feature of the present invention is that the following three measures are implemented simultaneously. That is, (a) Reduce C-iα to 05% or less.

(o)  S t−0,003%以下に低減したうえで
、Caをo、 o o o s〜o、oosoチ添加し
硫化物系介在物の球状化とSの粒界への偏析を抑制する
(o) After reducing S to 0,003% or less, add Ca to o, o o o s to o, ooso to suppress spheroidization of sulfide inclusions and segregation of S to grain boundaries. do.

(ハ) Pt−0,020%以下に低減し友うえで、T
l:  0.0 1〜0.21%、Zr  :  0.
0 1〜0.2 5  s。
(c) When Pt is reduced to below 0,020%, T
l: 0.0 1-0.21%, Zr: 0.
01-0.25 s.

La : 0.001〜0.02%のうち少なくとも1
種以上を含有することによって、Pの粒界への偏析を抑
制すること、の3対策である。
La: at least 1 from 0.001 to 0.02%
The three countermeasures are to suppress the segregation of P to the grain boundaries by containing P species or more.

従来、p、s等の不純物元素を低減することによってス
テンレス鋼の耐食性、耐応力腐食割れ性が向上すること
は知られていたが、充分な効果を有する糧度にP、Sを
低減することは工業的に不可能であった。
Conventionally, it has been known that the corrosion resistance and stress corrosion cracking resistance of stainless steel can be improved by reducing impurity elements such as P and S. was industrially impossible.

また本発明者らの研究によれば2相ステンレス鋼では、
これらP、Sの悪影響を除くのは特に重要であり、また
P、Sの凝固時の偏析を低減するのにC量を低減するこ
とが有効であることが明らかとなった。
Furthermore, according to the research of the present inventors, in duplex stainless steel,
It has become clear that it is particularly important to eliminate the adverse effects of these P and S, and that reducing the amount of C is effective in reducing the segregation of P and S during solidification.

すなわち本発明者らは、2相ステンレス鋼の耐食性、耐
応力腐食割れ性を向上させる工業的手段を研究した結果
、Sについては上記(イ)の対策と(ロ)全組み合せる
ことで、PKついては0)と(ハ)の対策でその悪影響
を除去できることを見出した。
In other words, as a result of researching industrial means to improve the corrosion resistance and stress corrosion cracking resistance of duplex stainless steel, the present inventors found that for S, by combining all of the above measures (a) and (b), PK In this case, we have found that the negative effects can be eliminated by measures 0) and (c).

これはcl低減するごとくよって溶鋼凝固時に生ずるP
、Sの偏析を低減し、さらに凝固後のミクロ偏析7kT
i 、 Zr 、 LaおよびCa等の合金元素によっ
て抑制するものである。
This is due to the P generated during solidification of molten steel as Cl is reduced.
, to reduce the segregation of S, and further reduce the micro-segregation of 7kT after solidification.
It is suppressed by alloying elements such as i, Zr, La, and Ca.

すなわち、上記3対策を同時に実施することによってP
、Sのマクロ偏析、ミクロ偏析の両者が同時に抑制され
、特に粒界への偏析が抑制されるため粒界強度が上昇し
、かつ粒界の腐食活性度が低下すると考えられる。
In other words, by implementing the above three measures simultaneously, P
It is thought that both the macro segregation and micro segregation of S, S are suppressed at the same time, and in particular, the segregation to grain boundaries is suppressed, so that the grain boundary strength increases and the corrosion activity of the grain boundaries decreases.

ま7tCa添加による硫化物系介在物の形態制御も孔食
発生点、割れの起点減少に効果があり、耐食性、耐応力
腐食割れ性の向上に有効と考えられる。
Controlling the morphology of sulfide-based inclusions by adding 7tCa is also effective in reducing pitting corrosion occurrence points and crack initiation points, and is considered effective in improving corrosion resistance and stress corrosion cracking resistance.

本発明はこれによって耐食性、耐応力腐食割れ性に優れ
九2相ステンレス鋼金工業的に安価に製造することを可
能にしたものである。
The present invention has thereby made it possible to produce 92-phase stainless steel at a low cost in the metal industry with excellent corrosion resistance and stress corrosion cracking resistance.

次に本発明鋼の区分限定理由について述べる。Next, the reasons for limiting the classification of the steel of the present invention will be described.

C:さ Cは鋼の強度を向上させる最も安価な元素であるが、2
相ステンレス鋼においては耐食性、耐応力腐食割れ性に
悪影響を与え、特に0.05チを越すとP、Sのマクロ
偏析を助長するため、0.05−以下に限定した。
C: C is the cheapest element that improves the strength of steel, but 2
In phase stainless steel, it has a negative effect on corrosion resistance and stress corrosion cracking resistance, and in particular, if it exceeds 0.05 inch, macro segregation of P and S will be promoted, so it is limited to 0.05- or less.

Sl: Siは脱酸上必要な元素であるが1.0チを越えると鋼
の靭性を劣化爆ぜるためLOチ以下に限定した。
Sl: Si is an element necessary for deoxidation, but if it exceeds 1.0 H, the toughness of the steel will deteriorate, so it was limited to less than LO H.

Mn: Mnは強度を確保するために必要な元素であり、そのた
め少なくとも0.3チを必要とするが、λ0チを越える
添加は靭性に悪影響を与えるので0.3〜20*の範囲
に限定した。
Mn: Mn is an element necessary to ensure strength, so at least 0.3 H is required, but addition of more than λ0 H has a negative effect on toughness, so it is limited to a range of 0.3 to 20*. did.

Crコ Crはステンレス鋼の耐食性を保持する主要元素であり
2相ステンレス鋼では、その耐食性を確保するため18
%以上の添加が必要であるが、28チを越えると靭性、
溶接性に悪影響を与えるため18.0〜28. O%の
範囲罠限定し友。
Cr is the main element that maintains the corrosion resistance of stainless steel, and in duplex stainless steel, 18
It is necessary to add more than 28%, but if it exceeds 28%, the toughness and
18.0 to 28. because it adversely affects weldability. O% range trap limited friend.

Nl: Niは2相ステンレス鋼の耐食性、強度を確保するのに
効果があるが、&00チ満ではその効果が十分でな(,
8,Olを越える添加は経済的でないので&0〜&0チ
の範囲に限定し九。
Nl: Ni is effective in ensuring the corrosion resistance and strength of duplex stainless steel, but the effect is not sufficient at less than &000% (,
Since it is not economical to add more than 8.Ol, it is limited to the range of &0 to &0.9.

MO: Moは耐食性、強度1の向上忙効果があるが、2.0−
未満の添加ではその効果が少な(,5,0チを越える添
加は加工性に悪影響を与えるためzO〜5.0嗟の範囲
に限定し友。
MO: Mo has the effect of improving corrosion resistance and strength 1, but 2.0-
Addition of less than 5.0 mm will have little effect (addition of more than 5.0 mm will have a negative effect on processability, so it should be limited to a range of zO to 5.0 mm).

At: AAは強力な脱酸作用を有し、またCaの歩留υを向上
させる元素であるが、0.01−未満ではその効果が十
分ではない。
At: AA is an element that has a strong deoxidizing effect and improves the Ca yield υ, but its effect is not sufficient if it is less than 0.01-.

ま7t0.10%を越す添加は靭性に悪影響を与えるの
で0.01〜0.101の範囲に限定した。
Addition of more than 0.10% has an adverse effect on toughness, so it is limited to a range of 0.01 to 0.101.

Ca: Caは非金属介在物の分散球状化に効果があシ、ま九S
t−固定化してSの粒界偏析を抑制し、耐食性、耐応力
腐食割れ性を向上させる元素であるが、0、0005−
未満ではその効果が少な(,0,0050チを越えると
、かえってCa系介在物が増加し耐食性を劣化嘔せるの
で0.0005〜0.0050嘩の範囲に限定した。
Ca: Ca is effective in dispersing and spheroidizing non-metallic inclusions.
It is an element that suppresses grain boundary segregation of S by fixing t- and improves corrosion resistance and stress corrosion cracking resistance.
If it is less than 0.0050, the effect is small (if it exceeds 0.0050, Ca-based inclusions will increase and the corrosion resistance will deteriorate, so it is limited to a range of 0.0005 to 0.0050.

P: Pは耐食性、耐応力腐食割れ性を劣化させる元素であり
、少ないほうが望まし論が、低P化によるコスト上昇を
さけるため、低C化、Tir Z’ +La添加効果が
あられれる上限であるα020慢以下に限定し九〇 S: SもPとともに耐食性、耐応力腐食割れ性を劣化させる
元素であり、少ないほうが望ましいが、低S化によるコ
スト上昇をさける窺めCJI添加効果があられれる上限
であるα003%以下に限定し友。
P: P is an element that deteriorates corrosion resistance and stress corrosion cracking resistance, and it is preferable to have less P, but in order to avoid cost increases due to lower P, it should be kept at the upper limit where the effect of lowering C and adding Tir Z' + La can be achieved. Limited to a certain α020 or less: 90S: Along with P, S is an element that deteriorates corrosion resistance and stress corrosion cracking resistance, and it is desirable to have less S, but the effect of CJI addition can be achieved to avoid cost increases due to lower S. Limited to the upper limit of α003% or less.

N:  ゛ Nは耐食性の改善、強度の向上に効果があるが、づ 0.03%未満ではその効果が十分でな(,0,3%を
越える添加は工業的に内器であるため0,03〜0、3
 %の範囲に限定した。
N: ゛N is effective in improving corrosion resistance and strength, but if it is less than 0.03%, the effect is not sufficient. ,03~0,3
% range.

0: 0は鋼の靭性、耐食性に悪影響を与える元素であり少な
いほうが望ましいが、製造コストの上昇をさけるtめ、
Ca添加の効果をそこなわない上限である0、0040
 %以下に限定し友。
0: 0 is an element that has a negative effect on the toughness and corrosion resistance of steel, so it is desirable to have less of it, but in order to avoid an increase in manufacturing costs,
The upper limit that does not impair the effect of Ca addition is 0,0040
% or less.

TI= TiはPの粒界偏析を抑制する効果があるが、0、01
4未満では七の効果が十分でなく、ま九、0、20 %
を越える添加はTi系大型介在物の生成により゛靭性を
劣化させるので0.01〜0320%の範囲に限定した
TI=Ti has the effect of suppressing grain boundary segregation of P, but 0,01
If it is less than 4, the effect of 7 is not sufficient, and it is 9, 0, 20%.
Addition of more than 0.0% leads to the formation of large Ti-based inclusions and deteriorates toughness, so the addition is limited to a range of 0.01 to 0.320%.

Zr、La: Zr、LaもTiと同一理由により、それぞれZr、O
,01〜0825%、La : 0.001〜0.02
 2.6の範囲に限定しt。
Zr, La: For the same reason as Ti, Zr and La are also replaced by Zr and O, respectively.
, 01-0825%, La: 0.001-0.02
2.6 t.

上記基本組成から成る鋼に1000〜1200℃の温度
から水冷するいわゆる通常の溶体化処理を施すことによ
り耐食性、耐応力腐食割れ性に優れた2相ステンレス鋼
を得ることができた。
A duplex stainless steel with excellent corrosion resistance and stress corrosion cracking resistance could be obtained by subjecting the steel having the above basic composition to a so-called normal solution treatment of water cooling from a temperature of 1000 to 1200°C.

ま九本発明の効果をよシ向上させるために、それぞれ限
定量のNb、V、Wのうち1種を文は2種以上を同時に
含有し、残部はFaおよび不可避的不純物より成る鋼も
本発明の目的を達成し得ることが判明し友。  −′ これらの添加元素の作用ならびに限定理由は次のとうり
である。
In order to further improve the effects of the present invention, steels containing one or more of Nb, V, and W in limited amounts, and two or more of them at the same time, with the remainder being Fa and unavoidable impurities, are also used. It turns out that the object of the invention can be achieved. -' The effects and reasons for limitations of these additive elements are as follows.

Nb: Nbは強度、靭性の同上に効果があるが0.01−未満
ではその効果が少なく、0.25−を越える添加はかえ
って靭性に悪影qJヲ与几るため、0.01〜0.25
1の範囲に限定した。
Nb: Nb has the same effect on strength and toughness, but if it is less than 0.01, the effect is small, and if it is added more than 0.25, it will have a negative effect on toughness, so it should be 0.01 to 0. .25
It was limited to a range of 1.

■: YもNbと同様の効果を有し、Nbと同じ理由によす0
.01〜0.2.5%の範囲に限定し友。
■: Y also has the same effect as Nb, and is due to the same reason as Nb.
.. It should be limited to the range of 0.01 to 0.2.5%.

W; Wは強度、耐食性に効果があるが、0.01−未満では
その効果が少な(,0,25%を越える添加は靭性に悪
影響を与えるため、0.01〜0.25チの範囲に限定
した。
W: W has an effect on strength and corrosion resistance, but if it is less than 0.01%, the effect is small (addition of more than 0.25% has a negative effect on toughness, so W is in the range of 0.01 to 0.25%). limited to.

本発明は前記基本組成もしくは基本組成のほかに上記N
b、V、Wの限定範囲による選択添加を行つ丸鋼z、r
通常2相ステンレス鋼で実施される溶体化処理を行うこ
とによって耐食性、耐応力腐食割れ性に優れ友2相ステ
ンレス鋼を得ることができ比。
In addition to the above-mentioned basic composition or basic composition, the present invention also provides the above-mentioned N
Round steel z, r with selective addition of b, V, and W in a limited range
By performing solution treatment, which is normally carried out on duplex stainless steel, it is possible to obtain duplex stainless steel with excellent corrosion resistance and stress corrosion cracking resistance.

また本発明の効果は加工によって減するものではなく、
必要に応じて溶体化処理後、加工し強度を向上させるこ
とができる。
Furthermore, the effects of the present invention are not diminished by processing;
If necessary, after solution treatment, it can be processed to improve its strength.

〔実施例〕〔Example〕

第1表に示す数分の501f鋼塊を溶製し通常の熱間圧
延により板厚6■まで圧延しに後、1050:c1時間
保持後水冷し溶体化処理を行つ文後、機械的性質を調査
し、その結果を第2表に示した。
A few minutes of 501f steel ingots shown in Table 1 were melted and rolled to a thickness of 6mm by normal hot rolling, held at 1050:c for 1 hour, cooled in water, and subjected to solution treatment. The properties were investigated and the results are shown in Table 2.

次にこれらの鋼の耐食性と耐応力腐食割れ性をオートク
レーブを使用した高温高圧水環境で調査した。
Next, the corrosion resistance and stress corrosion cracking resistance of these steels were investigated in a high-temperature, high-pressure water environment using an autoclave.

すなわち、耐食性は第1図(A)、■に示す形状の寸法
が50瓢X25WX4■の4mm径の孔を有する腐食試
験片を使用した。
That is, for corrosion resistance, a corrosion test piece having a shape shown in Figure 1 (A) and having a hole with a diameter of 4 mm and having dimensions of 50 gourd x 25 W x 4 mm was used.

第  2  表 まt耐応力腐食割れ性は76.2WX 471111X
1.6餌の寸法の試験片と第2図に示す3点曲げ試験治
具を使用し九。第2図において試験片2は治具本体4と
応力付加用ねじ6とにより絶縁用ガラス棒8t−介して
応力を付加される。
Table 2 Stress corrosion cracking resistance is 76.2WX 471111X
1.6 Using a test piece with the dimensions of bait and the three-point bending test jig shown in Figure 2.9. In FIG. 2, stress is applied to the test piece 2 by the jig main body 4 and the stress applying screw 6 via the insulating glass rod 8t.

3点曲げ試験の応力付加は第3図に示す表示により下記
(1)式を用いて各材料の0.2 %耐力のL2倍〜0
.2倍の応力が付加されるようにtわみを調節すること
によって付加され、同一応力で3本づつの試験を行った
The stress addition in the three-point bending test is calculated from L2 times the 0.2% proof stress of each material to 0 using the following formula (1) as shown in Figure 3.
.. Twice the stress was applied by adjusting the deflection, and three tests were conducted at the same stress.

付加応力σ−aEty/l     ・・・(1)友だ
しE:ヤング率(λI X 10 kf/xjl)t:
板厚 t:応力付加長さ×172 y:たわみ 腐食試験は、オートクレーブを使用してCO8つた。
Added stress σ-aEty/l... (1) Tomodashi E: Young's modulus (λI x 10 kf/xjl) t:
Plate thickness t: Stress application length x 172 y: Flexural corrosion test was performed using an autoclave with CO8.

腐食試験結果を第3表に示した。第3表において応力腐
食割れ試験結果のX印は割れ発生を示し、○印は割れが
なかつtことを示す。判定はいずれも目視観察により行
った。腐食試験結果は3本の試験片の平均値である。
The corrosion test results are shown in Table 3. In Table 3, the X mark in the stress corrosion cracking test results indicates that cracking has occurred, and the O mark indicates that there is no cracking. All judgments were made by visual observation. Corrosion test results are the average value of three test pieces.

第3表から明らかなように本発明鋼ム4〜7、AIO〜
16はいずれも優れた耐応力腐食割れ性、耐食性1に示
す。
As is clear from Table 3, steel sheets 4 to 7 of the present invention, AIO to
All No. 16 exhibit excellent stress corrosion cracking resistance and corrosion resistance.

しかしP固定化元素である’l’i、Zr、Laが添加
されていない比較鋼A1およびPが過剰な比較鋼7fI
2はいずれもPの固定が十分でないtめ十分な耐食性、
耐応力腐食割れ性が得られていない。
However, comparative steel A1 to which P-fixing elements 'l'i, Zr, and La are not added and comparative steel 7fI with excessive P
2 has sufficient corrosion resistance because P is not sufficiently fixed.
Stress corrosion cracking resistance has not been achieved.

また比較鋼A3はCが過剰なため十分な耐食性、耐応力
腐食割れ性が得られていない。
In addition, comparative steel A3 does not have sufficient corrosion resistance and stress corrosion cracking resistance due to excessive C content.

比較鋼應8.9はそれぞれCa添加量の不足およびst
が過剰なため、いずれもSの固定が十分づ   でなく
、十分な耐食性、耐応力腐食割れ性が得られていない。
Comparative steel 8.9 has insufficient Ca addition and st
Because of the excessive amount of S, the fixation of S was not sufficient in either case, and sufficient corrosion resistance and stress corrosion cracking resistance were not obtained.

〔発明の効果〕〔Effect of the invention〕

本発明は上記実施例からも明らかな如く2相ステンレス
鋼の成分を限定し、特にC:0.05*以下、P:0.
02〜%以下、S:0.003チ以下、Ca : 0.
0005〜0.0050Sを含有せしめ、さらに限定量
の合金元素を添加することによって油井用高耐食性合金
として使用される2相ステンレス鋼の耐食性、耐応力腐
食割れ性全署しく改善する効果をあげることができた。
As is clear from the above examples, the present invention limits the components of the duplex stainless steel, particularly C: 0.05* or less, P: 0.
S: 0.003% or less, Ca: 0.02% or less, S: 0.003% or less, Ca: 0.
To achieve the effect of completely improving the corrosion resistance and stress corrosion cracking resistance of duplex stainless steel used as a highly corrosion resistant alloy for oil wells by containing 0005 to 0.0050S and further adding a limited amount of alloying elements. was completed.

【図面の簡単な説明】 第1図囚、[F])は腐食試験片の形状を示し囚は平面
図、■は側面図、第2図は3点曲げ試験治具を示す断面
図、第3図は3点曲げ試験を示す模式断面図である。
[Brief explanation of the drawings] Figures 1 and [F]) show the shape of the corrosion test piece; FIG. 3 is a schematic cross-sectional view showing a three-point bending test.

Claims (2)

【特許請求の範囲】[Claims] (1)重量比にて、 C:0.05%以下、Si:1.0%以下 Mn:0.3〜2.0%、Cr:18.0〜28.0%
Ni:3.0〜8.0%、Mo:2.0〜5.0%Al
:0.01〜0.10%、Ca:0.0005〜0.0
050%P:0.020%以下、S:0.003%以下
N:0.03〜0.3%、O:0.0040%以下を含
み、かつTi:0.01〜0.20%、Zr:0.01
〜0.25%、La:0.001〜0.02%のうち少
なくとも1種以上を含有し、残部はFeおよび不可避的
不純物より成ることを特徴とする油井用高耐食性合金。
(1) Weight ratio: C: 0.05% or less, Si: 1.0% or less Mn: 0.3 to 2.0%, Cr: 18.0 to 28.0%
Ni: 3.0-8.0%, Mo: 2.0-5.0% Al
:0.01~0.10%, Ca:0.0005~0.0
050% P: 0.020% or less, S: 0.003% or less N: 0.03 to 0.3%, O: 0.0040% or less, and Ti: 0.01 to 0.20%, Zr: 0.01
A highly corrosion-resistant alloy for oil wells, characterized in that it contains at least one of La: 0.001 to 0.02%, and the remainder consists of Fe and inevitable impurities.
(2)重量比にて、 C:0.05%以下、Si:1.0%以下 Mn:0.3〜2.0%、Cr:18.0〜28.0%
Ni:3.0〜8.0%、Mo:2.0〜5.0%Al
:0.01〜0.10%、Ca:0.0005〜0.0
050%P:0.020%以下、S:0.003%以下
N:0.03〜0.3%、O:0.0040%以下を含
み、かつTi:0.01〜0.20%、Zr:0.01
〜0025%、La:0.001〜0.02%のうち少
なくとも1種以上を含有し、更にNb:0.01〜0.
25%、V:0.01〜0.25%、W:0.01〜0
.25%のうち少なくとも1種を含有し、残部はFeお
よび不可避的不純物より成ることを特徴とする油井用高
耐食性合金。
(2) Weight ratio: C: 0.05% or less, Si: 1.0% or less Mn: 0.3 to 2.0%, Cr: 18.0 to 28.0%
Ni: 3.0-8.0%, Mo: 2.0-5.0% Al
:0.01~0.10%, Ca:0.0005~0.0
050% P: 0.020% or less, S: 0.003% or less N: 0.03 to 0.3%, O: 0.0040% or less, and Ti: 0.01 to 0.20%, Zr: 0.01
~0025%, La: 0.001~0.02%, and Nb: 0.01~0.02%.
25%, V: 0.01-0.25%, W: 0.01-0
.. 1. A highly corrosion resistant alloy for oil well use, characterized in that it contains at least one of the following: 25%, with the remainder consisting of Fe and unavoidable impurities.
JP23646884A 1984-11-09 1984-11-09 High corrosion resistance alloy for oil well Pending JPS61113749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23646884A JPS61113749A (en) 1984-11-09 1984-11-09 High corrosion resistance alloy for oil well

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23646884A JPS61113749A (en) 1984-11-09 1984-11-09 High corrosion resistance alloy for oil well

Publications (1)

Publication Number Publication Date
JPS61113749A true JPS61113749A (en) 1986-05-31

Family

ID=17001187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23646884A Pending JPS61113749A (en) 1984-11-09 1984-11-09 High corrosion resistance alloy for oil well

Country Status (1)

Country Link
JP (1) JPS61113749A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170458A (en) * 1986-01-23 1987-07-27 Nippon Steel Corp Steel for high toughness seam welded steel pipe having superior sour resistance
JPS62227067A (en) * 1986-03-28 1987-10-06 Nippon Steel Corp High toughness resistance welded tube having superior sour resistance
JPS63137144A (en) * 1986-11-28 1988-06-09 Nippon Steel Corp High-toughness seam welded tube having excellent sour resistance
JPS63157838A (en) * 1986-12-18 1988-06-30 Kawasaki Steel Corp Two-phase stainless steel excellent in crevice corrosion resistance
JPH028348A (en) * 1988-06-27 1990-01-11 Power Reactor & Nuclear Fuel Dev Corp Stainless steel having excellent intergranular corrosion resistance of heat-affected zone
WO1995027090A1 (en) * 1994-04-05 1995-10-12 Sumitomo Metal Industries, Ltd. Two-phase stainless steel
WO1997012072A1 (en) * 1995-09-27 1997-04-03 Sumitomo Metal Industries, Ltd. High-strength welded steel structures having excellent corrosion resistance
EP1995341A1 (en) * 2007-03-26 2008-11-26 Sumitomo Metal Industries Limited Oil well pipe for expansion in well and two-phase stainless steel for use as oil well pipe for expansion
JP2013234344A (en) * 2012-05-07 2013-11-21 Kobe Steel Ltd Duplex phase stainless steel material and duplex phase stainless steel pipe

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170458A (en) * 1986-01-23 1987-07-27 Nippon Steel Corp Steel for high toughness seam welded steel pipe having superior sour resistance
JPS62227067A (en) * 1986-03-28 1987-10-06 Nippon Steel Corp High toughness resistance welded tube having superior sour resistance
JPH0553857B2 (en) * 1986-03-28 1993-08-11 Nippon Steel Corp
JPS63137144A (en) * 1986-11-28 1988-06-09 Nippon Steel Corp High-toughness seam welded tube having excellent sour resistance
JPS63157838A (en) * 1986-12-18 1988-06-30 Kawasaki Steel Corp Two-phase stainless steel excellent in crevice corrosion resistance
JPH028348A (en) * 1988-06-27 1990-01-11 Power Reactor & Nuclear Fuel Dev Corp Stainless steel having excellent intergranular corrosion resistance of heat-affected zone
JPH0534417B2 (en) * 1988-06-27 1993-05-24 Doryokuro Kakunenryo Kaihatsu Jigyodan
EP0757112A1 (en) * 1994-04-05 1997-02-05 Sumitomo Metal Industries, Ltd. Two-phase stainless steel
WO1995027090A1 (en) * 1994-04-05 1995-10-12 Sumitomo Metal Industries, Ltd. Two-phase stainless steel
EP0757112A4 (en) * 1994-04-05 1997-06-18 Sumitomo Metal Ind Two-phase stainless steel
US5849111A (en) * 1994-04-05 1998-12-15 Sumitomo Metal Industries, Ltd. Duplex stainless steel
WO1997012072A1 (en) * 1995-09-27 1997-04-03 Sumitomo Metal Industries, Ltd. High-strength welded steel structures having excellent corrosion resistance
US6129999A (en) * 1995-09-27 2000-10-10 Sumitomo Metal Industries, Ltd. High-strength welded steel structures having excellent corrosion resistance
EP1995341A1 (en) * 2007-03-26 2008-11-26 Sumitomo Metal Industries Limited Oil well pipe for expansion in well and two-phase stainless steel for use as oil well pipe for expansion
EP1995341A4 (en) * 2007-03-26 2010-03-10 Sumitomo Metal Ind Oil well pipe for expansion in well and two-phase stainless steel for use as oil well pipe for expansion
JP2013234344A (en) * 2012-05-07 2013-11-21 Kobe Steel Ltd Duplex phase stainless steel material and duplex phase stainless steel pipe

Similar Documents

Publication Publication Date Title
US5298093A (en) Duplex stainless steel having improved strength and corrosion resistance
US6485679B1 (en) Heat resistant austenitic stainless steel
KR100314232B1 (en) Ferritic-austenitic stainless steel
CN110168124B (en) Duplex stainless steel and method for producing same
JPH07216511A (en) High chromium austenitic heat resistant alloy excellent in strength at high temperature
JPH02232345A (en) High strength high chromium steel excellent in corrosion resistance and oxidation resistance
GB2071147A (en) Copper and nitrogen containing austenitic stainless steel
US5141705A (en) Austenitic stainless steel
JPH01275739A (en) Low si high strength and heat-resistant steel tube having excellent ductility and toughness
JP2002226946A (en) Martensitic heat-resistant alloy having excellent high temperature creep rupture strength and ductility and production method therefor
JPS61113749A (en) High corrosion resistance alloy for oil well
JPH08170153A (en) Highly corrosion resistant two phase stainless steel
JPS6358214B2 (en)
JPH07331390A (en) High chromium austenitic heat resistant alloy
JPH07138708A (en) Austenitic steel good in high temperature strength and hot workability
JPH0643626B2 (en) Martensitic stainless steel for oil country tubular goods
JP2002331387A (en) Welding wire for highly touch martensite based-stainless steel
JPH0770681A (en) High chromium austenitic heat resistant alloy
JPH08134593A (en) High strength austenitic alloy excellent in seawater corrosion resistance and hydrogen sulfide corrosion resistance
JP2543801B2 (en) Coated arc welding rod for high Cr ferritic heat resistant steel
EP0835946A1 (en) Weldable low-chromium ferritic cast steel, having excellent high-temperature strength
JP6747628B1 (en) Duplex stainless steel, seamless steel pipe, and method for producing duplex stainless steel
JPS63157838A (en) Two-phase stainless steel excellent in crevice corrosion resistance
JPH09195005A (en) Austenitic heat resistant steel excellent in high temperature strength
JPS60149744A (en) High-chromium steel having superior toughness