JPH08134388A - Electrically conductive ink - Google Patents

Electrically conductive ink

Info

Publication number
JPH08134388A
JPH08134388A JP27942794A JP27942794A JPH08134388A JP H08134388 A JPH08134388 A JP H08134388A JP 27942794 A JP27942794 A JP 27942794A JP 27942794 A JP27942794 A JP 27942794A JP H08134388 A JPH08134388 A JP H08134388A
Authority
JP
Japan
Prior art keywords
conductive ink
average particle
inorganic
substrate
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27942794A
Other languages
Japanese (ja)
Inventor
Kazuhiro Miura
和裕 三浦
Yoshihiro Bessho
芳宏 別所
Sei Yuhaku
祐伯  聖
Minehiro Itagaki
峰広 板垣
Yoshifumi Nakamura
嘉文 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27942794A priority Critical patent/JPH08134388A/en
Publication of JPH08134388A publication Critical patent/JPH08134388A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain an electrically conductive ink running to a highly reliable electrode in good state even if used on a high-accuracy glass-ceramic multilayer substrate nonshrinkable in the planar direction. CONSTITUTION: This electrically conductive ink at least contains a solvent, organic binder, and a mixture comprising 80.0-95.0vol.% of Cu0 1.0-7.0μm in average particle diameter, 1.0-10.0vol.% of at least one kind of metallic powder selected from Ni, Mo, Zr and Mn 1.0-6.0μm in average particle diameter and 4.0-10.0vol.% of an inorganic binder 1.0-5.0μm in average particle diameter, with the inorganic ingredient dispersed in the final ink.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体LSI、チップ部
品などを搭載し、かつそれらを相互配線する為のセラミ
ック多層基板の内外部の電極パターンに適用するための
導電性インキに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive ink for mounting semiconductor LSIs, chip parts and the like and for applying them to electrode patterns inside and outside a ceramic multilayer substrate for interconnecting them.

【0002】[0002]

【従来の技術】近年、半導体LSI、チップ部品等は小
型・軽量化が進んでおり、これらを実装する配線基板も
小型・軽量化が望まれている。このような要求に対し
て、セラミック多層基板は、高密度配線が得られ、かつ
薄膜化が可能なことから、今日のエレクトロニクス業界
において重要視されている。
2. Description of the Related Art In recent years, semiconductor LSIs, chip parts, etc. have been reduced in size and weight, and wiring boards for mounting them have also been desired to be reduced in size and weight. In order to meet such requirements, the ceramic multilayer substrate has been regarded as important in today's electronics industry because it can provide high-density wiring and can be thinned.

【0003】このセラミック多層基板に使用される電極
材料としての導体組成物は、一般に導電性金属、無機酸
化物、ガラス粉末が有機媒体中に分散されているペース
ト状組成物である。近年、低温焼結ガラス・セラミック
多層基板の開発によって、使用できる導体材料では、C
uが比抵抗が小さく半田濡れ性も優れているため、Cu
の電極材料の使用が望まれている。
The conductor composition as an electrode material used in this ceramic multilayer substrate is generally a paste composition in which a conductive metal, an inorganic oxide and glass powder are dispersed in an organic medium. In recent years, due to the development of low-temperature sintered glass / ceramic multilayer substrates, the conductive material that can be used is C
Since u has low specific resistance and excellent solder wettability, Cu
It is desired to use the above electrode material.

【0004】低温焼結多層基板にCuを使用する方法と
して、内層および最上層にCu電極を用いる方法があ
る。導体抵抗、半田濡れ性、コストの点で最も良いが、
すべて窒素などの中性雰囲気で焼成しなければ成らずそ
の作製が困難である。一般にCu電極を使用するには、
基板上にCuペーストをスクリーン印刷にて配線パター
ンを形成し、乾燥後、Cuの融点以下の温度(850〜
950℃程度)で、かつCuが酸化されず導体ペースト
中の有機成分が十分燃焼するように酸素分圧を制御した
窒素雰囲気中で焼成を行なうものである。多層する場合
は、同様の条件で絶縁層を印刷焼成して得られる。しか
し、焼成工程における雰囲気を適度な酸素分圧下にコン
トロールすることは困難であり、また多層化する場合、
各ペーストを印刷後その都度焼成を繰り返し行なう必要
があり、リードタイムが長くなり設備などのコストアッ
プにつながるなどの課題を有している(特開昭57−5
3321号公報)。そこで特開平3−20914号公報
において、セラミック多層基板の作製にあたり、CuO
ペーストを用い、脱バインダ工程、還元工程、焼成工程
の3段階とする方法が提案された。それはCuOを導体
の出発原料とし多層体を作製し、脱バインダ工程は、炭
素に対して充分な酸素雰囲気でかつ内部の有機バインダ
を熱分解させるに充分な温度で熱処理を行い、次にCu
OをCuに還元する還元工程、基板の焼結を行なう焼成
工程を備えた方法である。これにより、焼成時の雰囲気
制御が容易になり緻密な焼結体が得られるようになっ
た。
As a method of using Cu for the low temperature sintering multilayer substrate, there is a method of using Cu electrodes for the inner layer and the uppermost layer. Best in terms of conductor resistance, solder wettability, and cost,
All of them have to be fired in a neutral atmosphere such as nitrogen and are difficult to manufacture. Generally, to use Cu electrode,
A Cu paste is screen-printed on the substrate to form a wiring pattern, and after drying, the temperature is below the melting point of Cu (850 to 850).
The firing is performed in a nitrogen atmosphere in which the oxygen partial pressure is controlled so that Cu is not oxidized and the organic components in the conductor paste are sufficiently burned at about 950 ° C.). In the case of multiple layers, it is obtained by printing and firing the insulating layer under the same conditions. However, it is difficult to control the atmosphere in the firing step under an appropriate oxygen partial pressure, and in the case of forming multiple layers,
It is necessary to repeat firing each time after printing each paste, which leads to a long lead time, leading to an increase in the cost of equipment and the like (Japanese Patent Laid-Open No. 57-5).
3321 publication). Therefore, in Japanese Unexamined Patent Publication (Kokai) No. 3-20914, in manufacturing a ceramic multilayer substrate, CuO
A method has been proposed in which a paste is used and the binder removal step, reduction step, and firing step are performed in three stages. It uses CuO as a starting material for a conductor to produce a multilayer body, and in the binder removal step, heat treatment is performed in a sufficient oxygen atmosphere for carbon and at a temperature sufficient to thermally decompose the organic binder inside, and then Cu
This is a method including a reduction step of reducing O to Cu and a firing step of sintering the substrate. As a result, it became easy to control the atmosphere during firing, and a dense sintered body could be obtained.

【0005】一方、セラミック多層基板は焼成時に焼結
に伴う収縮が生じる。この焼結に伴う収縮は、使用する
基板材料、グリーンシート組成、粉体ロットなどにより
異なる。これにより多層基板の作製においていくつかの
問題が生じている。まず第1に、多層セラミック基板の
作製において前述のごとく内層配線の焼成を行なってか
ら最上層配線の形成を行なう為、基板材料の収縮誤差が
大きいと、最上層配線パターンと寸法誤差の為内層電極
との接続が行えない。その結果、収縮誤差を予め許容す
るように最上層電極部に必要以上の大きい面積のランド
を形成しなければならず、高密度の配線を必要とする回
路には使用が難しい。その為収縮誤差にあわせて最上層
配線の為のスクリーン版をいくつか用意しておき、基板
の収縮率に応じて使用する方法が取られることもある。
この方法ではスクリーン版が数多く用意しなければなら
ず不経済である。
On the other hand, the ceramic multi-layer substrate shrinks due to sintering during firing. The shrinkage due to the sintering depends on the substrate material used, the green sheet composition, the powder lot, and the like. This has caused some problems in the fabrication of multilayer substrates. First of all, in the production of a multilayer ceramic substrate, the inner layer wiring is fired as described above before the uppermost layer wiring is formed. Therefore, when the shrinkage error of the substrate material is large, the inner layer wiring pattern and the dimensional error cause the inner layer wiring to have a large shrinkage error. Cannot connect to the electrode. As a result, a land having an unnecessarily large area has to be formed in the uppermost electrode portion so as to allow a shrinkage error in advance, which is difficult to use in a circuit that requires high-density wiring. Therefore, some screen plates may be prepared for the uppermost layer wiring according to the shrinkage error and used according to the shrinkage rate of the substrate.
This method is uneconomical because many screen versions must be prepared.

【0006】また最上層配線を内層と同時に焼成を行な
えば大きなランドを必要としないが、この同時焼成法に
よっても基板そのものの収縮誤差はそのまま存在するの
で、基板への部品搭載時のクリーム半田印刷において、
その誤差の為必要な部分に印刷できない場合が起こり、
また部品実装においても所定の部品位置とズレが生じ
る。
If the uppermost layer wiring is fired at the same time as the inner layer, a large land is not required. However, since the shrinkage error of the board itself is still present by this simultaneous firing method, cream solder printing at the time of mounting components on the board. At
Due to that error, there may be cases where it is not possible to print on the required part,
Also, when mounting components, there is a deviation from the predetermined component position.

【0007】これらの収縮誤差をなるべく少なくする為
には、製造工程において、基板材料およびグリーンシー
ト組成の管理はもちろん、粉体ロットの違いや積層条件
(プレス圧力、温度)を十分管理する必要がある。しか
し、一般に収縮率の誤差は±0.5%程度存在すると言
われている。
In order to reduce these shrinkage errors as much as possible, it is necessary to control not only the substrate material and the green sheet composition but also the difference in powder lot and the lamination conditions (pressing pressure, temperature) in the manufacturing process. is there. However, it is generally said that the error of the shrinkage ratio is about ± 0.5%.

【0008】このことは多層基板にかかわらずセラミッ
ク、およびガラス・セラミックの焼結を伴うものに共通
の課題である。そこで特開平5−102666号公報に
おいて、低温焼結ガラス・セラミックよりなるグリーン
シートに電極パターンを形成したものを所望枚数積層
し、この積層体の両面、もしくは片面に前記ガラス・セ
ラミック低温焼結基板材料の焼成温度では焼結しない無
機組成物よりなるグリーンシートで挟み込む様に積層
し、前記積層体を焼成し、しかる後に焼結しない無機組
成物を取り除くという技術が提案されている。これによ
り基板材料の焼結が厚み方向だけ起こり、平面方向の収
縮がゼロの基板が作製できる。
This is a common problem with ceramics, regardless of the multilayer substrate, and those involving the sintering of glass-ceramics. Therefore, in Japanese Unexamined Patent Publication (Kokai) No. 5-102666, a desired number of green sheets made of low temperature sintered glass / ceramic having electrode patterns formed thereon are laminated, and the glass / ceramic low temperature sintered substrate is provided on both sides or one side of the laminated body. A technique has been proposed in which green sheets made of an inorganic composition that does not sinter at the firing temperature of the material are laminated so as to be sandwiched, the laminate is fired, and then the inorganic composition that does not sinter is removed. As a result, the substrate material is sintered only in the thickness direction, and a substrate having zero shrinkage in the plane direction can be manufactured.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、前記従
来技術には幾つかの課題がある。それは例えば、焼成時
の基板収縮が厚み方向のみに起こるため、前述の様な従
来の電極用ペースト状組成物では焼成後の電極が粗な膜
構造になってしまうことである。配線電極構造が粗であ
ると、基板との密着が弱くなり電極が基板から剥離を起
す、外気との接触面積が多いために電極の酸化がされや
すくなり信頼性が低くなる等の課題がある。また基板焼
結と電極の焼結のマッチングがとれていなければ、ガラ
ス・セラミック多層基板焼成時に、基板焼結開始よりも
導体材料の焼結の方が早く開始するために基板が導体の
焼結を抑えることが出来ず、焼成後電極周辺の基板にお
いてクラックが発生してしまう。このため、前述の高精
度の平面方向の収縮が起きないガラス・セラミック多層
基板を使用するためには前記基板に適応した導電性ペー
スト組成物が必要となる。
However, the above-mentioned prior art has some problems. For example, since the shrinkage of the substrate during firing occurs only in the thickness direction, the conventional electrode-like paste composition for electrodes as described above results in a rough film structure of the electrode after firing. If the wiring electrode structure is rough, there is a problem that the adhesion with the substrate becomes weak and the electrode peels from the substrate, and because the contact area with the outside air is large, the electrode is easily oxidized and the reliability becomes low. . If the sintering of the substrate and the sintering of the electrode are not matched, the sintering of the conductor material starts earlier than the start of the sintering of the substrate when the glass-ceramic multilayer substrate is sintered. Cannot be suppressed, and cracks will occur in the substrate around the electrode after firing. Therefore, in order to use the above-mentioned glass-ceramic multilayer substrate which does not cause the highly precise shrinkage in the plane direction, the conductive paste composition adapted to the substrate is required.

【0010】本発明は、上記課題を解決するため、平面
方向に収縮を起こさないガラス・セラミック多層基板に
使用しても、電極周辺の基板にクラックが発生すること
が無く、かつ電極が密な膜構造で、基板と電極との密着
を図ることが出来る導電性インキを提供することを目的
とする。
In order to solve the above-mentioned problems, the present invention does not cause cracks in the substrate around the electrodes even when it is used for a glass-ceramic multilayer substrate that does not shrink in the plane direction, and the electrodes are dense. It is an object of the present invention to provide a conductive ink which has a film structure and can bring the substrate and the electrode into close contact with each other.

【0011】[0011]

【課題を解決するための手段】上記課題を目的を達成す
る、本発明の導電性インキは、無機成分、溶剤及び有機
バインダを少なくとも含む導電性インキであって、Cu
Oが80.0〜95.0体積%、Ni、Mo、Zr及び
Mnから選ばれる少なくとも1種である金属粒子が1.
0〜10.0体積%、無機バインダが4.0〜10.0
体積%からなる無機組成物を含み、無機成分を分散させ
たことを特徴とする。
The conductive ink of the present invention, which achieves the above object, is a conductive ink containing at least an inorganic component, a solvent and an organic binder.
The metal particles in which O is 80.0 to 95.0% by volume and at least one kind selected from Ni, Mo, Zr, and Mn is 1.
0 to 10.0% by volume, inorganic binder 4.0 to 10.0
It is characterized in that it contains an inorganic composition composed of volume% and has an inorganic component dispersed therein.

【0012】前記構成においては、CuO粒子の平均粒
径が1.0〜7.0μmであることが好ましい。また前
記構成においては、金属粒子の平均粒径が1.0〜6.
0μmであることが好ましい。
In the above structure, the average particle size of the CuO particles is preferably 1.0 to 7.0 μm. Moreover, in the said structure, the average particle diameter of a metal particle is 1.0-6.
It is preferably 0 μm.

【0013】まt前記構成においては、無機バインダ粒
子の平均粒径が1.0〜5.0μmであることが好まし
い。
In the above construction, it is preferable that the average particle diameter of the inorganic binder particles is 1.0 to 5.0 μm.

【0014】[0014]

【作用】前記本発明の導電性インキによれば、無機成
分、溶剤及び有機バインダを少なくとも含む導電性イン
キであって、CuOが80.0〜95.0体積%、N
i、Mo、Zr及びMnから選ばれる少なくとも1種で
ある金属粒子が1.0〜10.0体積%、無機バインダ
が4.0〜10.0体積%からなる無機組成物を含み、
無機成分を分散させたことにより、平面方向に収縮を起
こさないガラス・セラミック多層基板に使用しても、電
極周辺の基板にクラックが発生することが無く、かつ電
極が密な膜構造で、基板と電極との密着を図ることが出
来る導電性インキを達成できる。すなわち、焼成時にお
けるCuの焼結を遅らせ、Cuの軟化温度よりも高い軟
化温度の金属粒子を添加しているので、ガラス・セラミ
ック基板焼結までは電極の焼結を抑えて後に焼結が始ま
り、電極がより密な膜構造をとり、かつ電極周辺の基板
のクラックが発生しないものとなり、信頼性も良好なも
のにできる。
According to the conductive ink of the present invention, the conductive ink contains at least an inorganic component, a solvent and an organic binder, and contains 80.0 to 95.0% by volume of CuO and N.
i, Mo, Zr, and an inorganic composition containing at least one metal particle of 1.0 to 10.0% by volume and an inorganic binder of 4.0 to 10.0% by volume.
Even if it is used for a glass / ceramic multilayer substrate that does not shrink in the planar direction due to the dispersion of inorganic components, cracks do not occur in the substrate around the electrodes, and the electrodes have a dense film structure It is possible to achieve a conductive ink capable of achieving close contact between the electrode and the electrode. That is, since the sintering of Cu during firing is delayed and metal particles having a softening temperature higher than the softening temperature of Cu are added, the sintering of the electrode is suppressed until the glass / ceramic substrate is sintered, and the sintering is performed later. At the beginning, the electrode has a denser film structure, and cracks in the substrate around the electrode do not occur, so that the reliability can be improved.

【0015】また、CuO粒子の粒径を1.0〜7.0
μmに、金属粒子の平均粒径を1.0〜6.0μmに、
または無機成分中の無機バインダ粒子の平均粒径を1.
0〜5.0μmとそれぞれすることにより、電極がより
密な膜構造をとり、かつ電極周辺の基板のクラックが発
生しないので好ましい。
Further, the particle size of the CuO particles is 1.0 to 7.0.
μm, the average particle size of the metal particles to 1.0 to 6.0 μm,
Alternatively, the average particle size of the inorganic binder particles in the inorganic component is 1.
The thicknesses of 0 to 5.0 μm are preferable because the electrodes have a denser film structure and cracks in the substrate around the electrodes do not occur.

【0016】[0016]

【実施例】以下具体例を用いて本発明を説明する。本実
施例の導電性インキの溶剤及び有機バインダは、一般の
導電性インキの作製に用いられる公知の材料を任意に用
いることができる。無機成分中の無機バインダには、主
にガラスが用いられる。
The present invention will be described below with reference to specific examples. As the solvent and the organic binder of the conductive ink of this embodiment, any known material used for producing a general conductive ink can be arbitrarily used. Glass is mainly used as the inorganic binder in the inorganic component.

【0017】(実施例1)本実施例で用いたペースト
は、無機組成としてCuO(平均粒経2.0μm)、M
o(平均粒径4.0μm)、ガラスフリット(日本電気
硝子社製ホウ珪酸鉛ガラス、平均粒経3.0μm)から
なるものである。無機粉体組成を(表1)に示す。
(Example 1) The paste used in this example has an inorganic composition of CuO (average grain size 2.0 μm), M
o (average particle size 4.0 μm) and glass frit (lead borosilicate glass manufactured by Nippon Electric Glass Co., Ltd., average particle size 3.0 μm). The inorganic powder composition is shown in (Table 1).

【0018】[0018]

【表1】 [Table 1]

【0019】この(表1)に示すそれぞれの組成のミル
ベースをセラミック3本ロールにより適度な粘度になる
ように、溶剤(関東化学社製αターピネオール、95重
量%)と有機バインダ(日進化成社製エチルセルロー
ス、5重量%)とともに混練し、CuOインキを作製し
た。
A solvent (α-terpineol, 95% by weight, manufactured by Kanto Chemical Co., Inc.) and an organic binder (Nikkei Seisha Co., Ltd.) were used so that the mill bases having the respective compositions shown in (Table 1) were made to have an appropriate viscosity by three ceramic rolls. It was kneaded with ethyl cellulose (5% by weight) to prepare a CuO ink.

【0020】このCuOインキを使用してスクリーン印
刷機により、低温焼成用ガラス・セラミックのグリーン
シート上に印刷を行った。この印刷したグリーンシート
を必要枚数積層し、両面にアルミナグリーンシートを積
層した状態で熱圧着して積層体を形成した。熱圧着条件
は、温度が80℃、圧力は200Kg/cm2であった。この
積層体を箱型炉において空気中で500℃、2時間保持
し有機バインダ除去を行ない、還元炉において水素10
0%中で400℃、5時間保持し還元を行ない、メッシ
ュベルト炉において純窒素中で950℃、1時間の焼成
を行った。この焼成後の導体電極を接着強度での性能評
価を行った。
Using this CuO ink, a screen printing machine was used to print on a green sheet of glass / ceramic for low temperature firing. A required number of the printed green sheets were laminated, and the alumina green sheets were laminated on both sides by thermocompression bonding to form a laminate. The thermocompression bonding conditions were a temperature of 80 ° C. and a pressure of 200 Kg / cm 2 . This laminate was held in a box furnace at 500 ° C. for 2 hours in air to remove the organic binder, and hydrogen was added in a reducing furnace to remove hydrogen.
Reduction was carried out by holding at 400 ° C. for 5 hours in 0%, and firing was performed at 950 ° C. for 1 hour in pure nitrogen in a mesh belt furnace. The performance of the conductor electrode after firing was evaluated by the adhesive strength.

【0021】(性能評価方法)接着強度:基板上に2m
m×2mm導体膜12箇所のパターンの印刷を行ない前
記工程により焼成を行った。その後パターン上にクリー
ム半田を付け、ベルト伝熱式リフロー炉においてリフロ
ー温度350℃、ベルトスピード0.6m/分で導体膜
上に金メッキしたリン青銅のピンを付けた。このサンプ
ルを試験機でピンの垂直方向から力を加え、基板から導
体膜が剥がれるときの接着強度を測定した。その結果も
(表1)に示す。
(Performance evaluation method) Adhesive strength: 2 m on the substrate
A pattern was printed at 12 locations of the m × 2 mm conductor film, and firing was performed by the above process. After that, cream solder was applied on the pattern, and gold-plated phosphor bronze pins were attached on the conductor film at a reflow temperature of 350 ° C. and a belt speed of 0.6 m / min in a belt heat transfer type reflow furnace. A force was applied to this sample in the direction perpendicular to the pins with a tester to measure the adhesive strength when the conductor film was peeled from the substrate. The results are also shown in (Table 1).

【0022】(表1)に示されるように、接着強度はM
o添加量が1.0〜10.0体積%、ガラス添加量が4
〜10体積%の時、接着強度は2kg/2mm□以上あ
るが、Mo量が1.0体積未満、ガラス量が4.0体積
%未満では強度が弱く、10体積%より多くなっても大
きな強度の向上はみられない。このことから実際の使用
時に必要な性能として接着強度2.0kg/2mm□以
上となるのは、無機組成においてCuOが80.0〜9
5.0体積%、Moが1.0〜10.0体積%、無機バ
インダであるガラスが4.0〜10.0体積%から構成
されるときである。そして、CuOが89.0体積%、
Moが5.0体積%、無機バインダであるガラスが6.
0体積%から構成されるときが最も好ましい結果が得ら
れた。
As shown in (Table 1), the adhesive strength is M
o Addition amount is 1.0 to 10.0% by volume, glass addition amount is 4
At 10 to 10% by volume, the adhesive strength is 2 kg / 2 mm □ or more, but when the Mo amount is less than 1.0 volume and the glass amount is less than 4.0% by volume, the strength is weak, and when it is more than 10% by volume, it is large. No improvement in strength is observed. From this fact, the adhesive strength of 2.0 kg / 2 mm □ or more is required in actual use because CuO is 80.0 to 9 in the inorganic composition.
This is when 5.0% by volume, 1.0 to 10.0% by volume of Mo, and 4.0 to 10.0% by volume of glass as an inorganic binder. And, CuO is 89.0% by volume,
Mo is 5.0% by volume, and the glass that is an inorganic binder is 6.
The most favorable results were obtained when it was composed of 0% by volume.

【0023】(実施例2)本実施例で用いたペースト組
成は、無機粉体にはCuO(平均粒径5.5μm)8
9.0体積%、Ni5.0体積%、ガラスフリット(日
本電気硝子社製ホウ珪酸鉛ガラス、平均粒径5.0μ
m)6.0体積%を使用した。使用したNi粒子の平均
粒径を(表2)に示す。
(Embodiment 2) The paste composition used in this embodiment is such that the inorganic powder is CuO (average particle size 5.5 μm) 8
9.0% by volume, 5.0% by volume of Ni, glass frit (lead borosilicate glass manufactured by Nippon Electric Glass Co., average particle size 5.0 μ)
m) 6.0% by volume was used. The average particle size of the Ni particles used is shown in (Table 2).

【0024】[0024]

【表2】 [Table 2]

【0025】前述の組成のミルベースをセラミック3本
ロールにより適度な粘度になるように、溶剤(関東化学
社製αターピネオール、92重量%)と有機バインダ
(日進化成社製エチルセルロース、8重量%)とともに
混練し、CuOインキを作製した。
A solvent (α-terpineol, manufactured by Kanto Chemical Co., Inc., 92% by weight) and an organic binder (ethyl cellulose, manufactured by Nikko Eisei Co., Ltd., 8% by weight) are used so that the mill base having the above-mentioned composition is made into an appropriate viscosity by a three-roll ceramic roll. The mixture was kneaded together to produce CuO ink.

【0026】このCuOインキを使用してスクリーン印
刷機により、低温焼成用ガラス・セラミックのグリーン
シート上に印刷を行った。この印刷したグリーンシート
を必要枚数積層し、両面にアルミナグリーンシートを積
層した状態で熱圧着して積層体を形成した。熱圧着条件
は、温度が80℃、圧力は200Kg/cm2であった。この
積層体を箱型炉において空気中で500℃、2時間保持
し有機バインダ除去を行ない、還元炉において水素10
0%中で400℃、5時間保持し還元を行ない、メッシ
ュベルト炉において純窒素中で950℃、1時間の焼成
を行った。この焼成後の試料のSEM観察により、導体
電極の状態と電極周辺の基板のクラックの発生の有無を
評価した。その結果も(表2)に示す。
Using this CuO ink, a screen printing machine was used to print on a green sheet of glass / ceramic for low temperature firing. A required number of the printed green sheets were laminated, and the alumina green sheets were laminated on both sides by thermocompression bonding to form a laminate. The thermocompression bonding conditions were a temperature of 80 ° C. and a pressure of 200 Kg / cm 2 . This laminate was held in a box furnace at 500 ° C. for 2 hours in air to remove the organic binder, and hydrogen was added in a reducing furnace to remove hydrogen.
Reduction was carried out by holding at 400 ° C. for 5 hours in 0%, and firing was performed at 950 ° C. for 1 hour in pure nitrogen in a mesh belt furnace. The state of the conductor electrode and the presence or absence of cracks in the substrate around the electrode were evaluated by SEM observation of the sample after firing. The results are also shown in (Table 2).

【0027】(表2)に示されるようにNi粒子平均粒
径が1.0〜6.0μmであるときに特に好ましい結果
が得られた。なお本実施例において、無機組成に使用す
る金属粒子としてMo、Niを使用したが、Zr、M
n、もしくはNi、Mo、Zr、Mnを数種添加したと
きにも同様の効果が得られた。また本実施例ではCuO
平均粒径2.0μm、5.5μm、無機バインダ平均粒
径、3.0μm、5.0μmのものを使用したが、Cu
O粒径1.0〜7.0μm、無機バインダ粒径1.0〜
5.0μmである時には同様の効果が得られた。
As shown in Table 2, particularly preferable results were obtained when the average particle size of Ni particles was 1.0 to 6.0 μm. In this example, Mo and Ni were used as the metal particles used in the inorganic composition, but Zr and M were used.
Similar effects were obtained when n or several kinds of Ni, Mo, Zr and Mn were added. Further, in this embodiment, CuO
An average particle size of 2.0 μm, 5.5 μm and an inorganic binder average particle size of 3.0 μm, 5.0 μm were used.
O particle size 1.0 to 7.0 μm, inorganic binder particle size 1.0 to
A similar effect was obtained when the thickness was 5.0 μm.

【0028】[0028]

【発明の効果】以上説明した様に、本発明の導電性イン
キによれば、無機成分、溶剤及び有機バインダを少なく
とも含む導電性インキであって、CuOが80.0〜9
5.0体積%、Ni、Mo、Zr及びMnから選ばれる
少なくとも1種である金属粒子が1.0〜10.0体積
%、無機バインダが4.0〜10.0体積%からなる無
機組成物を含み、無機成分を分散させたことにより、平
面方向に収縮を起こさないガラス・セラミック多層基板
に適応した配線電極用の導電性インキを提供できる。
As described above, according to the conductive ink of the present invention, it is a conductive ink containing at least an inorganic component, a solvent and an organic binder, and CuO is 80.0-9.
Inorganic composition consisting of 5.0% by volume, 1.0 to 10.0% by volume of metal particles which is at least one kind selected from Ni, Mo, Zr and Mn, and 4.0 to 10.0% by volume of an inorganic binder. It is possible to provide a conductive ink for wiring electrodes, which is suitable for a glass-ceramic multilayer substrate that does not shrink in the plane direction by dispersing the inorganic component containing the substance.

【0029】また、無機成分中のCuO粒子の平均粒径
が1.0〜7.0μmであり、無機成分中の金属粒子の
平均粒径が1.0〜6.0μmであり、または無機成分
中の無機バインダ粒子の平均粒径が1.0〜5.0μm
であると、電極がより密な膜構造をとり、かつ電極周辺
の基板のクラックが発生しない。
The CuO particles in the inorganic component have an average particle size of 1.0 to 7.0 μm, and the metal particles in the inorganic component have an average particle size of 1.0 to 6.0 μm. The average particle size of the inorganic binder particles therein is 1.0 to 5.0 μm
In that case, the electrode has a denser film structure, and cracks in the substrate around the electrode do not occur.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 板垣 峰広 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 中村 嘉文 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Minehiro Itagaki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 無機成分、溶剤及び有機バインダを少な
くとも含む導電性インキであって、CuOが80.0〜
95.0体積%、Ni、Mo、Zr及びMnから選ばれ
る少なくとも1種である金属粒子が1.0〜10.0体
積%、無機バインダが4.0〜10.0体積%からなる
無機組成物を含み、無機成分を分散させたことを特徴と
する導電性インキ。
1. A conductive ink containing at least an inorganic component, a solvent and an organic binder, wherein CuO is 80.0 to.
Inorganic composition consisting of 95.0% by volume, 1.0 to 10.0% by volume of metal particles, which is at least one selected from Ni, Mo, Zr, and Mn, and 4.0 to 10.0% by volume of an inorganic binder. A conductive ink containing a substance and having an inorganic component dispersed therein.
【請求項2】 CuOの平均粒径が1.0〜7.0μm
である請求項1に記載の導電性インキ。
2. The average particle size of CuO is 1.0 to 7.0 μm.
The conductive ink according to claim 1, which is
【請求項3】 金属粒子の平均粒径が1.0〜6.0μ
mである請求項1に記載の導電性インキ。
3. The average particle diameter of the metal particles is 1.0 to 6.0 μm.
The conductive ink according to claim 1, which is m.
【請求項4】 無機バインダの平均粒径が1.0〜5.
0μmである請求項1に記載の導電性インキ。
4. The average particle size of the inorganic binder is 1.0 to 5.
The conductive ink according to claim 1, which has a thickness of 0 μm.
JP27942794A 1994-11-14 1994-11-14 Electrically conductive ink Pending JPH08134388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27942794A JPH08134388A (en) 1994-11-14 1994-11-14 Electrically conductive ink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27942794A JPH08134388A (en) 1994-11-14 1994-11-14 Electrically conductive ink

Publications (1)

Publication Number Publication Date
JPH08134388A true JPH08134388A (en) 1996-05-28

Family

ID=17610929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27942794A Pending JPH08134388A (en) 1994-11-14 1994-11-14 Electrically conductive ink

Country Status (1)

Country Link
JP (1) JPH08134388A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002082467A1 (en) * 2001-04-09 2002-10-17 E. I. Du Pont De Nemours And Company Conductor compositions and the use thereof
WO2005019360A1 (en) * 2003-08-25 2005-03-03 Dip Tech. Ltd. Ink for ceramic surfaces
US7157023B2 (en) 2001-04-09 2007-01-02 E. I. Du Pont De Nemours And Company Conductor compositions and the use thereof
CN111333335A (en) * 2020-03-04 2020-06-26 东莞市圣龙特电子科技有限公司 High-acid-resistance automobile glass printing ink and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002082467A1 (en) * 2001-04-09 2002-10-17 E. I. Du Pont De Nemours And Company Conductor compositions and the use thereof
US7157023B2 (en) 2001-04-09 2007-01-02 E. I. Du Pont De Nemours And Company Conductor compositions and the use thereof
US7914709B2 (en) 2001-04-09 2011-03-29 E.I. Du Pont De Nemours And Company Conductor compositions and the use thereof
WO2005019360A1 (en) * 2003-08-25 2005-03-03 Dip Tech. Ltd. Ink for ceramic surfaces
US7803221B2 (en) 2003-08-25 2010-09-28 DIP Tech LTd.. Ink for ceramic surfaces
US7976906B2 (en) 2003-08-25 2011-07-12 DIPTech Ltd. Digital ink-jet glass printer
US8603589B2 (en) 2003-08-25 2013-12-10 Dip Tech Ltd. Digital ink-jet glass printer
CN111333335A (en) * 2020-03-04 2020-06-26 东莞市圣龙特电子科技有限公司 High-acid-resistance automobile glass printing ink and preparation method thereof

Similar Documents

Publication Publication Date Title
EP1408520B1 (en) Co-fired ceramic capacitor and method for forming ceramic capacitors for use in printed wiring boards
JP2785544B2 (en) Method for manufacturing multilayer ceramic substrate
JP3351043B2 (en) Method for manufacturing multilayer ceramic substrate
JPH06237081A (en) Manufacture of multilayer ceramic substrate
JPH06100377A (en) Production of multilayer ceramic board
JPH05327218A (en) Manufacture of multilayer ceramic base
JPH08134388A (en) Electrically conductive ink
US5662755A (en) Method of making multi-layered ceramic substrates
JP3082475B2 (en) Method for manufacturing multilayer ceramic substrate
JPH06223621A (en) Conductor paste composition
JP3100796B2 (en) Method for manufacturing multilayer ceramic substrate
JP3222296B2 (en) Conductive ink
JP2803421B2 (en) Method for manufacturing multilayer ceramic substrate
JPH05136572A (en) Manufacture of multilayered ceramic board
JP3197147B2 (en) Method for manufacturing multilayer ceramic substrate
JPH05327220A (en) Manufacture of multilayer ceramic base
JP2812605B2 (en) Method for manufacturing multilayer ceramic substrate
JPH06313137A (en) Conductive ink
JP2855959B2 (en) Method for manufacturing multilayer ceramic substrate
JPH05347484A (en) Via formation paste and via formation method
JPH08279666A (en) Conductive paste
JPH05343851A (en) Manufacture of multilayer ceramic substrate
JPH05139849A (en) Production of ceramic multilayer substrate
JPS61164298A (en) Composite ceramic multilayer interconnection substrate
JPH08307029A (en) Conductive paste