JP2803421B2 - Method for manufacturing multilayer ceramic substrate - Google Patents

Method for manufacturing multilayer ceramic substrate

Info

Publication number
JP2803421B2
JP2803421B2 JP3328567A JP32856791A JP2803421B2 JP 2803421 B2 JP2803421 B2 JP 2803421B2 JP 3328567 A JP3328567 A JP 3328567A JP 32856791 A JP32856791 A JP 32856791A JP 2803421 B2 JP2803421 B2 JP 2803421B2
Authority
JP
Japan
Prior art keywords
firing
ceramic substrate
multilayer ceramic
substrate according
inorganic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3328567A
Other languages
Japanese (ja)
Other versions
JPH05167253A (en
Inventor
祐伯  聖
誠一 中谷
英信 西川
幹也 嶋田
嘉文 中村
和裕 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18211719&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2803421(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP3328567A priority Critical patent/JP2803421B2/en
Priority to EP19920116966 priority patent/EP0535711A3/en
Publication of JPH05167253A publication Critical patent/JPH05167253A/en
Application granted granted Critical
Publication of JP2803421B2 publication Critical patent/JP2803421B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体LSI、チップ部
品などを搭載し、かつそれらを相互配線するためのセラ
ミック多層配線基板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramic multilayer wiring board for mounting semiconductor LSIs, chip components and the like and interconnecting them.

【0002】[0002]

【従来の技術】近年、低温焼結ガラス・セラミック多層
基板の開発によって、使用できる導体材料に、金、銀、
銅、パラジウムまたはそれらの混合物が用いられるよう
になった。これらの金属は従来使用されたタングステ
ン、モリブデンなどに比べ導体抵抗が低く、且つ使用で
きる設備も安全で低コストに製造できる。
2. Description of the Related Art In recent years, with the development of a low-temperature sintered glass / ceramic multilayer substrate, usable conductor materials include gold, silver, and silver.
Copper, palladium or mixtures thereof have been used. These metals have lower conductor resistance than conventionally used tungsten, molybdenum, and the like, and can be used with safe equipment at low cost.

【0003】一方これらの金属の内、貴金属である金、
銀、パラジウムは高価でかつ価格変動が大きいことか
ら、安価で価格変動の少ないCu電極材料の使用が望ま
れている。
On the other hand, among these metals, gold, which is a noble metal,
Since silver and palladium are expensive and have large price fluctuations, it is desired to use a Cu electrode material which is inexpensive and has little price fluctuation.

【0004】ここではそれらの低温焼結多層基板の代表
的な製造方法の一例を述べる。低温焼結多層基板の種類
には大きく分けて3種類の方法がある。まず第1に多層
基板の内層電極に銀を用い、低温焼結基板のグリーンシ
ートを所望の枚数積層し、空気中で焼成し、その後最上
層に銀、パラジウムペーストを印刷、焼成して得られる
ものである。これは内部にインピーダンスの小さい銀を
用い、最上層に半田耐熱を有する銀・パラジウムを使用
するものである。
Here, an example of a typical method for producing such a low-temperature sintered multilayer substrate will be described. There are three main types of low-temperature sintered multilayer substrates. Firstly, silver is used for the inner layer electrode of the multilayer substrate, a desired number of green sheets of the low-temperature sintering substrate are laminated and fired in the air, and then silver and palladium paste are printed and fired on the uppermost layer to obtain a green sheet. Things. This uses silver having a small impedance inside and silver / palladium having solder heat resistance as the uppermost layer.

【0005】第2は、内部の電極に前者と同様に銀を用
い、最上層に銅を用いる方法で、最上層配線に銅を用い
ることで、前者の銀・パラジウムに比べ低いインピーダ
ンス、半田濡れの点で有効なものである。しかし、最上
層に用いる銅は銀との共晶温度が低いため600℃程度
の低温焼成銅ペーストを用いなければならない。その結
果、接着強度、半田濡れの点で課題が多い。
Second, silver is used for the internal electrodes in the same manner as the former, and copper is used for the uppermost layer. By using copper for the uppermost layer wiring, the impedance and solder wetting are lower than those of the former silver and palladium. It is effective in the point of. However, since the copper used for the uppermost layer has a low eutectic temperature with silver, a low-temperature fired copper paste of about 600 ° C. must be used. As a result, there are many problems in terms of adhesive strength and solder wetting.

【0006】最後に第3の方法として、内層および最上
層に銅電極を用いる方法がある。導体抵抗、半田濡れ
性、コストの点で最も良いがすべて窒素などの中性雰囲
気で焼成しなければ成らずその作製が困難である。一般
に銅電極を使用するには、基板上にCuペーストをスク
リーン印刷にて配線パターンを形成し、乾燥後、Cuの
融点以下の温度(850〜950℃程度)で、かつCu
が酸化されず導体ペースト中の有機成分が十分燃焼する
ように酸素分圧を制御した窒素雰囲気中で焼成を行なう
ものである。
Finally, there is a third method in which copper electrodes are used for the inner layer and the uppermost layer. It is best in terms of conductor resistance, solder wettability, and cost, but all must be fired in a neutral atmosphere such as nitrogen, and its fabrication is difficult. Generally, to use a copper electrode, a wiring pattern is formed by screen printing a Cu paste on a substrate, and after drying, at a temperature equal to or lower than the melting point of Cu (about 850 to 950 ° C.) and Cu
Is fired in a nitrogen atmosphere in which the oxygen partial pressure is controlled so that the organic components in the conductor paste are sufficiently oxidized without being oxidized.

【0007】多層する場合は、同様の条件で絶縁層を印
刷焼成して得られる。しかし、焼成工程における雰囲気
を適度な酸素分圧下にコントロールすることは困難であ
り、また多層化する場合、各ペーストを印刷後その都度
焼成を繰り返し行なう必要があり、リードタイムが長く
なり設備などのコストアップにつながるなどの課題を有
している。
In the case of multi-layering, the insulating layer is obtained by printing and baking under the same conditions. However, it is difficult to control the atmosphere in the firing step under an appropriate partial pressure of oxygen, and in the case of multilayering, it is necessary to repeat firing each time after printing each paste, leading to a longer lead time and a longer equipment time. It has problems such as cost increase.

【0008】そこで特願昭59−147833号公報に
おいて、セラミック多層基板の作製にあたり、酸化第二
銅ペーストを用い、脱バインダ工程、還元工程、焼成工
程の3段階とする方法がすでに開示されている。それは
酸化第二銅を導体の出発原料とし多層体を作製し、脱バ
インダ工程は、炭素に対して充分な酸素雰囲気でかつ内
部の有機バインダを熱分解させるに充分な温度で熱処理
を行なう。次に酸化第二銅を銅に還元する還元工程、基
板の焼結を行なう焼成工程により成立しているものであ
る。これにより、焼成時の雰囲気制御が容易になり緻密
な焼結体が得られるようになった。
Therefore, Japanese Patent Application No. 59-147833 has already disclosed a method of producing a ceramic multilayer substrate using a cupric oxide paste and performing three steps of a binder removal step, a reduction step, and a firing step. . It produces a multilayer body using cupric oxide as a starting material for a conductor, and performs a heat treatment in a binder removing step in an oxygen atmosphere sufficient for carbon and at a temperature sufficient to thermally decompose the internal organic binder. Next, a reduction step for reducing cupric oxide to copper and a firing step for sintering the substrate are established. As a result, the atmosphere can be easily controlled during firing, and a dense sintered body can be obtained.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、セラミ
ック多層基板には以下に示すような課題がある。
However, the ceramic multilayer substrate has the following problems.

【0010】それは、セラミック多層基板が焼成時に焼
結に伴う収縮が生じることである。この焼結に伴う収縮
は、使用する基板材料、グリーンシート組成、粉体ロッ
トなどにより異なる。これにより多層基板の作製におい
ていくつかの問題が生じている。
That is, shrinkage accompanying sintering occurs during firing of the ceramic multilayer substrate. The shrinkage due to sintering differs depending on the substrate material, green sheet composition, powder lot, and the like used. This causes several problems in the fabrication of a multilayer substrate.

【0011】まず第1に、多層セラミック基板の作製に
おいて前述のごとく内層配線の焼成を行なってから最上
層配線の形成を行なうため、基板材料の収縮誤差が大き
いと、最上層配線パターンと内層電極との接続がうまく
行えない。その結果、収縮誤差を予め許容するように最
上層電極部に必要以上の大きい面積のランドを形成しな
ければならず、高密度の配線を必要とする回路には使用
できない。また収縮誤差にあわせて最上層配線のための
スクリーン版をいくつか用意しておき、基板の収縮率に
応じて使用する方法が取られている。この方法ではスク
リーン版が数多く用意しなければならず不経済である。
First, in manufacturing a multilayer ceramic substrate, the uppermost wiring is formed after the inner wiring is fired as described above. Therefore, if a contraction error of the substrate material is large, the uppermost wiring pattern and the inner layer electrode are formed. Cannot be connected properly. As a result, a land with an unnecessarily large area must be formed in the uppermost layer electrode portion so as to allow a shrinkage error in advance, and it cannot be used for a circuit requiring high-density wiring. In addition, a method is used in which several screen plates for the uppermost layer wiring are prepared according to the shrinkage error and used according to the shrinkage ratio of the substrate. In this method, a large number of screen plates must be prepared, which is uneconomical.

【0012】一方、最上層配線を内層焼成と同時に行な
えば大きなランドを必要としないが、この同時焼成法に
よっても基板そのものの収縮誤差はそのまま存在するの
で、最後の部品搭載時のクリーム半田印刷において、そ
の誤差のため必要な部分に印刷できない場合が起こる。
また部品実装においても所定の部品位置とのズレが生じ
る。
On the other hand, if the uppermost layer wiring is performed simultaneously with the inner layer firing, a large land is not required. However, even with this simultaneous firing method, the shrinkage error of the substrate itself still exists. In some cases, printing cannot be performed on a required portion due to the error.
Also, a deviation from a predetermined component position occurs in component mounting.

【0013】第2にグリーンシート積層法による多層基
板は、グリーンシートの造膜方向によって幅方向と長手
方向によってもその収縮率が異なる。このこともセラミ
ック多層基板の作製の障害となっている。
Second, the shrinkage ratio of the multilayer substrate formed by the green sheet laminating method differs depending on the film forming direction of the green sheet also in the width direction and the longitudinal direction. This also hinders the production of the ceramic multilayer substrate.

【0014】これらの収縮誤差をなるべく少なくするた
めには、製造工程において、基板材料およびグリーンシ
ート組成、の管理はもちろん、粉体ロットの違いや積層
条件(プレス圧力、温度)を十分管理する必要がある。
しかし、一般に収縮率の誤差は±0.5%程度存在する
と言われている。
In order to minimize these shrinkage errors, it is necessary to manage not only the substrate material and the composition of the green sheets, but also the difference between powder lots and the laminating conditions (press pressure, temperature) in the manufacturing process. There is.
However, it is generally said that an error of the shrinkage ratio exists about ± 0.5%.

【0015】このことは多層基板にかかわらずセラミッ
ク、およびガラス・セラミックの焼結を伴うものに共通
の課題であり、基板材料の焼結が厚み方向だけ起こり、
平面方向の収縮がゼロの基板が作製できれば上記の様な
課題が解決でき、工業上極めて有効である。
This is a common problem for ceramics and glass-ceramics that involve sintering regardless of the multilayer substrate. Sintering of the substrate material occurs only in the thickness direction.
If a substrate with zero shrinkage in the plane direction can be manufactured, the above-mentioned problems can be solved, which is extremely effective industrially.

【0016】本発明は上記課題を解決し、焼成時の収縮
が平面方向で起こらない多層セラミック基板の製造方法
を提供するものである。
The present invention solves the above problems and provides a method for manufacturing a multilayer ceramic substrate in which shrinkage during firing does not occur in a plane direction.

【0017】[0017]

【課題を解決するための手段】この目的を達成するため
本発明は、ガラス・セラミック低温焼結基板材料に少な
くとも有機バインダ、可塑剤を含むグリーンシートを作
製し、導体ペースト組成物で電極パターンを形成し、前
記生シートと別の電極パターン形成済みグリーンシート
とを所望枚数積層し、このグリーンシート積層体の両面
もしくは片面に前記ガラス・セラミック低温焼結基板材
料の焼成温度では焼結しない無機組成物を加圧成形によ
り形成した後、焼成する。しかる後、焼結しない無機組
成物を除去する方法によって得られものである。
According to the present invention, a green sheet containing at least an organic binder and a plasticizer is prepared on a glass / ceramic low-temperature sintered substrate material, and an electrode pattern is formed using a conductive paste composition. A desired number of the green sheets and another green sheet on which an electrode pattern is formed are laminated, and an inorganic composition that is not sintered at both sides or one side of the green sheet laminate at the firing temperature of the glass-ceramic low-temperature sintered substrate material After the product is formed by pressure molding, it is fired. Thereafter, it is obtained by a method of removing the inorganic composition that does not sinter.

【0018】[0018]

【作用】本発明の製造法は、ガラス・セラミック低温焼
結基板材料に少なくとも有機バインダ、可塑剤を含むグ
リーンシートを作製し、導体ペースト組成物で電極パタ
ーンを形成し、前記生シートと別の電極パターン形成済
みグリーンシートとを所望枚数積層し、このグリーンシ
ート積層体の両面もしくは片面に、前記ガラス・セラミ
ック低温焼結基板材料の焼成温度では焼結しない無機組
成物を加圧成形により形成する。このような構成にする
ことにより,焼成時の収縮が厚み方向のみに起こり,平
面方向の収縮は起こらない。これは、両面もしくは片面
に形成した焼結しない材料で挟み込まれているため、平
面方向の収縮が阻止されるためと考えられる。この後、
不必要な焼結しない材料を取り除けば、所望のガラス・
セラミック基板が得られる。
According to the production method of the present invention, a green sheet containing at least an organic binder and a plasticizer is prepared on a glass / ceramic low-temperature sintered substrate material, an electrode pattern is formed with a conductive paste composition, and another green sheet is formed. A desired number of green sheets on which an electrode pattern has been formed are laminated, and an inorganic composition that does not sinter at the firing temperature of the glass-ceramic low-temperature sintering substrate material is formed on both surfaces or one surface of the green sheet laminate by pressure molding. . With this configuration, shrinkage during firing occurs only in the thickness direction, and no shrinkage occurs in the plane direction. This is presumably because the sheet is sandwiched between the non-sintered materials formed on both sides or one side, so that contraction in the planar direction is prevented. After this,
By removing unnecessary unsintered materials, the desired glass and
A ceramic substrate is obtained.

【0019】[0019]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0020】(実施例1)まず多層セラミック基板の作
製方法を説明する。本発明の製造プロセスは図1に示す
方法で行なった。
Embodiment 1 First, a method for manufacturing a multilayer ceramic substrate will be described. The manufacturing process of the present invention was performed by the method shown in FIG.

【0021】基板材料のガラス・セラミックは,ホウ珪
酸鉛ガラス粉末にセラミック材料としてのアルミナ粉体
を50対50の重量比で混合した組成物(日本電気硝子
社製MLS−19)を用いた。このガラス・セラミック
粉体と有機バインダとしてポリビニルブチラール、可塑
剤としてヂ−n−ブチルフタレート、溶剤としてトルエ
ンとイソプロピルアルコールの混合液(30対70重量
比)を混合しスラリーとした。
The glass ceramic used as the substrate material was a composition (MLS-19, manufactured by Nippon Electric Glass Co., Ltd.) obtained by mixing lead borosilicate glass powder with alumina powder as a ceramic material at a weight ratio of 50:50. This glass-ceramic powder was mixed with polyvinyl butyral as an organic binder, ヂ -n-butyl phthalate as a plasticizer, and a mixed solution of toluene and isopropyl alcohol (30 to 70 weight ratio) as a solvent to form a slurry.

【0022】このスラリーをドクターブレード法で有機
フィルム上にシート成形した。この時、造膜から乾燥、
打ち抜き、さらには必要に応じてバイアホール加工を行
う各工程を連続的に行うシステムを使用した。このグリ
ーンシートに銀ペーストを用いて導体パターンの形成お
よびビアホール埋め印刷をスクリーン印刷法によって行
った。導体ペーストは、Ag粉末(平均粒径1μm)に
接着強度を得るためのガラスフリット(日本電気硝子社
製 GA−9ガラス粉末、平均粒径2.5μm)を5w
t%加えたものを無機成分とし、これに有機バインダで
あるエチルセルロースをターピネオールに溶かしたビヒ
クルを加えて、3段ロールにより適度な粘度になるよう
に混合したものを用いた。なおビア埋め用のAgペース
トは更に無機成分として前記ガラス・セラミック粉末を
15重量%加えたものを使用した。
This slurry was formed into a sheet on an organic film by a doctor blade method. At this time, drying from film formation,
A system for continuously performing each step of punching and, if necessary, performing via hole processing was used. Using a silver paste, a conductor pattern was formed on the green sheet and via-hole filling printing was performed by screen printing. The conductor paste is a 5 watt glass frit (GA-9 glass powder, Nippon Electric Glass Co., Ltd., average particle size 2.5 μm) for obtaining adhesive strength to Ag powder (average particle size 1 μm).
An inorganic component was obtained by adding t%, a vehicle in which ethyl cellulose as an organic binder was dissolved in terpineol was added, and the mixture was mixed with a three-stage roll so as to have an appropriate viscosity. The Ag paste for filling the vias was obtained by further adding 15% by weight of the glass / ceramic powder as an inorganic component.

【0023】この印刷を施したグリーンシートを所定の
枚数積み重ね、熱圧着して積層体を形成した。熱圧着条
件は、温度が80℃、圧力は300Kg/cm2で行っ
た。このグリーンシート積層体の両面に焼成温度では焼
結しない無機組成物を加圧成形により形成した。無機組
成物には,アルミナ(住友アルミ社製 AL−41平均
粒径1.9μm)粉体に粘着性をもたせるためにPVA
水溶液を5wt%添加したものを使用した。図2は、キ
ャビティを設けたグリーンシート積層体のアルミナ形成
方法を示す。金型1内にアルミナ粉体、積層体、アルミ
ナ粉体の順に入れ200Kg/cm2の圧力で成形し
た。
A predetermined number of the printed green sheets were stacked and thermocompressed to form a laminate. The thermocompression bonding was performed at a temperature of 80 ° C. and a pressure of 300 kg / cm 2 . An inorganic composition that did not sinter at the firing temperature was formed on both surfaces of the green sheet laminate by pressure molding. For the inorganic composition, PVA is used to make the alumina (AL-41 average particle size of 1.9 μm manufactured by Sumitomo Aluminum) powder sticky.
An aqueous solution to which 5 wt% was added was used. FIG. 2 shows a method for forming alumina of a green sheet laminate having a cavity. The alumina powder, the laminate, and the alumina powder were put into the mold 1 in this order, and were molded at a pressure of 200 kg / cm 2 .

【0024】図3、図4にアルミナを形成した積層体の
断面図を示す。次にこのアルミナを形成した積層体をア
ルミナ96%焼結基板上に乗せ焼成した。条件は、ベル
ト炉を用いて空気中900℃で1時間(900℃での保
持時間は約12分)で行った。焼成後,酢酸ブチル溶剤
中で超音波洗浄を行なったところ積層体表面の未焼結ア
ルミナ層をきれいに取り除くことができた。焼成後の基
板の平面方向の収縮率を測定すると、収縮率が0.1%
以下であった。
FIG. 3 and FIG. 4 are cross-sectional views of a laminate on which alumina is formed. Next, the laminated body on which this alumina was formed was placed on an alumina 96% sintered substrate and fired. The conditions were as follows: 900 ° C. in air for 1 hour (holding time at 900 ° C. is about 12 minutes) using a belt furnace. After the firing, ultrasonic cleaning was performed in a butyl acetate solvent, whereby the unsintered alumina layer on the surface of the laminate was able to be removed cleanly. When the shrinkage in the planar direction of the fired substrate is measured, the shrinkage is 0.1%.
It was below.

【0025】この結果、平面方向の収縮が極めて小さい
多層基板が作製できた。さらにこの多層基板に銀・パラ
ジウムペーストによって最上層パターンをスクリーン印
刷し、乾燥の後,焼成を前記と同様の方法で行なった。
内層基板の収縮が極めて小さい為、最上層パターンの印
刷ズレがなかった。
As a result, a multilayer substrate with extremely small shrinkage in the plane direction was manufactured. Further, the uppermost layer pattern was screen-printed on the multi-layer substrate with a silver / palladium paste, dried, and fired in the same manner as described above.
Since the shrinkage of the inner layer substrate was extremely small, there was no printing displacement of the uppermost layer pattern.

【0026】(実施例2)基板材料のガラス・セラミッ
クグリーンシートは実施例1と同様の組成の物を用い
た。このグリーンシートにCuOペーストを用いて導体パ
ターンの形成およびビアホール埋め印刷をスクリーン印
刷法によって行った。導体ペーストは、CuO粉末(平均
粒径3μm)に接着強度を得るためのガラスフリット
(日本電気硝子社製LS−0803ガラス粉末、平均粒
径2.5μm)を3wt%加えたものを無機成分とし、
これに有機バインダであるエチルセルロースをターピネ
オールに溶かしたビヒクルを加えて、3段ロールにより
適度な粘度になるように混合したものを用いた。なおビ
ア埋め用のCuOペーストは更に無機成分として前記ガラ
ス・セラミック粉末を15重量%加えたものを使用し
た。
(Example 2) A glass / ceramic green sheet used as a substrate material had the same composition as in Example 1. Using a CuO paste, a conductor pattern was formed on this green sheet and via-hole filling printing was performed by screen printing. The conductive paste is an inorganic component obtained by adding 3 wt% of a glass frit (LS-0803 glass powder, Nippon Electric Glass Co., Ltd., average particle size of 2.5 μm) for obtaining adhesive strength to CuO powder (average particle size of 3 μm). ,
A vehicle in which ethyl cellulose as an organic binder was dissolved in terpineol was added thereto, and the mixture was mixed with a three-stage roll so as to have an appropriate viscosity. The CuO paste used for filling the vias was obtained by further adding 15% by weight of the glass / ceramic powder as an inorganic component.

【0027】この印刷を施したグリーンシートを所定の
枚数積み重ね、熱圧着して積層体を形成した。熱圧着条
件は、温度が80℃、圧力は200Kg/cm2でおこ
なった。このグリーンシート積層体の両面に実施例1と
同様の方法で無機組成物を形成した。無機組成物には,
酸化ベリリュウム(関東化学製 平均粒径1μm)粉体
を使用した。
A predetermined number of the printed green sheets were stacked and thermally pressed to form a laminate. The thermocompression bonding was performed at a temperature of 80 ° C. and a pressure of 200 kg / cm 2. An inorganic composition was formed on both surfaces of this green sheet laminate in the same manner as in Example 1. Inorganic compositions include:
Beryllium oxide (Kanto Chemical, average particle size: 1 μm) powder was used.

【0028】次に、焼成であるが,この焼成工程を説明
する。まず最初は、脱バインダ工程である。発明に使用
したグリーンシート、CuOペーストの有機バインダ
は、PVB及びエチルセルロースである。したがって空
気中での分解温度は、500℃以上あれば良いので、6
00℃の温度で行なった。その後前記積層体を水素ガス
100%雰囲気中で200℃ー5時間で還元した。この
時のCu層をX線回折により分析したところ100%C
uであることを確認した。
Next, the firing step will be described. The first is a binder removal process. The organic binder of the green sheet and the CuO paste used in the present invention is PVB and ethyl cellulose. Therefore, the decomposition temperature in the air may be 500 ° C. or more.
Performed at a temperature of 00 ° C. Thereafter, the laminate was reduced in an atmosphere of 100% hydrogen gas at 200 ° C. for 5 hours. The Cu layer at this time was analyzed by X-ray diffraction to find that it was 100% C
u.

【0029】次に焼成工程は、純窒素中900℃である
メッシュベルト炉で焼成した。以上の様にして作製した
積層体の表面の酸化ベリリウム層を実施例1と同様超音
波洗浄にて取り除き収縮率を評価したところ0.05%
以下の収縮であった。
Next, in the firing step, firing was performed in pure nitrogen at 900 ° C. in a mesh belt furnace. The beryllium oxide layer on the surface of the laminate produced as described above was removed by ultrasonic cleaning in the same manner as in Example 1, and the shrinkage was evaluated.
The following shrinkage was observed.

【0030】本実施例においても最上層に銅ペーストを
用いて印刷、焼成を行なったところ、良好な低温焼結多
層基板が得られた。
Also in this example, when printing and firing were performed using a copper paste as the uppermost layer, a good low-temperature sintered multilayer substrate was obtained.

【0031】なお本実施例において、未焼結材料として
Al23およびBeOを用いたが、その他MgO,Zr
O2,TiO2,BNを用いても同様の効果が得られた。
またキャビティを積層体の片面に設けたが,両面に設け
ても同様の効果が得られた。また未焼結層を両面に形成
して行なったが、片面だけに形成しても荷重を加えれば
同様の効果が得られた。ただし、加圧しない場合は形成
していない面だけが焼結収縮するため基板の反りが発生
する。
In this embodiment, Al 2 O 3 and BeO are used as the unsintered material, but other materials such as MgO, Zr
Similar effects were obtained by using O2, TiO2, and BN.
Although the cavity is provided on one side of the laminate, the same effect can be obtained by providing the cavity on both sides. In addition, although the unsintered layer was formed on both surfaces, the same effect was obtained by applying a load even if formed on only one surface. However, when no pressure is applied, only the non-formed surface undergoes sintering shrinkage, causing the substrate to warp.

【0032】また、最上層パターンの形成を基板焼成後
に行なったが、最上層ペーストをグリーンシート上に印
刷し、同時焼成しても得られることは云うまでもない。
Although the uppermost layer pattern is formed after the substrate is fired, it goes without saying that the uppermost layer paste can be obtained by printing the uppermost layer paste on a green sheet and firing it simultaneously.

【0033】以上のように本発明は、多層セラミック基
板の作製工程において焼結の起こらない無機組成物を積
層体に設け焼成を行なうと、焼結による収縮が平面方向
で全く起こらない多層基板が得られる。本方法は、セラ
ミック多層配線基板だけでなく積層セラミックコンデン
サや収縮率の安定性が要求されるセラミック構造材料な
どに応用できることは云うまでもない。
As described above, the present invention provides a multilayer substrate in which no shrinkage due to sintering occurs in the plane direction when an inorganic composition which does not undergo sintering is provided on a laminate in the step of manufacturing a multilayer ceramic substrate and firing is performed. can get. It goes without saying that the present method can be applied not only to ceramic multilayer wiring boards but also to multilayer ceramic capacitors and ceramic structural materials that require stability of shrinkage.

【0034】[0034]

【発明の効果】本発明は前記のような工程を行なうこと
によって、ガラス・セラミック基板が焼成時において厚
み方向だけ収縮し、平面方向には収縮しないキャビティ
を設けた多層基板が得られる。これにより多層基板に使
用する基板材料、グリーンシート組成、粉体ロットなど
に依存せず常に同一寸法の基板が得られる。同様に多層
セラミック基板の作製において前述のごとく内層配線の
焼成を行なってから最上層配線の形成を行なっても、最
上層配線パターンと内層の接続が完全に行える。その結
果、接続用のランド面積が小さくでき、高密度な多層配
線基板が得られる。さらにスクリーン版が少なくて済
み、基板設計において収縮率を逆算し内層パターンを拡
大する必要がないので経済的である。また本発明の無機
組成形成方法は、無機組成に粉体を使用しているのでキ
ャビティな構造の基板に有効である。
According to the present invention, by performing the above-mentioned steps, a multilayer substrate having a cavity in which the glass-ceramic substrate shrinks in the thickness direction during firing and does not shrink in the plane direction can be obtained. As a result, a substrate having the same dimensions can always be obtained without depending on the substrate material, green sheet composition, powder lot, and the like used for the multilayer substrate. Similarly, even when the uppermost wiring is formed after the inner wiring is fired as described above in the production of the multilayer ceramic substrate, the connection between the uppermost wiring pattern and the inner layer can be completely performed. As a result, the connection land area can be reduced, and a high-density multilayer wiring board can be obtained. Further, the number of screen plates can be reduced, and it is economical because there is no need to calculate the shrinkage ratio in the substrate design and expand the inner layer pattern. Further, the method for forming an inorganic composition of the present invention is effective for a substrate having a cavity structure since powder is used for the inorganic composition.

【0035】以上のように、グリーンシート積層法の最
大の欠点であった、収縮誤差の課題を解決する極めて有
効な発明である。
As described above, the present invention is an extremely effective invention for solving the problem of shrinkage error, which is the biggest drawback of the green sheet laminating method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の製造方法を示すフローチャー
FIG. 1 is a flowchart showing a manufacturing method according to an embodiment of the present invention.

【図2】本発明の実施例の無機組成物形成時の金型内部
の断面図
FIG. 2 is a cross-sectional view of the inside of a mold when an inorganic composition according to an embodiment of the present invention is formed.

【図3】本発明の実施例の無機組成物形成後のキャビテ
ィを設けた積層体の断面図
FIG. 3 is a cross-sectional view of a laminate having a cavity after forming an inorganic composition according to an embodiment of the present invention.

【図4】本発明の実施例の無機組成物形成後の平坦形状
の積層体の断面図
FIG. 4 is a cross-sectional view of a flat laminate after forming an inorganic composition according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 金型 2 グリーンシート積層体 3 アルミナ粉体 4 内部電極 DESCRIPTION OF SYMBOLS 1 Die 2 Green sheet laminated body 3 Alumina powder 4 Internal electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 嶋田 幹也 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 中村 嘉文 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 三浦 和裕 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭61−26293(JP,A) 特開 平2−86194(JP,A) 特開 平1−138792(JP,A) 特開 平4−17392(JP,A) 特開 平2−32595(JP,A) 特開 平5−136572(JP,A) (58)調査した分野(Int.Cl.6,DB名) H05K 3/46 C04B 35/64──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mikiya Shimada 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Kazuhiro Miura 1006 Kadoma, Kazuma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-61-26293 (JP, A) JP-A-2-86194 (JP, A) JP-A-1-138792 (JP, A) JP-A-4-17392 (JP, A) JP-A-2-32595 (JP, A) JP-A-5-136572 (JP, A) (58) (Int.Cl. 6 , DB name) H05K 3/46 C04B 35/64

Claims (21)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 導体ペースト組成物で電極パターンを形
成した少なくとも有機バインダ、可塑剤を含むガラス・
セラミックよりなるグリーンシートを所望枚数積層し、
このグリーンシート積層体の両面、もしくは片面に、焼
成温度では焼結しない無機組成物を加圧形成した後、焼
成処理を行い、その後前記焼結しない無機組成物を取り
除くことを特徴とする多層セラミック基板の製造方法。
1. A glass containing at least an organic binder and a plasticizer having an electrode pattern formed from a conductive paste composition.
A desired number of green sheets made of ceramic are laminated,
A multi-layer ceramic comprising, on both sides or one side of the green sheet laminate, an inorganic composition that is not sintered at a firing temperature is formed under pressure, and then a firing treatment is performed, and then the inorganic composition that is not sintered is removed. Substrate manufacturing method.
【請求項2】 焼成温度を800℃〜1000℃の範囲
で行なうことを特徴とする請求項1に記載の多層セラミ
ック基板の製造方法。
2. The method for producing a multilayer ceramic substrate according to claim 1, wherein the firing temperature is in the range of 800 ° C. to 1000 ° C.
【請求項3】 焼成処理で焼結しない無機組成物が、A
23,MgO,ZrO2,TiO2,BeO,BN,の
内少なくとも1種以上を含む粉体からなることを特徴と
する請求項1に記載の多層セラミック基板の製造方法。
3. An inorganic composition which is not sintered in the firing treatment,
l 2 O 3, MgO, ZrO 2, TiO 2, BeO, BN, a method for manufacturing a multilayer ceramic substrate according to claim 1, characterized in that it consists of a powder containing at least one of the.
【請求項4】 焼成処理で焼結しない無機組成物を超音
波洗浄法で取り除くことを特徴とする請求項1に記載の
多層セラミック基板の製造方法。
4. The method for producing a multilayer ceramic substrate according to claim 1, wherein the inorganic composition that is not sintered in the firing treatment is removed by an ultrasonic cleaning method.
【請求項5】 導体ペーストがAg,Ag/Pd,Ag
/Pt,Cuのいずれかを主成分とすることを特徴とす
る請求項1に記載の多層セラミック基板の製造方法。
5. The conductive paste is made of Ag, Ag / Pd, Ag.
2. The method according to claim 1, wherein one of / Pt and Cu is a main component.
【請求項6】 焼成処理時に積層体を加圧して焼成を行
なうことを特徴とする請求項1に記載の多層セラミック
基板の製造方法。
6. The method for manufacturing a multilayer ceramic substrate according to claim 1, wherein the firing is performed by pressing the laminate during the firing process.
【請求項7】 焼成処理で焼結しない無機組成物の形成
圧力が,平方センチあたり50kg〜500kgであること
を特徴とする請求項1に記載の多層セラミック基板の製
造方法
7. The method for producing a multilayer ceramic substrate according to claim 1, wherein the formation pressure of the inorganic composition that is not sintered in the firing treatment is 50 kg to 500 kg per square centimeter.
【請求項8】 酸化第2銅を主成分とする導体ペースト
組成物で電極パターンを形成した少なくとも有機バイン
ダ、可塑剤を含むガラス・セラミックよりなるグリーン
シートを所望枚数積層し、このグリーンシート積層体の
両面、もしくは片面に、焼成温度では焼結しない無機組
成物を加圧形成した後、空気中で多層体内部の有機バイ
ンダが分解・飛散する温度で熱処理し、しかる後、水素
もしくは水素と窒素の混合ガス雰囲気中で還元熱処理を
行い、さらに、前記還元熱処理済み多層体を窒素雰囲気
中で焼結させ、しかる後、焼結しない無機組成物を取り
除くことを特徴とする多層セラミック基板の製造方法。
8. A green sheet laminate comprising a desired number of green sheets made of glass ceramic containing at least an organic binder and a plasticizer having an electrode pattern formed of a conductive paste composition containing cupric oxide as a main component. After pressurizing and forming an inorganic composition that does not sinter at the sintering temperature on both sides or one side, heat treatment is performed in air at a temperature at which the organic binder inside the multilayer body decomposes and flies, and then hydrogen or hydrogen and nitrogen Performing a reduction heat treatment in a mixed gas atmosphere, further sintering the reduced heat-treated multilayer body in a nitrogen atmosphere, and then removing an inorganic composition that does not sinter. .
【請求項9】 焼成処理で焼結しない無機組成物を取り
除いた後、さらに最上層部にCuペーストで配線パター
ンを形成し、窒素雰囲気中で焼成することを特徴とする
請求項8に記載の多層セラミック基板の製造方法。
9. The method according to claim 8, wherein after removing the inorganic composition that is not sintered by the firing treatment, a wiring pattern is further formed on the uppermost layer with a Cu paste, and firing is performed in a nitrogen atmosphere. A method for manufacturing a multilayer ceramic substrate.
【請求項10】 焼成処理を800℃〜1000℃の範
囲で行なうことを特徴とする請求項8に記載のセラミッ
ク基板の製造方法。
10. The method for manufacturing a ceramic substrate according to claim 8, wherein the firing treatment is performed at a temperature in the range of 800 ° C. to 1000 ° C.
【請求項11】 焼成処理では焼結しない無機組成物
が、Al23,MgO,ZrO2,TiO2,BeO,B
N,の内少なくとも1種以上を含む粉体からなることを
特徴とする請求項8に記載の多層セラミック基板の製造
方法。
11. The inorganic composition which does not sinter in the sintering treatment is made of Al 2 O 3 , MgO, ZrO 2 , TiO 2 , BeO, B
9. The method for manufacturing a multilayer ceramic substrate according to claim 8, comprising a powder containing at least one of N and N.
【請求項12】 焼成処理で焼結しない無機組成物を超
音波洗浄法で取り除くことを特徴とする請求項8に記載
の多層セラミック基板の製造方法。
12. The method for manufacturing a multilayer ceramic substrate according to claim 8, wherein the inorganic composition that is not sintered in the firing treatment is removed by an ultrasonic cleaning method.
【請求項13】 焼成処理時に積層体を加圧して焼成を
行なうことを特徴とする請求項7に記載の多層セラミッ
ク基板の製造方法。
13. The method for manufacturing a multilayer ceramic substrate according to claim 7, wherein the firing is performed by pressing the laminate during the firing process.
【請求項14】 焼成処理で焼結しない無機組成物の形
成圧力が,平方センチあたり50kg〜500kgであるこ
とを特徴とする請求項8に記載の多層セラミック基板の
製造方法。
14. The method for producing a multilayer ceramic substrate according to claim 8, wherein the formation pressure of the inorganic composition that is not sintered in the firing treatment is 50 kg to 500 kg per square centimeter.
【請求項15】 キャビティを設けた積層体の両面,も
しくは片面に、焼成温度では焼結しない無機組成物を加
圧形成することを特徴とする請求項1または請求項8に
記載の多層セラミック基板の製造方法。
15. The multilayer ceramic substrate according to claim 1, wherein an inorganic composition that does not sinter at a sintering temperature is formed under pressure on both sides or one side of the laminated body having the cavity. Manufacturing method.
【請求項16】 焼成温度を800℃〜1000℃の範
囲で行なうことを特徴とする請求項15に記載の多層セ
ラミック基板の製造方法。
16. The method for producing a multilayer ceramic substrate according to claim 15, wherein the firing is performed at a temperature in the range of 800 ° C. to 1000 ° C.
【請求項17】 焼成処理で焼結しない無機組成物が、
Al23,MgO,ZrO2,TiO2,BeO,BN,
の内少なくとも1種以上を含む粉体からなることを特徴
とする請求項15に記載の多層セラミック基板の製造方
法。
17. The inorganic composition which is not sintered in the firing treatment,
Al 2 O 3 , MgO, ZrO 2 , TiO 2 , BeO, BN,
16. The method for manufacturing a multilayer ceramic substrate according to claim 15, comprising a powder containing at least one of the following.
【請求項18】 焼成処理で焼結しない無機組成物を超
音波洗浄法で取り除くことを特徴とする請求項15に記
載の多層セラミック基板の製造方法。
18. The method for manufacturing a multilayer ceramic substrate according to claim 15, wherein the inorganic composition that is not sintered in the firing treatment is removed by an ultrasonic cleaning method.
【請求項19】 導体ペーストがAg,Ag/Pd,A
g/Pt,Cuのいずれかを主成分とすることを特徴と
する請求項15に記載の多層セラミック基板の製造方
法。
19. The conductive paste is made of Ag, Ag / Pd, A
The method according to claim 15, wherein one of g / Pt and Cu is a main component.
【請求項20】 焼成処理時に積層体を加圧して焼成を
行なうことを特徴とする請求項15に記載の多層セラミ
ック基板の製造方法。
20. The method for manufacturing a multilayer ceramic substrate according to claim 15, wherein the firing is performed by pressing the laminate during the firing process.
【請求項21】 焼成処理で焼結しない無機組成物の形
成圧力が,平方センチあたり50kg〜500kgであるこ
とを特徴とする請求項15に記載の多層セラミック基板
の製造方法
21. The method for producing a multilayer ceramic substrate according to claim 15, wherein the formation pressure of the inorganic composition that is not sintered in the firing treatment is 50 kg to 500 kg per square centimeter.
JP3328567A 1991-10-04 1991-12-12 Method for manufacturing multilayer ceramic substrate Expired - Lifetime JP2803421B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3328567A JP2803421B2 (en) 1991-12-12 1991-12-12 Method for manufacturing multilayer ceramic substrate
EP19920116966 EP0535711A3 (en) 1991-10-04 1992-10-05 Method for producing multilayered ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3328567A JP2803421B2 (en) 1991-12-12 1991-12-12 Method for manufacturing multilayer ceramic substrate

Publications (2)

Publication Number Publication Date
JPH05167253A JPH05167253A (en) 1993-07-02
JP2803421B2 true JP2803421B2 (en) 1998-09-24

Family

ID=18211719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3328567A Expired - Lifetime JP2803421B2 (en) 1991-10-04 1991-12-12 Method for manufacturing multilayer ceramic substrate

Country Status (1)

Country Link
JP (1) JP2803421B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3656484B2 (en) * 1999-03-03 2005-06-08 株式会社村田製作所 Manufacturing method of ceramic multilayer substrate
JP2001230548A (en) * 2000-02-21 2001-08-24 Murata Mfg Co Ltd Method for manufacturing multil ayer ceramic substrate
JP3528045B2 (en) * 2000-07-31 2004-05-17 株式会社村田製作所 Manufacturing equipment for multilayer ceramic electronic components
JP3709802B2 (en) 2001-03-28 2005-10-26 株式会社村田製作所 Manufacturing method of multilayer ceramic substrate
US20090314989A1 (en) * 2005-05-11 2009-12-24 Masaru Iwao Fluorescent substance composite glass, fluorescent substance composite glass green sheet, and process for producing fluorescent substance composite glass

Also Published As

Publication number Publication date
JPH05167253A (en) 1993-07-02

Similar Documents

Publication Publication Date Title
JP2785544B2 (en) Method for manufacturing multilayer ceramic substrate
KR0179404B1 (en) Ceramic substrate and manufacturing method thereof
US5370759A (en) Method for producing multilayered ceramic substrate
JPH0728128B2 (en) Ceramic multilayer wiring board and manufacturing method thereof
EP0535711A2 (en) Method for producing multilayered ceramic substrate
JP3351043B2 (en) Method for manufacturing multilayer ceramic substrate
JP3003413B2 (en) Method for manufacturing multilayer ceramic substrate
JPH05327218A (en) Manufacture of multilayer ceramic base
JP2803421B2 (en) Method for manufacturing multilayer ceramic substrate
JPH06237081A (en) Manufacture of multilayer ceramic substrate
JP2803414B2 (en) Method for manufacturing multilayer ceramic substrate
JP3082475B2 (en) Method for manufacturing multilayer ceramic substrate
JP4610114B2 (en) Manufacturing method of ceramic wiring board
JPH0730253A (en) Method of manufacturing multilayer ceramic board
JPH06223621A (en) Conductor paste composition
JP3100796B2 (en) Method for manufacturing multilayer ceramic substrate
JP2812605B2 (en) Method for manufacturing multilayer ceramic substrate
JPH05327220A (en) Manufacture of multilayer ceramic base
JPH11330705A (en) Substrate containing capacitor and manufacture thereof
JP2855959B2 (en) Method for manufacturing multilayer ceramic substrate
JPH0346978B2 (en)
JP3188086B2 (en) Ceramic wiring board, its manufacturing method and its mounting structure
JPH0786739A (en) Manufacture of multilayer ceramic board
JP3197147B2 (en) Method for manufacturing multilayer ceramic substrate
JP3222296B2 (en) Conductive ink

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070717

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080717

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090717

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100717

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110717

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110717

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 14