JPH01239704A - Ceramic component with high dielectric constant - Google Patents

Ceramic component with high dielectric constant

Info

Publication number
JPH01239704A
JPH01239704A JP63066623A JP6662388A JPH01239704A JP H01239704 A JPH01239704 A JP H01239704A JP 63066623 A JP63066623 A JP 63066623A JP 6662388 A JP6662388 A JP 6662388A JP H01239704 A JPH01239704 A JP H01239704A
Authority
JP
Japan
Prior art keywords
dielectric constant
high dielectric
component
batio3
synthesized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63066623A
Other languages
Japanese (ja)
Inventor
Takeshi Iino
飯野 猛
Yuichi Yamada
裕一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63066623A priority Critical patent/JPH01239704A/en
Publication of JPH01239704A publication Critical patent/JPH01239704A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To use a ceramic component with high dielectric constant for a laminated ceramic capacitor, a reduction-reoxidation-type semiconductor-ceramic capacitor, etc., by composing the component by including the specified weight % of MnO2, and SiO2 into the specified mol%-component of fine BaTiO3. specified rare earth oxide and TiO2 combined by the specified method. CONSTITUTION:A ceramic component with high dielectric constant can be used for a laminated ceramic capacitor, a reduction reoxidation-type semiconductor ceramic capacitor, etc., by composing the component by including 0-2.0weight% of MnO2 and 0-1.0weight% of SiO2 into 79.0-94.0mol% of fine BaTiO3, 3.0-6.0mol% of at least One of Ln-oxide in rare earth oxide, Ln:Nd, Ce, La, Pr, Sm, Eu, Cd and Dy and 3.0-15.0mol% of TiO2 combined by liquid phase method.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電子機器に利用されるコンデンサ用の高誘電率
磁器組成物、さらには還元再酸化型半導体磁器コンデン
サとなシうる高誘電率磁器組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high dielectric constant ceramic composition for capacitors used in electronic equipment, and furthermore, a high dielectric constant ceramic composition that can be used as a reduction and reoxidation type semiconductor ceramic capacitor. It is related to.

従来の技術 セラミックコンデンサ用高誘電率磁器組成物として、チ
タン酸バリウムBaTiO3を主体とするものが多く知
られている。BaTiO3はキュリー点が120°C付
近にあるため、室温付近では誘電率が低く、キュリー点
を下げて室温付近の誘電率を上げるために、5rTi0
3 、 CjaSn03 、 Ba5no5 。
BACKGROUND OF THE INVENTION Many high dielectric constant ceramic compositions for ceramic capacitors are known, which are mainly composed of barium titanate (BaTiO3). BaTiO3 has a Curie point near 120°C, so its dielectric constant is low near room temperature.In order to lower the Curie point and increase the permittivity near room temperature, 5rTi0
3, CjaSn03, Ba5no5.

BaZr03等のシフターが添加されていた。さらにシ
フターとして希土類元素酸化物(希土類はNd。
A shifter such as BaZr03 was added. Furthermore, a rare earth element oxide (the rare earth element is Nd) is used as a shifter.

Ca 、 La 、 Pr 、 Sm 、 Eu 、 
G4およびD7)を用いた場合、グレインサイズ1〜2
μmの緻密で高誘電率の磁器が得られるのみならず、還
元雰囲気中で熱処理することにより容易に酸素イオン空
孔ができ、還元再酸化型の半導体磁器コンデンサが得ら
れることが知られている。(例えば、特開昭48−67
797号公報、特開昭58−48908号公報参照) 発明が解決しようとする課題 しかし、最近コンデンサの小形大容量化がさらに強く要
望されるに至シ、構造上小形大容量化が実現できる積層
磁器コンデンサや還元再酸化型の半導体磁器コンデンサ
においても、誘電体の誘電率をさらに向上させる必要が
あシ、このため磁器の組成のみならず原料の吟味も必要
となってきている。
Ca, La, Pr, Sm, Eu,
G4 and D7), grain size 1-2
It is known that not only is it possible to obtain porcelain with micrometer density and high dielectric constant, but also oxygen ion vacancies are easily created by heat treatment in a reducing atmosphere, resulting in a reduction-reoxidation type semiconductor ceramic capacitor. . (For example, JP-A-48-67
Problems to be Solved by the Invention However, recently there has been a strong demand for capacitors to be smaller and have larger capacities. In ceramic capacitors and reduction-reoxidation type semiconductor ceramic capacitors, it is necessary to further improve the dielectric constant of the dielectric material, and for this reason, it has become necessary to carefully examine not only the composition of the ceramic but also the raw material.

本発明はかかる点に鑑みてなされたもので、積層磁器コ
ンデンサや還元再酸化型の半導体磁器コンデンサに利用
できる高誘電率磁器組成物を提供することを目的とする
ものである。
The present invention has been made in view of the above, and an object of the present invention is to provide a high dielectric constant ceramic composition that can be used in laminated ceramic capacitors and reduction-reoxidation type semiconductor ceramic capacitors.

課題を解決するための手段 上記課題を解決するため本発明は、液相法で合成した高
純度BaTiO3を用いて、BaTiO379,0〜9
4.0モルチ、希土類元素酸化物(Ln−酸化物)3.
0〜6.0モルチ(ただしLnはNd、Co、La、P
r。
Means for Solving the Problems In order to solve the above problems, the present invention uses high purity BaTiO3 synthesized by a liquid phase method to produce BaTiO379,0-9.
4.0 molti, rare earth element oxide (Ln-oxide)3.
0 to 6.0 molti (Ln is Nd, Co, La, P
r.

Sm 、 Eu 、 GdおよびDy のうち少なくと
も1つ)、TiO23,0〜16.0モルチからなる組
成物に対して、さらにMnO2を0〜2.0重量%およ
び5i02を0〜1.0重量%含有してなる高誘電率磁
器組成物を提供するものである。
At least one of Sm, Eu, Gd and Dy), TiO23,0 to 16.0% by weight, and further 0 to 2.0% by weight of MnO2 and 0 to 1.0% by weight of 5i02. The object of the present invention is to provide a high dielectric constant ceramic composition comprising:

作用 従来のBaCO3とTiO□の粉末よシ固相法で合成さ
れるBaTiO3に比べ、共沈法やアルコキシド等のよ
うに液相法で合成されたBaTiO3は、溶液中でイオ
ンの状態で混合されるため、均質で純度が高く粒径の細
かい粉末が得られる。このような液相法で合成したBa
TiO3を用いて、BaTi0 s−希土類元素酸化物
一丁102系磁器組成物としたときに、反応性の向上、
焼結体の緻密化、不純物の低減等の効果により、従来の
固相法で合成したBaTiO3を用いた場合よシ、誘電
率が大きくなることを見い出した。
Function Compared to BaTiO3, which is synthesized by the conventional solid phase method using powders of BaCO3 and TiO□, BaTiO3 synthesized by liquid phase methods such as coprecipitation method or alkoxide is mixed in an ionic state in solution. As a result, a homogeneous, highly pure powder with fine particle size can be obtained. Ba synthesized by such a liquid phase method
When TiO3 is used to form a BaTi0 s-rare earth element oxide 102 series ceramic composition, reactivity is improved,
It has been found that due to the effects of densification of the sintered body, reduction of impurities, etc., the dielectric constant becomes higher than when BaTiO3 synthesized by the conventional solid phase method is used.

実施例 以下、実施例をあげて本発明につき詳細に説明する。Example Hereinafter, the present invention will be described in detail with reference to Examples.

(実施例1) まず、液相法の1つである共沈法で次のようにBaTi
O3を合成した。T1Cd4水溶液とBaCl2水溶液
をBa : Ti=1 : 1になるように調整、混合
し、この混合溶液を加熱したシュウ酸溶液にゆっくシ滴
下し、シェラ酸バリウムチタニール(BaTiO(02
04)−aH20)の沈殿を得、これを洗浄−p過し、
乾燥させ、950〜1100′Cで4時間仮焼してBa
TiO3(純度99.9%)を合成した。これと市販の
工業用BaTiO3(固相法で合成したもの。純度98
チ)、TiO2(純度96.9チ)、試薬特級Nd2O
3、0e02 、 La20B 、 Pr6011 、
 Sm20B 。
(Example 1) First, BaTi was
O3 was synthesized. A T1Cd4 aqueous solution and a BaCl2 aqueous solution were adjusted and mixed so that Ba:Ti=1:1, and this mixed solution was slowly dropped into a heated oxalic acid solution to form barium titanyl chelate (BaTiO(02)).
04)-aH20) was obtained, which was washed and filtered,
Dry and calcinate at 950-1100'C for 4 hours to obtain Ba.
TiO3 (purity 99.9%) was synthesized. This and commercially available industrial BaTiO3 (synthesized by solid phase method. Purity 98
h), TiO2 (purity 96.9ch), reagent special grade Nd2O
3, 0e02, La20B, Pr6011,
Sm20B.

ICu 203 、 Gd2O3、Dy2O3、MnO
2、5i02 (純度はいずれも99.9%以上)を用
い、目的の組成比になるように配合し、メノウ玉石を用
いたボールミルで混合し乾燥した。次にポリビニルアル
コール水溶液をバインダーとして造粒し・32メツシユ
パスに整粒し、直径9111M、厚さ0.36朋の円板
に約1トン/dの圧力で成形した。これらの成形体を空
気中で1280〜1320°Cの温度で2時間焼成して
、直径的7.5ffl、厚み0.3 ff1Fの円板形
誘電体磁器を得た。次にこの磁器の両面に銀ペースト印
刷し860°Cで焼付は電極とした。
ICu 203, Gd2O3, Dy2O3, MnO
2 and 5i02 (all with purity of 99.9% or higher) were blended to achieve the desired composition ratio, mixed in a ball mill using agate stones, and dried. Next, the granules were granulated using an aqueous polyvinyl alcohol solution as a binder, sized to 32 mesh passes, and molded into a disk having a diameter of 9111M and a thickness of 0.36 mm at a pressure of about 1 ton/d. These molded bodies were fired in air at a temperature of 1280 to 1320°C for 2 hours to obtain a disc-shaped dielectric porcelain having a diameter of 7.5 ffl and a thickness of 0.3 ffl. Next, silver paste was printed on both sides of this porcelain and baked at 860°C to form electrodes.

このようにして作成したコンデンサについて、20’C
においてI Vrms  1 kl−12で測定した誘
電率及び誘電損失(tanδ)、さらに誘電率が最大と
なる温度(キュリー点)を第1表に示す。
Regarding the capacitor made in this way, 20'C
Table 1 shows the dielectric constant and dielectric loss (tan δ) measured at I Vrms 1 kl-12, as well as the temperature at which the dielectric constant becomes maximum (Curie point).

第1表中のBaTiO3の覧のΔ印は従来の固相法で合
成したBaTiO3を示し、試料番号の覧の合印は本発
明の範囲外の組成物を示す。コンデンサの大容量化を図
るため、室温(20’C)で高い誘電率が望まれている
。磁器コンデンサの場合、キュリー点で誘電率が最大と
なυ、温度がキュリー点よシ離れるに従い誘電率が低く
なる。従って、BaTi03の種類を変えた場合、シフ
ターの固溶度合や不純物等によシ同組成にもかかわらず
キュリー点が変わるため、組成を少し変えてキュリー点
を同じにしたうえで20″Cの誘電率の大小を比較しな
くてはならない。試料番号3と4,5と6゜19と20
.24と25.28と29.30と31゜32と33.
34と35.38と37,38と39゜41と42は本
発明と従来法との比較である。共沈法で合成したBaT
iO3を用いた場合、従来の固相法で合成したBaTi
03を用いた場合よシ高誘電率が得られることがわかる
In Table 1, the Δ mark under BaTiO3 indicates BaTiO3 synthesized by the conventional solid phase method, and the cross mark under sample number indicates a composition outside the scope of the present invention. In order to increase the capacitance of capacitors, a high dielectric constant at room temperature (20'C) is desired. In the case of a magnetic capacitor, the dielectric constant is maximum at the Curie point υ, and the dielectric constant decreases as the temperature moves away from the Curie point. Therefore, if you change the type of BaTi03, the Curie point will change depending on the solid solubility of the shifter, impurities, etc. even though the composition is the same. We must compare the dielectric constants.Sample numbers 3 and 4, 5 and 6゜19 and 20
.. 24 and 25. 28 and 29. 30 and 31° 32 and 33.
34 and 35. 38 and 37, 38 and 39. 41 and 42 are comparisons between the present invention and the conventional method. BaT synthesized by coprecipitation method
When using iO3, BaTi synthesized by conventional solid phase method
It can be seen that a higher dielectric constant can be obtained when using 03.

希土類元素酸化物(Ln−酸化物)が3.0モルチより
少ない場合は、キュリー点の移動が少なく室温での誘電
率が低く、−δが大きくなる。また、6.0モルチをこ
える場合は、キュリー点の移動が大きく室温での誘電率
が低くなる。TlO2を3.0〜16.0モルチとした
のは、3.0モルチよシ少ない場合、焼結体に針状結晶
の析出量が多くなシ、15、oモルチよシ多くなると誘
電率が低下し、磁器の融着がおこるからである。MnO
2の添加は−δの低下および絶縁抵抗の向上に効果があ
るが、2.0重量%をこえると誘電率の低下が大きくな
る。
When the amount of rare earth element oxide (Ln-oxide) is less than 3.0 molti, the Curie point moves little, the dielectric constant at room temperature is low, and -δ becomes large. Moreover, when it exceeds 6.0 molti, the Curie point shifts significantly and the dielectric constant at room temperature becomes low. The reason why TlO2 is set to 3.0 to 16.0 mol. This is because the temperature decreases and fusion of the porcelain occurs. MnO
Addition of 2 is effective in lowering -δ and improving insulation resistance, but if it exceeds 2.0% by weight, the dielectric constant decreases significantly.

Si20の添加はMnO2と同様な効果の他に焼成温度
依存性を少なくする効果があるが、1.0重量%をこえ
ると誘電率の低下が大きくなる。
Addition of Si20 has the same effect as MnO2 and also has the effect of reducing firing temperature dependence, but if it exceeds 1.0% by weight, the dielectric constant decreases significantly.

(実施例2ン 第1表の組成物について、空気中で1280〜1320
°Cで2時間焼成し、これを還元性雰囲気(N2 : 
N2 =95 : 5 )中で960〜1150′Cで
4時間還元処理し半導体磁器を得た。この半導体磁器を
空気中で900〜1050℃で4時間酸化処理して、両
面に銀ペーストを印刷し850’Cで焼付は電極を形成
し、還元再酸化型半導体磁器コンデンサを得た。
(Example 2) For the compositions in Table 1, 1280-1320 in air
Calcinate at °C for 2 hours and place in a reducing atmosphere (N2:
Semiconductor porcelain was obtained by reduction treatment at 960 to 1150'C for 4 hours in N2 = 95:5). This semiconductor ceramic was oxidized in air at 900 to 1050°C for 4 hours, silver paste was printed on both sides and baked at 850'C to form electrodes, thereby obtaining a reduction and reoxidation type semiconductor ceramic capacitor.

このようにして作成したコンデンサについて、20℃に
おいてo、1Vrms 、 1k)4z  で単位面積
当シの容量C(μl’/d) 、誘電損失(tanδ)
、絶縁抵抗IR(Ω)、破壊電圧BDV(V)を測定し
た。絶縁抵抗はDO25V印加で測定し、破壊電圧はD
C外圧破壊方式を用いた。なお、単位面積当シの容量お
よび破壊電圧は、還元温度、再酸化温度によって変化す
るため、破壊電圧がおよそ600vになるように条件を
設定して、単位面積abの容量で比較した。結果を第2
表に示す。
For the capacitor created in this way, the capacitance per unit area C (μl'/d) and dielectric loss (tan δ) at 20°C, 1Vrms, 1k)4z
, insulation resistance IR (Ω), and breakdown voltage BDV (V) were measured. Insulation resistance was measured by applying DO25V, and breakdown voltage was D
C external pressure destruction method was used. Note that since the capacitance and breakdown voltage per unit area vary depending on the reduction temperature and reoxidation temperature, conditions were set so that the breakdown voltage was approximately 600 V, and the capacitance per unit area ab was compared. Second result
Shown in the table.

(以下余白) このように、共沈法で合成したBaTiO3を用いた場
合、従来の固相法で合成したBaTiO3を用いた場合
よシ、面積容量の大きな還元再酸化型の半導体磁器コン
デンサが得られることがわかる。
(Left below) In this way, when BaTiO3 synthesized by the coprecipitation method is used, a reduction-reoxidation type semiconductor ceramic capacitor with a larger areal capacitance can be obtained than when BaTiO3 synthesized by the conventional solid phase method is used. I know that it will happen.

なお、本実施例では液相法の1つである共沈法で合成し
たBaTiO3を用いたが、T1とBaのアルコキシド
(チタニウムテトライソプロポキシドTi((OH,)
20HO)4.バリウムビスイソプロポキシド Ba(
OC5H7)2 )  を加水分解して得たBaTiO
3でも同様な良い特性が確認できた。
In this example, BaTiO3 synthesized by the coprecipitation method, which is one of the liquid phase methods, was used, but the alkoxide of T1 and Ba (titanium tetraisopropoxide Ti((OH,)
20HO)4. Barium bisisopropoxide Ba (
BaTiO obtained by hydrolyzing OC5H7)2)
Similar good characteristics were confirmed for Sample No. 3 as well.

発明の効果 以上のように本発明の組成物によれば、積層磁器コンデ
ンサや還元再酸化型の半導体磁器コンデンサ用の高誘電
率磁器組成物が得られ、その実用的価値は極めて有用で
ある。
Effects of the Invention As described above, according to the composition of the present invention, a high dielectric constant ceramic composition for use in laminated ceramic capacitors and reduction-reoxidation type semiconductor ceramic capacitors can be obtained, and its practical value is extremely useful.

Claims (1)

【特許請求の範囲】[Claims] 液相法で合成した高純度BaTiO_3を用いて、Ba
TiO_379.0〜94.0モル%、希土類元素酸化
物(Ln−酸化物)3.0〜6.0モル%(ただし、L
nはNd,Ce,La,Pr,Sm,Eu,Gd,およ
びDyのうち少なくとも1つ)、TiO_23.0〜1
5.0モル%からなる組成物に対して、さらにMnO_
2を0〜2.0重量%およびSiO_2を0〜1.0重
量%含有してなる高誘電率磁器組成物。
Using high purity BaTiO_3 synthesized by liquid phase method, Ba
TiO_379.0-94.0 mol%, rare earth element oxide (Ln-oxide) 3.0-6.0 mol% (however, L
n is at least one of Nd, Ce, La, Pr, Sm, Eu, Gd, and Dy), TiO_23.0-1
For the composition consisting of 5.0 mol%, MnO_
A high dielectric constant ceramic composition containing 0 to 2.0% by weight of SiO_2 and 0 to 1.0% by weight of SiO_2.
JP63066623A 1988-03-18 1988-03-18 Ceramic component with high dielectric constant Pending JPH01239704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63066623A JPH01239704A (en) 1988-03-18 1988-03-18 Ceramic component with high dielectric constant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63066623A JPH01239704A (en) 1988-03-18 1988-03-18 Ceramic component with high dielectric constant

Publications (1)

Publication Number Publication Date
JPH01239704A true JPH01239704A (en) 1989-09-25

Family

ID=13321198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63066623A Pending JPH01239704A (en) 1988-03-18 1988-03-18 Ceramic component with high dielectric constant

Country Status (1)

Country Link
JP (1) JPH01239704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093763A1 (en) * 2004-03-29 2005-10-06 Nippon Chemical Industrial Co., Ltd. Inorganic dielectric powder for composite dielectric material and composite dielectric material
JP2008235088A (en) * 2007-03-22 2008-10-02 Murata Mfg Co Ltd Dielectric thin film, dielectric thin film capacitor, and manufacturing method of dielectric thin film capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848908A (en) * 1981-09-18 1983-03-23 松下電器産業株式会社 Surface dielectric layer type semiconductor porcelain composition and method of producing same
JPS6221758A (en) * 1985-07-22 1987-01-30 平野 真一 Manufacture of ceramic dielectric for high frequency

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848908A (en) * 1981-09-18 1983-03-23 松下電器産業株式会社 Surface dielectric layer type semiconductor porcelain composition and method of producing same
JPS6221758A (en) * 1985-07-22 1987-01-30 平野 真一 Manufacture of ceramic dielectric for high frequency

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093763A1 (en) * 2004-03-29 2005-10-06 Nippon Chemical Industrial Co., Ltd. Inorganic dielectric powder for composite dielectric material and composite dielectric material
JP4747091B2 (en) * 2004-03-29 2011-08-10 日本化学工業株式会社 Composite dielectric material
JP2008235088A (en) * 2007-03-22 2008-10-02 Murata Mfg Co Ltd Dielectric thin film, dielectric thin film capacitor, and manufacturing method of dielectric thin film capacitor

Similar Documents

Publication Publication Date Title
JP2958817B2 (en) Non-reducing dielectric porcelain composition
JP2958819B2 (en) Non-reducing dielectric porcelain composition
JPS597665B2 (en) High dielectric constant porcelain composition
JPH01239704A (en) Ceramic component with high dielectric constant
KR910001347B1 (en) Ultra-low fire ceramic compositions and method for producing thereof
JP3321823B2 (en) Non-reducing dielectric porcelain composition
JPH01100051A (en) Dielectric porcelain composition
JP2869900B2 (en) Non-reducing dielectric porcelain composition
JPS5815078A (en) High dielectric constant ceramic dielectric composition
JPS5828103A (en) High dielectric porcelain dielectric composition
JP2795654B2 (en) High dielectric constant porcelain composition
JP3385630B2 (en) Non-reducing dielectric porcelain composition
JP2621478B2 (en) High dielectric constant porcelain composition
JP2584985B2 (en) Semiconductor porcelain composition
KR19980046582A (en) High dielectric constant dielectric self composition
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
JPH01236607A (en) Porcelain composition for reduction-reoxidation type semiconductor capacitor
JPS61203506A (en) High dielectric ceramic composition
JPS6217806B2 (en)
JPH01236608A (en) Porcelain composition for reduction-reoxidation type semiconductor capacitor
JP3333017B2 (en) Dielectric ceramic composition for temperature compensation
KR910001344B1 (en) Multilayer ceramic capacitor and method for producing thereof
JPS59116174A (en) High permittivity ceramic composition
JP3106371B2 (en) Dielectric porcelain composition
JPH0522667B2 (en)