JPH0794020A - Composition for barium titanate semiconductor ceramic - Google Patents

Composition for barium titanate semiconductor ceramic

Info

Publication number
JPH0794020A
JPH0794020A JP5257484A JP25748493A JPH0794020A JP H0794020 A JPH0794020 A JP H0794020A JP 5257484 A JP5257484 A JP 5257484A JP 25748493 A JP25748493 A JP 25748493A JP H0794020 A JPH0794020 A JP H0794020A
Authority
JP
Japan
Prior art keywords
mol
composition
barium titanate
main component
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5257484A
Other languages
Japanese (ja)
Inventor
Makoto Namioka
誠 浪岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP5257484A priority Critical patent/JPH0794020A/en
Publication of JPH0794020A publication Critical patent/JPH0794020A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a useful ceramic composition by using the composition of specific quantity in at least one kind main component raw material of BaTiO3, CaTiO3, and PbTiO3 and in semiconductor agents of Na, Ta, Sb, W, and Y and in the compound of TiO2, Al2O3, SiO2, and Mn. CONSTITUTION:At least one kind oxide of Nb, Ta, Sb, W, and Y is used as a semiconductor agent for main component raw material of BaTiO3 of 62-90mol%, CaTi03 of 7-18mol%, and PbTiO3 of 3-20mol%, and an element is blended to a main component so as to be included by 0.18-0.30mol%. Moreover as an additive, a TiO2 of 0.3-1.0mol%, an Al2O3 of 0.1-2.0mol%, and a SiO2 of 2.0-5.0mol%, and as a Mn element, Manganese compound of 0.02-0.06mol% are to be contained. This composition is reduced to powder, and obtained powder is temporarily baked, then a binder is mixed to easily form barium titanate semicondutive ceramic via granulating, molding, and sintering. This constitution obtains ceramic excellent in a withstand voltage characteristic and having small resistivity at ordinary temperature and positive resistance temperature characteristic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐電圧特性に優れ、且
つ常温における比抵抗の小さい、正の抵抗温度特性を有
するチタン酸バリウム系半導体磁器用組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a barium titanate-based semiconductor porcelain composition having excellent withstand voltage characteristics, low specific resistance at room temperature, and positive resistance temperature characteristics.

【0002】[0002]

【従来の技術】チタン酸バリウム系半導体磁器は、Ba
TiO3 を主成分とし、希土類元素等を半導体化剤とし
て少量含有させた組成を有するものであり、キュリー点
を超えると著しい正の抵抗温度特性を示す特徴がある。
このキュリー点は、主成分であるBaTiO3 の特性に
より、ほゞ120℃付近にあるが、その用途に応じてB
aの一部をPbで置換し、キュリー点を高温側へ移行さ
せたり、あるいはBaの一部をSrで置換したり、Ti
の一部をZrまたはSnで置換して、キュリー点を低温
側へ移行させたりすることが知られている。この様なチ
タン酸バリウム系半導体磁器の耐電圧特性を向上させる
ために、Baの一部をCaで置換したり、又はCa及び
Pbで置換したもの等が知られている。また、その製造
方法において、BaCO3 、TiO2 を主原料とし、こ
れにCaCO3 、PbO、ZrO2 、SnO2 、SrC
3 のうち一種以上、希土類元素等の半導体化剤、特性
改善の添加剤として必要に応じMn化合物や、SiO2
を加え仮焼して、得られた粉体を微粉砕、成形の後、大
気中にて焼成することが知られている。
2. Description of the Related Art Barium titanate-based semiconductor porcelain is made of Ba.
It has a composition containing TiO 3 as a main component and a small amount of a rare earth element or the like as a semiconducting agent, and is characterized by exhibiting a remarkable positive resistance-temperature characteristic when it exceeds the Curie point.
The Curie point is around 120 ° C. due to the characteristics of the main component BaTiO 3 , but depending on the application, B
A part of a is replaced with Pb to shift the Curie point to a high temperature side, or a part of Ba is replaced with Sr, Ti
It is known that a part of the is replaced with Zr or Sn to shift the Curie point to the low temperature side. In order to improve the withstand voltage characteristics of such a barium titanate-based semiconductor ceramic, it is known that a part of Ba is replaced with Ca, or Ca and Pb are replaced. In addition, in the manufacturing method thereof, BaCO 3 and TiO 2 are used as main raw materials, and CaCO 3 , PbO, ZrO 2 , SnO 2 , and SrC are added to the main raw materials.
If necessary, one or more of O 3 , a semiconductor agent such as a rare earth element, and an additive for improving characteristics, such as a Mn compound or SiO 2
It is known that the resulting powder is finely pulverized and molded, and then fired in the air.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
チタン酸バリウム系半導体磁器は、キュリー点を140
℃以上にした場合、10Ω・cm以下の比抵抗において
耐電圧が100V/mm以下であり、電気部品としての
応用範囲を制約し、小型化、且つ高い安全性を有する電
気部品への適応を困難としてものであった。
However, these barium titanate-based semiconductor ceramics have a Curie point of 140.
When the temperature is higher than ℃, the withstand voltage is 100 V / mm or less at the specific resistance of 10 Ω · cm or less, which limits the application range as an electrical component and makes it difficult to apply it to an electrical component having a small size and high safety. It was as

【0004】又その製造方法は、PbOを上記の様に仮
焼前に添加することで、BaTiO3 への固溶を向上さ
せ、又PbTiO3 の仮焼後における添加よりも比抵抗
を低下させているが、その焼成工程において、PbO蒸
気圧が高いため揮散し、組成の不均質化を招き易く、こ
のため、いかにPbO揮散を押えて焼成するかという技
術的な課題を有していた。本発明はかかる課題を解決す
べく、耐電圧特性に優れ、且つ比抵抗の小さい、しかも
Pb成分の仮焼前後の添加を問わず、比抵抗を大きく変
化させることのない正の抵抗温度特性を有するチタン酸
バリウム系半導体磁器を製造するための原料組成物を提
供することを目的とする。
Further, in the manufacturing method thereof, PbO is added before calcination as described above to improve the solid solution in BaTiO 3 and to lower the specific resistance as compared with the addition of PbTiO 3 after calcination. However, in the firing step, since the PbO vapor pressure is high, it is likely to be volatilized to cause inhomogeneity of the composition. Therefore, there is a technical problem of how to suppress the volatilization of PbO for firing. In order to solve such a problem, the present invention provides a positive resistance temperature characteristic which is excellent in withstand voltage characteristics and has a small specific resistance, and which does not significantly change the specific resistance regardless of addition of the Pb component before and after calcination. It is an object of the present invention to provide a raw material composition for producing the barium titanate-based semiconductor ceramics.

【0005】[0005]

【課題を解決するための手段】即ち本発明はチタン酸バ
リウム系化合物の主成分に半導体化剤を添加させたチタ
ン酸バリウム系半導体磁器用原料組成物において、主成
分はBaTiO3 62〜90モル%、CaTiO3
7〜18モル%、PbTiO3 3〜20モル%なる組
成物、又は該組成物形成用原料組成物であり、半導体化
剤としてNa、Ta、Sb、W、Yのうちの少なくとも
一種の元素の化合物を主成分100モル%に対して元素
として0.18〜0.30モル%含有し、添加剤として
TiO2 を0.3〜1.0モル%、Al23 を0.1
〜2.0モル%、SiO2 を2.0〜5.0モル%、マ
ンガン化合物をMn元素として0.02〜0.06モル
%含有することを特徴とするチタン酸バリウム系半導体
磁器用原料組成物に関するものであり、この組成物を微
粉砕し、得られた微粉を仮焼後、バインダーを混合、造
粒、成形後焼結してチタン酸バリウム系半導体磁器を容
易に製造することができる。
That is, the present invention relates to a barium titanate-based semiconductor porcelain raw material composition in which a semiconducting agent is added to the barium titanate-based compound as a main component, and the main component is BaTiO 3 62 to 90 mol. %, CaTiO 3
7 to 18 mol%, PbTiO 3 3 to 20 mol%, or a raw material composition for forming the composition, wherein at least one element selected from Na, Ta, Sb, W and Y is used as a semiconducting agent. The compound contains 0.18 to 0.30 mol% as an element based on 100 mol% of the main component, 0.3 to 1.0 mol% of TiO 2 and 0.1% of Al 2 O 3 as additives.
To 2.0 mol%, SiO 2 2.0 to 5.0 mol%, and manganese compound 0.02 to 0.06 mol% as Mn element, barium titanate-based semiconductor porcelain raw material It relates to a composition, and finely pulverizes the composition, calcining the obtained fine powder, mixing a binder, granulating, and sintering after molding to easily produce a barium titanate-based semiconductor porcelain. it can.

【0006】[0006]

【作用】次に本発明の原料組成物について述べる。主成
分は夫々62〜90モル%、7〜18モル%、3〜20
モル%のBaTiO3 、CaTiO3 、PbTiO3
りなる組成物、又は該組成物を形成し得る原料であるB
aCO3 、CaCO3 、PbO又はPb34 、TiO
2 を焼成後,BaTiO3 62〜90モル%、CaT
iO3 7〜18モル%、PbTiO3 3〜20モル
%なる組成物を生成するように混合する。BaTiO3
を62〜90モル%としたのは、62モル%未満では磁
器の比抵抗が大きくなり、90モル%を超えると耐電圧
特性が著しく低下するからである。
Next, the raw material composition of the present invention will be described. The main components are 62 to 90 mol%, 7 to 18 mol% and 3 to 20 respectively.
A composition comprising mol% of BaTiO 3 , CaTiO 3 , and PbTiO 3 , or B which is a raw material capable of forming the composition
aCO 3 , CaCO 3 , PbO or Pb 3 O 4 , TiO
After firing 2 , BaTiO 3 62-90 mol%, CaT
iO 3 7 to 18 mol%, and mixed to produce a PbTiO 3 3 to 20 mol% becomes the composition. BaTiO 3
The content of 62 to 90 mol% is because if it is less than 62 mol%, the specific resistance of the porcelain becomes large, and if it exceeds 90 mol%, the withstand voltage characteristics are significantly deteriorated.

【0007】又、CaTiO3 を7〜18モル%とした
のは、7モル%未満では特性改善の効果が認められず、
18モル%を超えると比抵抗が大きくなるからである。
更に、PbTiO3 を3〜20モル%としたのは、3モ
ル%未満では140℃以上のキュリー点が得られなく、
20モル%を超えると比抵抗が大きくなるからである。
Further, the CaTiO 3 content is set to 7 to 18 mol% because the effect of improving the characteristics is not recognized when the content is less than 7 mol%.
This is because if it exceeds 18 mol%, the specific resistance increases.
Further, PbTiO 3 is set to 3 to 20 mol%, because the Curie point of 140 ° C. or higher cannot be obtained if the PbTiO 3 content is less than 3 mol%.
This is because if it exceeds 20 mol%, the specific resistance increases.

【0008】半導体化剤としてNb25 、Ta2
5 、Sb23 、Sb25 、WO3、Y23 、Y
(NO33 等を用いる。Nb、Ta、Sb、W、Yの
うち少なくとも一種の元素の化合物を、主成分100モ
ル%に対して元素として前述のように0.18〜0.3
0モル%を配合するが、この範囲において本発明の目的
としている磁器の比抵抗を小さくし、且つ耐電圧特性の
向上が実現できるからである。又、主成分100モル%
に対し、添加剤としてTiO2 を0.3〜1.0モル%
としたのは、0.3モル%未満では特性改善の効果が認
められず、1.0モル%を超えると比抵抗が大きくなる
からである。又、Al23 を0.1〜2.0モル%と
したのは、0.1モル%未満では特性改善の効果が認め
られず、2.0モル%を超えると比抵抗が大きくなるか
らである。更に、SiO2 を2.0〜5.0モル%とし
たのは、2.0モル%未満では特性改善の効果が認めら
れず、又、比抵抗が大きくなり、5.0モル%を超える
と比抵抗が大きくなり、又、焼結体同志の融着が発生す
るからである。又MnはMnCO3 、Mn(NO3
2 、MnO2 等が用いられるがそれらをMnとして0.
02〜0.06モル%としたのは、0.02モル%未満
では特性改善の効果が認められず、又、比抵抗が大きく
なり、0.06モル%を超えると比抵抗が大きくなるか
らである。
Nb 2 O 5 and Ta 2 O as semiconducting agents
5 , Sb 2 O 3 , Sb 2 O 5 , WO 3 , Y 2 O 3 , Y
(NO 3 ) 3 or the like is used. As described above, a compound of at least one element of Nb, Ta, Sb, W, and Y is used as an element with respect to 100 mol% of the main component as described above.
This is because 0 mol% is blended, but in this range, the specific resistance of the porcelain, which is the object of the present invention, can be reduced and the withstand voltage characteristics can be improved. Also, the main component is 100 mol%
In contrast, 0.3 to 1.0 mol% of TiO 2 as an additive
The reason is that if it is less than 0.3 mol%, the effect of improving the characteristics is not recognized, and if it exceeds 1.0 mol%, the specific resistance increases. Further, Al 2 O 3 is set to 0.1 to 2.0 mol% because the effect of improving the characteristics is not recognized when the content is less than 0.1 mol%, and the specific resistance increases when the content exceeds 2.0 mol%. Because. Further, the reason why the SiO 2 content is 2.0 to 5.0 mol% is that when the content is less than 2.0 mol%, the effect of improving the characteristics is not recognized, and the specific resistance increases, and the content exceeds 5.0 mol%. This is because the specific resistance increases and fusion between the sintered bodies occurs. Mn is MnCO 3 , Mn (NO 3 )
2 , MnO 2 and the like are used, but these are referred to as Mn and 0.
The range of 02 to 0.06 mol% is that the effect of improving the characteristics is not recognized when the content is less than 0.02 mol%, and the specific resistance increases, and the specific resistance increases when the content exceeds 0.06 mol%. Is.

【0009】本発明のチタン酸バリウム系半導体磁器用
原料組成物より半導体磁器を製造するのは公知の方法で
よい。例えば全原料を粉砕し、粉砕物を混合し1100
〜1200℃程度で仮焼し、仮焼物を微粉砕し、バイン
ダーを加え、造粒し、成形して成形体を得る。次にこの
成形体を1200〜1300℃程度で焼結することによ
り、磁器を得る。PbTiO3 を生成させるためにPb
O等の鉛酸化物を用いるが、従来の磁器の製造法におい
ては前述のように鉛酸化物の添加が仮焼前の場合は磁器
の比抵抗が、仮焼後の添加の場合に比して低下する反
面、焼成工程においてPbOが揮発し、製品の組成の不
均質化を生じ易いという欠点があったが、本発明の組成
物においてはPbOの添加が仮焼前と仮焼後のいずれに
おいても特に問題はないという特徴がある。
A known method may be used to manufacture a semiconductor porcelain from the barium titanate-based semiconductor porcelain raw material composition of the present invention. For example, crush all raw materials and mix the crushed material
It is calcined at about 1200 ° C, the calcined product is finely pulverized, a binder is added, granulated, and molded to obtain a molded body. Next, this molded body is sintered at about 1200 to 1300 ° C. to obtain a porcelain. Pb to produce PbTiO 3
Although lead oxides such as O are used, in the conventional manufacturing method of porcelain, as described above, the resistivity of the porcelain when the addition of lead oxide is before calcination is higher than that after the calcination. On the other hand, although PbO volatilizes during the firing process and the composition of the product is likely to be non-homogeneous, the composition of the present invention contains PbO either before calcination or after calcination. There is a feature that there is no particular problem in.

【0010】[0010]

【実施例】【Example】

〈実施例・比較例〉以下実施例、及び比較例によって本
発明を更に詳細に説明する。 実施例 1〜27 磁器の主成分でBaTiO3 、CaTiO3 及びPbT
iO3 形成材料としてBaCO3 、CaCO3 、Pb
O、TiO2 を、半導体化剤としてNb25 、Ta2
5 、Sb23 、WO3 、Y23 を、添加剤として
TiO2 、Al23 、SiO2 、MnCO3 を用い、
表1に示す組成の磁器が得られるような割合で配合し、
湿式微粉を混合して本発明の組成物を得た。
<Examples and Comparative Examples> Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. BaTiO 3 main component in Example 1-27 porcelain, CaTiO 3 and PbT
BaCO 3 , CaCO 3 , Pb as an iO 3 forming material
O, TiO 2 as Nb 2 O 5 , Ta 2 as a semiconducting agent
O 5 , Sb 2 O 3 , WO 3 and Y 2 O 3 are used, and TiO 2 , Al 2 O 3 , SiO 2 and MnCO 3 are used as additives.
Blended in such a ratio that a porcelain having the composition shown in Table 1 is obtained,
The wet fine powder was mixed to obtain the composition of the present invention.

【0011】[0011]

【表1】 [Table 1]

【0012】これを脱水、乾燥後、1150℃の温度で
3時間仮焼し、得られた仮焼物を、再び湿式微粉砕混合
し、脱水、乾燥後、バインダーを混ぜて造粒の後、成形
圧力を2000kg/cm2 で成形して円板状の成形体
を得た。これを1250℃の温度で1.5時間焼結さ
せ、直径20.0mm、厚さ1.0mmの半導体磁器を
得た。これによって得られた半導体磁器に銀電極を焼き
付け、測定試料を得た。得られた試料について常温(2
5℃)における比抵抗、キュリー点、及び耐電圧を測定
した。その結果を表2に示す。
After dehydration and drying, this was calcined at a temperature of 1150 ° C. for 3 hours, the calcined product obtained was wet-pulverized and mixed again, dehydrated and dried, and then a binder was mixed and granulated, followed by molding. A pressure of 2000 kg / cm 2 was applied to obtain a disk-shaped formed body. This was sintered at a temperature of 1250 ° C. for 1.5 hours to obtain a semiconductor ceramic having a diameter of 20.0 mm and a thickness of 1.0 mm. A silver electrode was baked on the semiconductor porcelain thus obtained to obtain a measurement sample. For the obtained sample, room temperature (2
The specific resistance, Curie point, and withstand voltage at 5 ° C.) were measured. The results are shown in Table 2.

【0013】[0013]

【表2】 [Table 2]

【0014】比較例 1〜20 本発明組成外の磁器を実施例1と同様に表3に示すよう
に製造し、同様に測定試料を作成した。
Comparative Examples 1 to 20 Porcelains having a composition other than the composition of the present invention were manufactured as shown in Table 3 in the same manner as in Example 1, and measurement samples were similarly prepared.

【0015】[0015]

【表3】 [Table 3]

【0016】測定試料について実施例1と同様に比抵
抗、キュリー点及び耐電圧を測定した。その結果を表4
に示す。
The specific resistance, Curie point and withstand voltage of the measurement sample were measured in the same manner as in Example 1. The results are shown in Table 4.
Shown in.

【0017】[0017]

【表4】 [Table 4]

【0018】実施例 28〜36 磁器の主成分であるBaTiO3 及びCaTiO3 、形
成材料としてBaCO3 、CaCO3 、TiO2 を、半
導体化剤としてNb25 、Ta25 、Sb 23
WO3 、Y23 を用い、磁器中におけるBaTiO
3 、CaTiO3、半導化剤が第5表に示す組成になる
ような割合で配合し、湿式微粉砕して本発明の組成物を
得た。これを脱水、乾燥後、1150℃の温度で3時間
仮焼し、得られた仮焼物に、磁器中におけるPbTiO
3 、添加剤が表5に示す組成になるように、PbTiO
3 、TiO2 、Al23 、SiO2 、MnCO3 を配
合し、再び湿式微粉砕混合し、脱水、乾燥後、バインダ
ーを混ぜ以後実施例1と同様にして測定試料を作成し、
得られた試料について同様に比抵抗、キュリー点、及び
耐電圧を測定した。その結果を表6に示す。
Examples 28 to 36 BaTiO 3 which is the main component of porcelain3 And CaTiO3 ,form
BaCO as a material3 , CaCO3 , TiO2 Half
Nb as a conductor2 OFive , Ta2 OFive , Sb 2 O3 ,
WO3 , Y2 O3 Using BaTiO 3 in porcelain
3 , CaTiO3, The semi-conducting agent has the composition shown in Table 5.
The composition of the present invention is blended in such a ratio and pulverized in a wet manner.
Obtained. After dehydrating and drying this, the temperature is 1150 ° C for 3 hours.
After calcination, the obtained calcination product was added with PbTiO 3 in porcelain.
3 , So that the additives have the composition shown in Table 5, PbTiO 3
3 , TiO2 , Al2 O3 , SiO2 , MnCO3 Distribute
Weld, finely pulverize and mix again, dehydrate, dry, and then binder
After that, a measurement sample was prepared in the same manner as in Example 1,
The specific resistance, Curie point, and
The withstand voltage was measured. The results are shown in Table 6.

【0019】[0019]

【表5】 [Table 5]

【0020】[0020]

【表6】 [Table 6]

【0021】比較例 21〜25 本発明組成外の磁器を実施例28と同様に表7に示すよ
うに製造し、同様に測定試料を得た。
Comparative Examples 21 to 25 Porcelain having a composition other than the composition of the present invention was manufactured as shown in Table 7 in the same manner as in Example 28, and a measurement sample was similarly obtained.

【0022】[0022]

【表7】 [Table 7]

【0023】測定試料について実施例28と同様に比抵
抗、キュリー点及び耐電圧を測定した。その結果を表8
に示す。
The specific resistance, Curie point and withstand voltage of the measurement sample were measured in the same manner as in Example 28. The results are shown in Table 8
Shown in.

【0024】[0024]

【表8】 [Table 8]

【0025】尚前記の比抵抗、キュリー点、耐電圧は次
のようにして求めた。「比抵抗」は、25℃における抵
抗値Rをデジタルマルチメータを用いて測定し、表面積
をS、厚さをtとした時、式ρ=R×S/tにより求め
た。「キュリー点」はデジタルマルチメータを用い、試
料の抵抗値が最小となる値の2倍の抵抗値に達した時の
温度である。「耐電圧」は試料に直流電圧を印加し、そ
の電圧を徐々に上昇していった時に、試料の抵抗値が最
大になる時の電圧を、試料の厚みで割った値である。
The specific resistance, Curie point, and withstand voltage were determined as follows. The “specific resistance” was obtained by measuring the resistance value R at 25 ° C. using a digital multimeter, and assuming that the surface area is S and the thickness is t, the formula ρ = R × S / t. The “Curie point” is the temperature when the resistance value of the sample reaches a resistance value twice the minimum value using a digital multimeter. The “withstand voltage” is a value obtained by dividing the voltage when the resistance value of the sample becomes maximum when the DC voltage is applied to the sample and the voltage is gradually increased by the thickness of the sample.

【0026】[0026]

【発明の効果】本発明の組成物により140℃以上のキ
ュリー点を有し、耐電圧特性に優れ(100V/mm以
上)、且つ比抵抗の小さい(10Ω・cm以下)、しか
もPb成分の仮焼前後の添加を問わず、比抵抗を大きく
変化させることのない正の抵抗温度特性を有するチタン
酸バリウム系半導体磁器を提供することができる。そし
て前記磁器は温度制御、又は電流制御等の種々の用途に
広く用いることができる。
The composition of the present invention has a Curie point of 140 ° C. or higher, excellent withstand voltage characteristics (100 V / mm or higher), low specific resistance (10 Ω · cm or lower), and a temporary Pb component. It is possible to provide a barium titanate-based semiconductor ceramic having a positive resistance-temperature characteristic that does not significantly change the specific resistance regardless of whether it is added before or after firing. The porcelain can be widely used for various purposes such as temperature control or current control.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01G 4/12 415 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01G 4/12 415

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 チタン酸バリウム系化合物の主成分に半
導体化剤を添加させたチタン酸バリウム系半導体磁器用
原料組成物において、 主成分はBaTiO3 62〜90モル%、CaTiO
3 7〜18モル%、PbTiO3 3〜20モル%な
る組成物、又は該組成物形成用原料組成物であり、 半導体化剤としてNa、Ta、Sb、W、Yのうちの少
なくとも一種の元素の化合物を主成分100モル%に対
して元素として0.18〜0.30モル%含有し、添加
剤としてTiO2 を0.3〜1.0モル%、Al23
を0.1〜2.0モル%、SiO2 を2.0〜5.0モ
ル%、マンガン化合物をMn元素として0.02〜0.
06モル%含有することを特徴とするチタン酸バリウム
系半導体磁器用原料組成物。
1. A barium titanate-based semiconductor porcelain raw material composition comprising a barium titanate-based compound and a semiconducting agent added thereto, wherein the main components are BaTiO 3 62 to 90 mol%, and CaTiO 3.
3 to 18 mol%, PbTiO 3 3 to 20 mol%, or a raw material composition for forming the composition, wherein at least one element selected from Na, Ta, Sb, W, and Y as a semiconducting agent. 0.18 to 0.30 mol% as an element based on 100 mol% of the main component, 0.3 to 1.0 mol% of TiO 2 as an additive, and Al 2 O 3
Of 0.1 to 2.0 mol%, SiO 2 of 2.0 to 5.0 mol%, and manganese compound of 0.02 to 0.
A raw material composition for barium titanate-based semiconductor porcelain, characterized by containing 06 mol%.
JP5257484A 1993-09-22 1993-09-22 Composition for barium titanate semiconductor ceramic Pending JPH0794020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5257484A JPH0794020A (en) 1993-09-22 1993-09-22 Composition for barium titanate semiconductor ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5257484A JPH0794020A (en) 1993-09-22 1993-09-22 Composition for barium titanate semiconductor ceramic

Publications (1)

Publication Number Publication Date
JPH0794020A true JPH0794020A (en) 1995-04-07

Family

ID=17306942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5257484A Pending JPH0794020A (en) 1993-09-22 1993-09-22 Composition for barium titanate semiconductor ceramic

Country Status (1)

Country Link
JP (1) JPH0794020A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006035593A1 (en) * 2004-09-27 2008-05-15 東邦チタニウム株式会社 Barium titanate semiconductor porcelain composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006035593A1 (en) * 2004-09-27 2008-05-15 東邦チタニウム株式会社 Barium titanate semiconductor porcelain composition
JP4800956B2 (en) * 2004-09-27 2011-10-26 東邦チタニウム株式会社 Barium titanate semiconductor porcelain composition

Similar Documents

Publication Publication Date Title
JPH02123614A (en) High permittivity type porcelain composition
US6071842A (en) Barium titanate-based semiconductor ceramic
JPS597665B2 (en) High dielectric constant porcelain composition
JPH058524B2 (en)
JP3039511B2 (en) Semiconductor ceramic and semiconductor ceramic element
JPH0794020A (en) Composition for barium titanate semiconductor ceramic
JP2795654B2 (en) High dielectric constant porcelain composition
JPH0571538B2 (en)
JP3003201B2 (en) Barium titanate-based semiconductor porcelain composition
JPH0652718A (en) Dielectric porcelain and porcelain capacitor
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JPH0316773B2 (en)
JP2872513B2 (en) Dielectric porcelain and porcelain capacitor
JP2643197B2 (en) Dielectric porcelain composition
JP3273468B2 (en) Barium titanate-based semiconductor porcelain composition
JP2719594B2 (en) High dielectric constant porcelain composition
JP2621478B2 (en) High dielectric constant porcelain composition
JPH05213666A (en) Dielectric porcelain composition and its production
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof
JPH1092605A (en) Manufacture of positive temperature thermistor
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor
JP3036051B2 (en) Barium titanate-based semiconductor porcelain composition
JPH01239704A (en) Ceramic component with high dielectric constant
JPH0522667B2 (en)
JPS5919442B2 (en) Semiconductor ceramic material and its manufacturing method