JPH1092605A - Manufacture of positive temperature thermistor - Google Patents

Manufacture of positive temperature thermistor

Info

Publication number
JPH1092605A
JPH1092605A JP8240290A JP24029096A JPH1092605A JP H1092605 A JPH1092605 A JP H1092605A JP 8240290 A JP8240290 A JP 8240290A JP 24029096 A JP24029096 A JP 24029096A JP H1092605 A JPH1092605 A JP H1092605A
Authority
JP
Japan
Prior art keywords
temperature coefficient
positive temperature
coefficient thermistor
resistance
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8240290A
Other languages
Japanese (ja)
Inventor
Taiji Goto
泰司 後藤
Souko Hatano
惣子 幡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8240290A priority Critical patent/JPH1092605A/en
Publication of JPH1092605A publication Critical patent/JPH1092605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive temperature coefficient thermistor which has a lower specific resistance value and a high breakdown voltage at a room temperature, especially. SOLUTION: A positive temperature coefficient thermistor is constituted by calcining raw material powder prepared by adding and mixing a compound of the oxide of at least one element selected from among rare-earth elements, Nb, Sb, and Bi and Mg to and in a raw material composed mainly of barium titanate at a temperature which is lower than the baking temperature and falls within the range of 1,200-1,300 deg.C and, after the oxides of Si and Mn are added and mixed to and in the calcined powder, molding the calcined power and baking the molded body at >=1,300 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は特定の温度で抵抗値
が急激に増大する正特性サーミスタに関するものであ
り、特に室温での抵抗値が低く、耐電圧の高い正特性サ
ーミスタの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive temperature coefficient thermistor whose resistance value rapidly increases at a specific temperature, and more particularly to a method of manufacturing a positive temperature coefficient thermistor having a low resistance value at room temperature and a high withstand voltage. It is.

【0002】[0002]

【従来の技術】まず、主成分チタン酸バリウムに、副成
分として、半導体化させるためにY、La等の希土類元
素あるいはNb、Sb等の酸化物や、特性向上剤として
SiやMn等の酸化物を微量添加した原料を湿式ボール
ミルやディスパーミルなどを用いて混合し、フィルター
プレス、ドラムドライヤー等で脱水乾燥した後、これら
の混合粉末を仮焼する。次に、この仮焼粉末を湿式ボー
ルミルやサンドミル等により粉砕し、バインダーを加え
スラリー状にしたものをスプレードライヤー等により造
粒し、所望の形状に成形した後、本焼成を行い、得られ
た焼結体に電極を形成し正特性サーミスタを製造してい
た。
2. Description of the Related Art First, a barium titanate as a main component is made of a rare earth element such as Y or La or an oxide such as Nb or Sb as a sub-component, or an oxide such as Si or Mn as a property improver. The raw materials to which a small amount of the substance is added are mixed using a wet ball mill, a disper mill, or the like, dehydrated and dried using a filter press, a drum dryer, or the like, and then the mixed powder is calcined. Next, the calcined powder was pulverized with a wet ball mill or a sand mill or the like, and a slurry was added to the binder, granulated by a spray drier or the like, formed into a desired shape, and then subjected to main baking. An electrode was formed on the sintered body to manufacture a positive temperature coefficient thermistor.

【0003】[0003]

【発明が解決しようとする課題】正特性サーミスタは、
過電流防止用素子、温度制御用素子、モータ起動用素
子、消磁用素子、ヒータ用素子といったさまざまな用途
に応用されてきている。特に過電流防止用あるいは消磁
用素子においては、その小型化を図るため、室温での比
抵抗が小さいこと、抵抗温度係数が高く耐電圧が高いこ
とが要望されている。このような正特性サーミスタを得
るため、従来より組成面および工法面より鋭意研究され
ているが、上記方法で製造した正特性サーミスタは、室
温での比抵抗が低いものは耐電圧が低く、耐電圧が高い
ものは室温での比抵抗が高くなり、現在実用化されてい
るもので、室温の比抵抗が5Ωcmで耐電圧が30〜40
V/mmのものが限界であった。
SUMMARY OF THE INVENTION A positive temperature coefficient thermistor is
It has been applied to various uses such as an overcurrent prevention element, a temperature control element, a motor starting element, a demagnetizing element, and a heater element. In particular, in order to reduce the size of the overcurrent preventing or demagnetizing element, it is required that the specific resistance at room temperature be small, the resistance temperature coefficient be high, and the withstand voltage be high. In order to obtain such a PTC thermistor, studies have been made diligently from the aspect of composition and method of construction.However, the PTC thermistor manufactured by the above method has low withstand voltage at low room temperature and low withstand voltage at room temperature. Those having a high voltage have a high specific resistance at room temperature and are currently in practical use. The specific resistance at room temperature is 5 Ωcm and the withstand voltage is 30 to 40.
V / mm was the limit.

【0004】そこで本発明は、比抵抗が小さくかつ耐電
圧の高い正特性サーミスタを提供することを目的とする
ものであり、より具体的には、比抵抗が5Ωcm以下でか
つ耐電圧が40V/mm以上の、従来にない優れた正特性
サーミスタを提供することを目的とするものである。
Accordingly, an object of the present invention is to provide a positive temperature coefficient thermistor having a small specific resistance and a high withstand voltage. More specifically, the present invention has a specific resistance of 5 Ωcm or less and a withstand voltage of 40 V / V. It is an object of the present invention to provide an unprecedented excellent positive temperature coefficient thermistor of not less than mm.

【0005】[0005]

【課題を解決するための手段】正特性サーミスタにおけ
る半導体化の機構に関しては、Y、Laなどの希土類元
素やNb、Sbなどの金属元素が、主成分であるチタン
酸バリウムに固溶したときに生ずる電子が伝導に寄与し
ているという、いわゆる原子価制御により説明されてき
た。しかしこのような半導体化元素の濃度には、最適な
範囲が存在し、濃度が低くても、逆に高くても半導体化
しづらい傾向があった。従って、正特性サーミスタの低
抵抗化の課題に対しては、この半導体化元素をいかにチ
タン酸バリウムに固溶させるかがポイントであった。
Means for Solving the Problems Regarding the mechanism of semiconductor conversion in a positive temperature coefficient thermistor, a rare earth element such as Y and La and a metal element such as Nb and Sb are dissolved in barium titanate which is a main component. It has been explained by the so-called valence control that the resulting electrons contribute to conduction. However, there is an optimum range for the concentration of such a semiconducting element, and it tends to be difficult to be semiconducting even if the concentration is low or conversely high. Therefore, the point of solving the problem of lowering the resistance of the positive temperature coefficient thermistor was how to dissolve the semiconductor-forming element in barium titanate.

【0006】一方、耐電圧向上に関しては、電気的特性
からは抵抗温度係数を大きくすること、又磁器的には結
晶粒子径を均一、微細にすることがポイントであった。
On the other hand, with respect to the improvement of the withstand voltage, it is important to increase the temperature coefficient of resistance in view of the electrical characteristics and to make the crystal grain diameter uniform and fine in porcelain.

【0007】そこで上記目的を達成するために、本発明
の正特性サーミスタの製造方法は、チタン酸バリウム又
はその固溶体を生じさせる原料に、半導体化元素として
希土類元素あるいはNb、Sb、Biの酸化物のうち少
なくとも一種類とMgの化合物を添加、混合し、次にこ
の原料粉末を1200〜1300℃の範囲にて仮焼し、
次いでこの仮焼粉にSiとMnの各酸化物を添加混合し
た後、成形し、次にこの成形体を1300℃以上で本焼
成することを特徴とするものであり、これにより上記目
的を達成することができる。
In order to achieve the above object, a method for producing a positive temperature coefficient thermistor according to the present invention is to provide a raw material for forming barium titanate or a solid solution thereof with a rare earth element or oxide of Nb, Sb or Bi as a semiconducting element. At least one of them and a compound of Mg are added and mixed, and then the raw material powder is calcined in a range of 1200 to 1300 ° C.
Then, after adding and mixing each oxide of Si and Mn to the calcined powder, molding is performed, and then, the molded body is fully fired at 1300 ° C. or more, thereby achieving the above object. can do.

【0008】[0008]

【発明の実施の形態】本発明の請求項1に記載の発明
は、チタン酸バリウムを主成分とする原料に、半導体化
元素として希土類元素あるいはNb、Sb、Biの酸化
物のうち少なくとも一種類と、Mgの化合物を添加、混
合し、次にこの原料粉末を1200〜1300℃の範囲
にて仮焼し、次いでこの仮焼粉にSiとMnの各酸化物
を添加混合した後、成形し、次にこの成形体を1300
℃以上で本焼成することを特徴とする正特性サーミスタ
の製造方法であり、半導体化元素の主成分への固溶が進
行しやすくなり、低抵抗化が図れるとともに、抵抗温度
係数が大きく、結晶粒子径が均一で微細であるので耐電
圧を向上させることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is characterized in that a raw material mainly composed of barium titanate contains at least one of rare earth elements or oxides of Nb, Sb and Bi as semiconducting elements. And a compound of Mg are added and mixed. Then, the raw material powder is calcined in a range of 1200 to 1300 ° C., and then each oxide of Si and Mn is added to the calcined powder and mixed. Then, this molded body is 1300
This is a method for producing a positive temperature coefficient thermistor characterized by being baked at a temperature of at least 100 ° C., in which solid solution of a semiconducting element in a main component is easily progressed, resistance can be reduced, and a temperature coefficient of resistance is large. Since the particle diameter is uniform and fine, the withstand voltage can be improved.

【0009】請求項2に記載の発明は、仮焼を還元雰囲
気中で行うことを特徴とする請求項1に記載の正特性サ
ーミスタの製造方法であり、還元雰囲気中で仮焼するこ
とにより酸素欠陥に伴う伝導原子が生成し、より低抵抗
な正特性サーミスタを得ることができる。
According to a second aspect of the present invention, there is provided the method of manufacturing a positive temperature coefficient thermistor according to the first aspect, wherein the calcination is performed in a reducing atmosphere. Conductive atoms are generated due to the defect, and a positive resistance thermistor with lower resistance can be obtained.

【0010】以下本発明の実施の形態について説明す
る。 (実施の形態1)まず(Ba0.90Ca0.10)TiO3
0.002Y23+0.001MgOの組成となるよう
に、BaCO3、CaCO3、TiO2、Y23、MgO
の各原料を秤量し、ボールミルにて湿式混合する。次に
この混合物を乾燥した後、(表1)の試料番号2〜10
に示した温度(以下、仮焼温度とする)で空気中にて仮
焼する。
An embodiment of the present invention will be described below. (Embodiment 1) First, (Ba 0.90 Ca 0.10 ) TiO 3 +
BaCO 3 , CaCO 3 , TiO 2 , Y 2 O 3 , MgO so that the composition becomes 0.002Y 2 O 3 + 0.001MgO.
Are weighed and wet-mixed in a ball mill. Next, after this mixture was dried, sample numbers 2 to 10 in (Table 1) were used.
(Hereinafter referred to as the calcination temperature) in the air.

【0011】[0011]

【表1】 [Table 1]

【0012】次にこの仮焼粉に、主成分(Ba0.90Ca
0.10)TiO31モルに対して、SiO2を0.02モル
と、MnO2を0.0005モル添加、混合した後、再
びボールミルにて湿式粉砕し乾燥する。次にこの乾燥粉
にポリビニルアルコールからなるバインダーを添加、造
粒し、1平方センチメートル当たり800kgの圧力で直
径20mm、厚さ2.5mmの円板状に成形した。次にこれ
らの成形体を(表1)に示した温度にて2時間本焼成を
行い焼結体を得た。この焼結体表面の所定の位置にNi
メッキを施した後、銀ペーストを印刷塗布、焼き付け
し、一対の電極を形成し、正特性サーミスタを得た。
Next, a main component (Ba 0.90 Ca
0.10) with respect to TiO 3 1 mol and the SiO 2 0.02 mol of MnO 2 0.0005 moles added, after mixing, are wet pulverized again by the ball mill drying. Next, a binder made of polyvinyl alcohol was added to the dried powder, granulated, and molded into a disk having a diameter of 20 mm and a thickness of 2.5 mm at a pressure of 800 kg per square centimeter. Next, these compacts were baked for 2 hours at the temperatures shown in Table 1 to obtain sintered compacts. Ni is placed at a predetermined position on the surface of the sintered body.
After plating, a silver paste was printed and baked to form a pair of electrodes to obtain a positive temperature coefficient thermistor.

【0013】ここで(表1)の試料番号1の試料は、従
来法との比較のための正特性サーミスタであり、次のよ
うにして製造したものである。
Here, the sample of sample No. 1 in Table 1 is a positive temperature coefficient thermistor for comparison with the conventional method, and was manufactured as follows.

【0014】まず(Ba0.90Ca0.10)TiO3+0.
002Y23+0.001MgO+0.02SiO2
0.0005MnO2の組成となるように、上記と同様
な原料を用いて、ボールミルにて湿式混合した後、乾燥
し1200℃で仮焼する。その後の工程は本実施の形態
と同様な方法で行った。
First, (Ba 0.90 Ca 0.10 ) TiO 3 +0.
002Y 2 O 3 + 0.001MgO + 0.02SiO 2 +
Using a raw material similar to the above, the mixture is wet-mixed with a ball mill so that the composition becomes 0.0005 MnO 2 , dried, and calcined at 1200 ° C. Subsequent steps were performed in the same manner as in the present embodiment.

【0015】次に、このように作製された正特性サーミ
スタの各種の電気特性を測定する。その抵抗温度特性よ
り、室温比抵抗値ρ25、抵抗温度係数α、耐電圧VBD
評価する。その評価結果を(表1)に示した。
Next, various electrical characteristics of the positive temperature coefficient thermistor thus manufactured are measured. From the resistance temperature characteristics, the room temperature specific resistance value ρ 25 , the temperature coefficient of resistance α, and the withstand voltage V BD are evaluated. The evaluation results are shown in (Table 1).

【0016】ここで、抵抗温度係数については次式に従
い求めた。 〔ln(R2/R1)/(T2−T1)〕×100(%/
℃) 但し、R1、T1;R25の2倍の抵抗値およびその時の温
度 R2、T2;(T1+30)℃の抵抗値およびその時の温
度である。
Here, the temperature coefficient of resistance was determined according to the following equation. [Ln (R 2 / R 1 ) / (T 2 −T 1 )] × 100 (% /
° C) where R 1 , T 1 ; the resistance value twice as high as R 25 and the temperature at that time R 2 , T 2 ; the resistance value at (T 1 +30) ° C. and the temperature at that time.

【0017】(表1)より明らかなように、仮焼温度お
よび本焼成温度が本発明の範囲内である試料番号5〜8
の正特性サーミスタは、低抵抗で耐電圧が高いが、試料
番号1〜4および9,10の本発明の範囲外の正特性サ
ーミスタにはその効果が認められない。
As apparent from Table 1, sample numbers 5 to 8 in which the calcination temperature and the main calcination temperature are within the range of the present invention.
The positive temperature coefficient thermistor of Example 1 has a low resistance and a high withstand voltage, but the positive temperature coefficient thermistors of Sample Nos. 1 to 4 and 9 and 10 out of the range of the present invention have no effect.

【0018】(実施の形態2)(実施の形態1)と同様
な組成で原料を秤量しボールミルにて湿式混合し乾燥す
る。次に(表2)に示した試料番号1〜20の温度にて
仮焼する。
(Embodiment 2) Raw materials having the same composition as in (Embodiment 1) are weighed, wet-mixed in a ball mill, and dried. Next, it is calcined at the temperatures of sample numbers 1 to 20 shown in (Table 2).

【0019】[0019]

【表2】 [Table 2]

【0020】ただし、このときの焼成雰囲気は、水素1
0%のグリーンガス中の還元雰囲気で行うものとする。
以降の工程は上記(実施の形態1)と同様に、粉砕、造
粒、成形し、(表2)に示した温度にて2時間本焼成を
行い、得られた焼結体に電極を形成した。
However, the firing atmosphere at this time is hydrogen 1
It is performed in a reducing atmosphere in 0% green gas.
In the subsequent steps, as in the above (Embodiment 1), pulverization, granulation, and molding were performed, and the main firing was performed at the temperature shown in (Table 2) for 2 hours to form an electrode on the obtained sintered body. did.

【0021】また、従来法との比較のために、(実施の
形態1)と同様な方法で正特性サーミスタを作製した。
ただし、仮焼時の焼成雰囲気を水素10%のグリーンガ
ス中で行った。次に、このように作製した正特性サーミ
スタの各種電気特性を(実施の形態1)と同様な方法で
評価した。その結果を(表2)に示した。
For comparison with the conventional method, a PTC thermistor was manufactured in the same manner as in the first embodiment.
However, the calcination was performed in a green gas atmosphere of 10% hydrogen. Next, various electrical characteristics of the PTC thermistor thus manufactured were evaluated in the same manner as in the first embodiment. The results are shown in (Table 2).

【0022】(表2)より明らかなように、本発明の範
囲内である試料番号15〜18の正特性サーミスタはさ
らに低比抵抗で耐電圧の高いものであるが、試料番号1
1〜14および19,20の本発明の範囲外である正特
性サーミスタにはその効果は認められない。
As is clear from Table 2, the positive temperature coefficient thermistors of Sample Nos. 15 to 18 which are within the scope of the present invention have lower specific resistance and higher withstand voltage.
The effects of the positive temperature coefficient thermistors 1 to 14 and 19 and 20 outside the scope of the present invention are not recognized.

【0023】本実施の形態において還元雰囲気として水
素10%のグリーンガス中としたが、これに限らず還元
雰囲気であれば同様の結果が得られる。
In this embodiment, the reducing atmosphere is green gas of 10% hydrogen. However, the present invention is not limited to this, and similar results can be obtained if the reducing atmosphere is used.

【0024】なお(実施の形態1)、(実施の形態2)
においては、主成分として(Ba0. 90Ca0.10)TiO
3で表されるものを用いたが、チタン酸バリウム又はそ
の固溶体を生じさせる原料を用いれば同様の効果が得ら
れる。
(Embodiment 1), (Embodiment 2)
In, (Ba 0. 90 Ca 0.10) as a main component TiO
Although the material represented by 3 was used, the same effect can be obtained by using a raw material that forms barium titanate or a solid solution thereof.

【0025】また主成分1モルに対して、半導体化元素
量は0.001〜0.004モル、Mg量は0.001
〜0.03モル、SiO2量は0.01〜0.05モ
ル、MnO2量は0.0001〜0.0015モルの範
囲で添加するのが好ましい。なぜなら、これらの範囲外
であると室温での抵抗値が大きく上昇し、抵抗温度係数
が低くなり、耐電圧の向上が図れなくなるからである。
The amount of the semiconducting element is 0.001 to 0.004 mol, and the amount of Mg is 0.001 mol per mol of the main component.
0.03 moles, SiO 2 content from 0.01 to 0.05 mol, MnO 2 content is preferably added in the range of 0.0001 to 0.0015 mol. This is because if the temperature is outside these ranges, the resistance value at room temperature greatly increases, the temperature coefficient of resistance decreases, and the withstand voltage cannot be improved.

【0026】さらに、本焼成の温度は1300℃以上と
なっているが、上記(実施の形態1)、(実施の形態
2)で示したように1300〜1350℃の範囲が好ま
しい。なぜならこの範囲以外の温度であると抵抗値が逆
に高くなってしまうからである。
Further, the temperature of the main firing is 1300 ° C. or higher, but is preferably in the range of 1300 to 1350 ° C. as described in the above (Embodiment 1) and (Embodiment 2). This is because if the temperature is outside this range, the resistance value will increase.

【0027】又、本発明におけるMgの化合物として
は、MgOの他に焼成により酸化物を生じる炭酸塩、水
酸化物等が挙げられる。
Examples of the compound of Mg in the present invention include, in addition to MgO, carbonates and hydroxides which form oxides upon firing.

【0028】以上(実施の形態1)および(実施の形態
2)に示したように、本発明の正特性サーミスタの製造
方法を用いることにより、比抵抗が5Ωcm以下で、耐電
圧が50V/mm以上の従来にない低抵抗で高耐電圧の正
特性サーミスタを得ることができる。
As described above (Embodiment 1) and (Embodiment 2), by using the method of manufacturing a positive temperature coefficient thermistor of the present invention, the specific resistance is 5 Ωcm or less and the withstand voltage is 50 V / mm. The above-mentioned non-conventional low-resistance, high-withstand-voltage positive-characteristic thermistor can be obtained.

【0029】[0029]

【発明の効果】以上の説明より明らかなように、本発明
は、チタン酸バリウムを主成分とする原料に、半導体化
元素として希土類元素あるいはNb、Sb、Biの酸化
物のうち少なくとも一種類とMgの化合物を添加、混合
し、次にこの原料粉末を1200〜1300℃の範囲に
て仮焼し、次いでこの仮焼粉にSiとMnの各酸化物を
添加混合した後、成形し、次にこの成形体を1300℃
以上で本焼成することを特徴とする正特性サーミスタの
製造方法であり、従来にない低抵抗で耐電圧の高い正特
性サーミスタを得ることができ、製品の小型化や高電力
回路への応用が期待できるためその工業的利用価値は大
きい。
As is apparent from the above description, the present invention relates to a method in which a barium titanate as a main component is mixed with at least one of rare earth elements or oxides of Nb, Sb, and Bi as semiconducting elements. A compound of Mg is added and mixed, then the raw material powder is calcined in a range of 1200 to 1300 ° C., and each oxide of Si and Mn is added and mixed to the calcined powder, and then molded. 1300 ° C
This is a method for manufacturing a positive temperature coefficient thermistor characterized by main firing, which makes it possible to obtain a positive temperature coefficient thermistor with low resistance and high withstand voltage, which is unprecedented, and is applicable to miniaturization of products and application to high power circuits. As it can be expected, its industrial value is large.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チタン酸バリウムを主成分とする原料
に、半導体化元素として希土類元素あるいはNb、S
b、Biの酸化物のうち少なくとも一種類と、Mgの化
合物を添加、混合し、次にこの原料粉末を1200〜1
300℃の範囲にて仮焼し、次いでこの仮焼粉にSiと
Mnの各酸化物を添加混合した後、成形し、次にこの成
形体を1300℃以上で本焼成することを特徴とする正
特性サーミスタの製造方法。
1. A raw material containing barium titanate as a main component and a rare earth element or Nb, S
b, at least one of the oxides of Bi and a compound of Mg are added and mixed.
After calcination in the range of 300 ° C., and then adding and mixing each oxide of Si and Mn to the calcined powder, molding, and then, sintering the molded body at 1300 ° C. or more. A method for manufacturing a positive temperature coefficient thermistor.
【請求項2】 仮焼は、還元雰囲気中で行うことを特徴
とする請求項1に記載の正特性サーミスタの製造方法。
2. The method for producing a positive temperature coefficient thermistor according to claim 1, wherein the calcination is performed in a reducing atmosphere.
JP8240290A 1996-09-11 1996-09-11 Manufacture of positive temperature thermistor Pending JPH1092605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8240290A JPH1092605A (en) 1996-09-11 1996-09-11 Manufacture of positive temperature thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8240290A JPH1092605A (en) 1996-09-11 1996-09-11 Manufacture of positive temperature thermistor

Publications (1)

Publication Number Publication Date
JPH1092605A true JPH1092605A (en) 1998-04-10

Family

ID=17057288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8240290A Pending JPH1092605A (en) 1996-09-11 1996-09-11 Manufacture of positive temperature thermistor

Country Status (1)

Country Link
JP (1) JPH1092605A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065413A1 (en) * 2011-11-01 2013-05-10 株式会社村田製作所 Method for manufacturing ceramic semiconductor having positive resistance-temperature characteristics, ceramic semiconductor, and ptc thermistor using said ceramic semiconductor
JP2014034505A (en) * 2012-08-10 2014-02-24 Nichicon Corp Semiconductor ceramic composition and method of producing the same
JP2017178658A (en) * 2016-03-30 2017-10-05 ニチコン株式会社 Semiconductor ceramic composition and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065413A1 (en) * 2011-11-01 2013-05-10 株式会社村田製作所 Method for manufacturing ceramic semiconductor having positive resistance-temperature characteristics, ceramic semiconductor, and ptc thermistor using said ceramic semiconductor
JP2014034505A (en) * 2012-08-10 2014-02-24 Nichicon Corp Semiconductor ceramic composition and method of producing the same
JP2017178658A (en) * 2016-03-30 2017-10-05 ニチコン株式会社 Semiconductor ceramic composition and method for producing the same

Similar Documents

Publication Publication Date Title
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
JP5881169B2 (en) Method for producing semiconductor porcelain composition
JPH1092605A (en) Manufacture of positive temperature thermistor
JP4058140B2 (en) Barium titanate semiconductor porcelain
JP5988388B2 (en) Semiconductor porcelain composition and method for producing the same
JPH11102802A (en) Positive temperature coefficient thermistor and its manufacture
JPH07297009A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JP2000003803A (en) Positive temperature coefficient thermistor and production method thereof
JPH1070008A (en) Manufacture of positive temperature coefficient thermistor
JPS6243522B2 (en)
JPH1092604A (en) Positive temperature coefficient thermistor and its manufacture
JPH11292622A (en) Semiconductor ceramic and semiconductor ceramic element
JPH1070009A (en) Positive temperature coefficient thermistor and manufacture thereof
JP3598177B2 (en) Voltage non-linear resistor porcelain
JPH09330804A (en) Manufacture of positive characteristic thermistor
JPH07335404A (en) Manufacture of positive temperature coefficient thermistor
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
JP3237502B2 (en) Manufacturing method of grain boundary insulated semiconductor ceramic capacitor
JPH09330805A (en) Positive characteristic thermistor and manufacture thereof
JPH10289804A (en) Positive temperature coefficient thermistor and manufacture thereof
JP4367803B2 (en) Semiconductor porcelain and thermistor using the same
JPH10135006A (en) Positive temperature coefficient thermistor and manufacturing method thereof
JP4800956B2 (en) Barium titanate semiconductor porcelain composition
JPH11116326A (en) Thermistor with positive characteristic and its production
JPH10289805A (en) Production positive characteristic thermistor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees