JPH0764581B2 - Method for manufacturing nitrogen-containing synthetic quartz glass member - Google Patents

Method for manufacturing nitrogen-containing synthetic quartz glass member

Info

Publication number
JPH0764581B2
JPH0764581B2 JP17083690A JP17083690A JPH0764581B2 JP H0764581 B2 JPH0764581 B2 JP H0764581B2 JP 17083690 A JP17083690 A JP 17083690A JP 17083690 A JP17083690 A JP 17083690A JP H0764581 B2 JPH0764581 B2 JP H0764581B2
Authority
JP
Japan
Prior art keywords
nitrogen
quartz glass
temperature
porous silica
glass member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17083690A
Other languages
Japanese (ja)
Other versions
JPH0459633A (en
Inventor
裕幸 西村
朗 藤ノ木
敦之 嶋田
俊幸 加藤
仁 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP17083690A priority Critical patent/JPH0764581B2/en
Publication of JPH0459633A publication Critical patent/JPH0459633A/en
Publication of JPH0764581B2 publication Critical patent/JPH0764581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/24Doped silica-based glasses containing non-metals other than boron or halide containing nitrogen, e.g. silicon oxy-nitride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、優れた耐熱性を有し、且つ含有金属不純物の
少ない窒素含有合成石英ガラス部材の製造方法に関し、
特に、半導体ウエハー熱処理用の容器及び関連治具等に
好適に使用し得る高純度,高耐熱性合成石英ガラス部材
の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a nitrogen-containing synthetic quartz glass member having excellent heat resistance and containing few metal impurities.
In particular, the present invention relates to a method for producing a high-purity, high-heat-resistant synthetic quartz glass member which can be suitably used for a container for heat treatment of semiconductor wafers and related jigs.

〔従来の技術〕[Conventional technology]

半導体ウエハーは、通常、その使用目的に応じて、例え
ば、1,000〜1,300℃の高温度領域で熱処理される。かか
る高温度領域において耐熱性変形性を有する部材とし
て、従来、天然石英ガラスが広く用いられてきた。
The semiconductor wafer is usually heat-treated in a high temperature region of 1,000 to 1,300 ° C., for example, depending on the purpose of use. Conventionally, natural quartz glass has been widely used as a member having heat-resistant deformability in such a high temperature range.

しかし、近年、半導体ウエハーの高集積化に伴って、そ
の熱処理用容器や関連治具類に含まれる不純物の拡散に
よる半導体ウエハーの汚染が大きな問題となってきた。
それゆえ、可及的高純度の石英ガラス製の熱処理容器や
治具類が要求されるようになった。一方、純度の高い合
成石英ガラスは、天然石英ガラスと比べて耐熱温度が低
く、従って、その耐熱性を大幅に向上させなければ半導
体ウエハーの熱処理用容器等として使用することが事実
上できないものである。
However, in recent years, as semiconductor wafers have been highly integrated, contamination of semiconductor wafers due to diffusion of impurities contained in the heat treatment container and related jigs has become a serious problem.
Therefore, heat treatment containers and jigs made of quartz glass having the highest possible purity have been required. On the other hand, high-purity synthetic quartz glass has a lower heat resistance temperature than natural quartz glass, and therefore it cannot be practically used as a container for heat treatment of semiconductor wafers unless its heat resistance is significantly improved. is there.

かかる石英ガラスの耐熱性を高める方法が、米国特許第
3,113,008号明細書で提案された。その提案は、多孔質
合成シリカ母材を、例えば、少なくとも5容量%のアン
モニアガスを含有する非酸化性ガス雰囲気下に900〜1,0
50℃の温度で熱処理した後、これを非酸化性ガス雰囲気
中で、1300〜1350℃の温度で透明ガラス化する窒素含有
石英ガラスの製造方法を教えている。
A method for increasing the heat resistance of such quartz glass is disclosed in US Pat.
No. 3,113,008 proposed. The proposal proposes to use a porous synthetic silica matrix in a non-oxidizing gas atmosphere containing, for example, at least 5% by volume of ammonia gas in an amount of 900 to 1,0.
He teaches a method for producing nitrogen-containing quartz glass that is heat-treated at a temperature of 50 ℃ and then vitrified into a transparent glass at a temperature of 1300 to 1350 ℃ in a non-oxidizing gas atmosphere.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、この方法は、近年の半導体ウエハーの大型化に
伴う大型多孔質シリカ母材の窒素化方法にはそのまま採
用し得ないものである。というのは、上記米国特許に記
載された方法で大型多孔質シリカ母材を窒素化する場合
には、加熱用ヒーターに近接している母材の表面近傍と
内部との温度差が大きく、更に、アンモニアガスは表面
から内部へ拡散していくので、反応が表面側から優先的
に起こり、そのためこれを透明ガラス化した石英ガラス
部材は、窒素含有量が表面側から内部に向かって減少す
るという大きな窒素濃度勾配が形成されるので、均質な
素材として得ることは事実上困難であり、得られたガラ
ス部材は物質的に大きな使用制限を受けるからである。
However, this method cannot be adopted as it is as a method for nitriding a large-scale porous silica preform with the recent increase in the size of semiconductor wafers. This is because when the large porous silica base material is nitrogenated by the method described in the above-mentioned U.S. Patent, there is a large temperature difference between the vicinity of the surface of the base material that is close to the heater for heating and the inside, Since ammonia gas diffuses from the surface to the inside, the reaction occurs preferentially from the surface side, so that in the vitrified quartz glass member, the nitrogen content decreases from the surface side to the inside. Since a large nitrogen concentration gradient is formed, it is practically difficult to obtain a homogeneous material, and the obtained glass member is materially subject to a large use restriction.

また、多孔質シリカ母材の内部の窒素含有量を多くする
ためにアンモニア濃度を高くすると、母材表面近傍の窒
素濃度は極めて高くなり、その加熱溶融加工に際して発
泡現象を伴うため、高すぎる窒素含有量のガラスは実用
的でない。逆に、アンモニア濃度を下げて表面部の窒素
含有量を低くしようとすれば、内部の窒素含浸量が不充
分となり、ガラス部材の耐熱性の向上は得られない。
Further, when the ammonia concentration is increased to increase the nitrogen content inside the porous silica matrix, the nitrogen concentration near the surface of the matrix becomes extremely high, and a foaming phenomenon occurs during the heating and melting process. Glass content is not practical. On the other hand, if the concentration of ammonia is reduced to reduce the nitrogen content of the surface portion, the amount of nitrogen impregnated inside becomes insufficient, and the heat resistance of the glass member cannot be improved.

従って、可及的均一な所望窒素濃度を含有する多孔質シ
リカ体を得るには、多孔質シリカ母材全体を均一な温度
に保ってゆっくり所定濃度のアンモニアと反応させるこ
とが要求される。しかし、多孔質シリカ母材内部へのア
ンモニアの浸透ないし含浸は母材中の拡散速度に支配さ
れているので、特に大型母材の場合には、その均一反応
には極めて長時間が必要であり、そのような長時間をか
けて反応させる均一窒素化方法は、生産性やコストの面
で工業的に採用し難い。
Therefore, in order to obtain a porous silica body containing a desired nitrogen concentration as uniform as possible, it is necessary to keep the entire porous silica matrix at a uniform temperature and slowly react with ammonia of a predetermined concentration. However, since the permeation or impregnation of ammonia into the porous silica matrix is governed by the diffusion rate in the matrix, it takes a very long time for the homogeneous reaction, especially for large matrices. However, such a uniform nitrogenization method of reacting over a long time is difficult to industrially adopt in terms of productivity and cost.

このような不都合を解決するために、本発明者らは、上
記のようんなアンモニア化処理によって得られた表面側
ほど高い窒素濃度を有する窒素不均質多孔質シリカ母材
を酸素雰囲気中で加熱処理することにより部分脱窒素化
して均質化し得ることを知った。この方法は、表面側に
高い窒素濃度を有するシリカ母材を酸素ガス雰囲気中で
加熱処理して、表面側ほど強く脱窒素化反応を行わせ、
母材全体を均一な窒素濃度分布とするものであるが、こ
の方法の致命的欠点は、高温での脱アンモニア反応によ
って離脱したアンモニアが酸素と混合ガスを形成するこ
と、そしてその混合ガスは、高温で爆発の危険性を有す
ることである。この高温での混合ガスは、特に、反応管
の一寸した破損などにより容易に引火,爆発する恐れが
あるので、その危険性を考慮すれば、工業的に安全な方
法とはいえない。
In order to solve such inconvenience, the present inventors have heated a nitrogen heterogeneous porous silica base material having a higher nitrogen concentration on the surface side obtained by the above-mentioned ammonification treatment in an oxygen atmosphere. It has been found that the treatment can partially denitrify and homogenize. In this method, a silica base material having a high nitrogen concentration on the surface side is heat-treated in an oxygen gas atmosphere to cause a stronger denitrification reaction on the surface side,
Although a uniform nitrogen concentration distribution is made throughout the base metal, the fatal drawback of this method is that the ammonia released by the deammonia reaction at high temperature forms a mixed gas with oxygen, and the mixed gas is There is a risk of explosion at high temperatures. This mixed gas at a high temperature may easily catch fire or explode due to, for example, a slight damage to the reaction tube. Considering the danger, it cannot be said to be an industrially safe method.

それ故、本発明の技術的課題は、大型多孔質合成石英ガ
ラス母材全体を均一に、且つ所望の窒素濃度に安定に窒
素化し得る耐熱性合成石英ガラス母材の製造方法を提供
することにある。また、他の課題は、半導体ウエハー熱
処理用の容器,炉芯管,ボートあるいはフォークその他
の治具として有用な耐熱性に優れ、金属不純物類を含ま
ない高純度石英ガラス部材を工業的に有利に提供するこ
とにある。
Therefore, the technical problem of the present invention is to provide a method for producing a heat-resistant synthetic quartz glass preform capable of uniformly nitriding a large-sized porous synthetic quartz glass preform uniformly and stably to a desired nitrogen concentration. is there. Further, another problem is that a high-purity quartz glass member which is useful as a container for heat treatment of semiconductor wafers, a furnace core tube, a boat or a fork, and has excellent heat resistance and which does not contain metal impurities is industrially advantageous. To provide.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明者らは、上記課題を解決すべく、特に、アンモニ
ア化処理された大型多孔質シリカ母材の脱窒素化に着目
して研究を重ねた結果、爆発などの危険がなく安全に脱
窒素化を行うことができ、しかも均一な所望窒素濃度を
有する高純度石英ガラス材料を効果的に製造し得る工業
的に極めて望ましい方法を見出した。
In order to solve the above problems, the inventors of the present invention have conducted repeated research focusing on the denitrification of a large-scale porous silica base material that has been ammoniated, and as a result, safely denitrified without the risk of explosion. Has been found to be an industrially highly desirable method capable of effectively producing a high-purity quartz glass material having a uniform desired nitrogen concentration.

すなわち、本発明は、多孔質シリカ体をアンモニア含有
雰囲気中で加熱処理し、得られた窒素含有多孔質シリカ
体を水蒸気含有不活性ガス雰囲気中で600〜1,300℃の温
度に加熱処理して部分脱窒素化し、次いで透明化するこ
とを特徴とする耐熱性の優れた窒素含有合成石英ガラス
部材の製造方法を提供するものである。
That is, the present invention, the porous silica body is heat-treated in an ammonia-containing atmosphere, the resulting nitrogen-containing porous silica body is heat-treated to a temperature of 600 to 1,300 ° C. in a steam-containing inert gas atmosphere, It is intended to provide a method for producing a nitrogen-containing synthetic quartz glass member having excellent heat resistance, which is characterized by denitrifying and then making it transparent.

上記構成の本発明の方法は、多孔質シリカ体をアンモニ
ア含有雰囲気中で加熱処理して得られた表面側から内部
軸方向に向かって減少する窒素濃度勾配の窒素含有シリ
カ体を極めて安全に部分脱窒素化化して、実質的に均一
な窒素濃度の多孔質シリカ体を取得する新規技術を提案
するもので、特に、脱窒素化剤として水蒸気を用いるこ
とに技術的特徴がある。
The method of the present invention having the above-mentioned structure is capable of extremely safely removing a nitrogen-containing silica body having a nitrogen concentration gradient decreasing from the surface side toward the inner axial direction obtained by heat-treating the porous silica body in an ammonia-containing atmosphere. It proposes a new technique for denitrifying to obtain a porous silica body having a substantially uniform nitrogen concentration, and is characterized in particular by using steam as a denitrifying agent.

本発明の方法においては、合成石英ガラスの多孔質シリ
カ体が、まず、通常知られた方法によりアンモニア処理
され、窒素含有多孔質シリカ体が形成される。そのよう
なアンモニア化は、前記米国特許第3,113,008号明細書
に記載されるような条件が好都合で採用され、例えば、
5容量%以上のアンモニアガスを含有する非酸化性ガス
雰囲気下で900〜1,050℃の温度で熱処理することによっ
て達成される。その処理時間は、多孔質体の状態,アン
モニア濃度,処理温度及び所望窒素含有量によって、適
宜選択される。
In the method of the present invention, the porous silica body of synthetic quartz glass is first treated with ammonia by a commonly known method to form a nitrogen-containing porous silica body. Such ammoniation is conveniently employed under conditions such as those described in U.S. Pat.No. 3,113,008, for example:
It is achieved by heat treatment at a temperature of 900 to 1,050 ° C. in a non-oxidizing gas atmosphere containing 5% by volume or more of ammonia gas. The treatment time is appropriately selected depending on the state of the porous body, the ammonia concentration, the treatment temperature and the desired nitrogen content.

このアンモニア化された石英ガラス多孔質体は、次に、
不活性ガスをキャリアとする水蒸気含有混合ガスの雰囲
気中で部分脱アンモニア(脱窒素)処理される。キャリ
アガスとしての不活性ガスは、例えば、アルゴン,ヘリ
ウムあるいは窒素ガスが代表的である。このような不活
性ガスと混合する水蒸気の量は、30モル%以下が好まし
く、実際には、脱アンモニア反応の程度や処理する母材
の大きさ等によって選択される。水蒸気濃度が、30モル
%を超えると脱窒素化反応が非常に早く進行するため、
特に大型多孔質体の場合には窒素を均一にドープさせる
ことが困難であり、また、あまり低濃度では脱窒素化が
適切に行われないので好ましくない。実用的に好ましい
水蒸気濃度は、0.1〜5モル%である。
The ammoniated quartz glass porous material is then
Partial deammonification (denitrification) is performed in an atmosphere of a steam-containing mixed gas using an inert gas as a carrier. Typical examples of the inert gas as the carrier gas are argon, helium and nitrogen gases. The amount of water vapor mixed with such an inert gas is preferably 30 mol% or less, and is actually selected depending on the degree of deammonification reaction, the size of the base material to be treated, and the like. If the water vapor concentration exceeds 30 mol%, the denitrification reaction will proceed very quickly,
Particularly, in the case of a large-sized porous body, it is difficult to dope nitrogen uniformly, and if the concentration is too low, denitrification is not appropriately performed, which is not preferable. The practically preferable water vapor concentration is 0.1 to 5 mol%.

また、水蒸気と不活性ガスの混合方法は、どんな手段を
用いてもよいが、実用的には不活性ガスをキャリアガス
として純水中にバブリングすることによって容易に水蒸
気含有不活性混合ガスを得ることができる。水蒸気と不
活性ガスの混合比を制御する方法は、一般に、バブリン
グする純水の温度を変化させること及びガスの純水との
接触時間を変更することにより所望割合のものを調製す
ることができる。
Further, any method may be used as a method for mixing the water vapor and the inert gas, but in practice, the water-vapor-containing inert gas mixture is easily obtained by bubbling an inert gas as a carrier gas into pure water. be able to. As a method for controlling the mixing ratio of water vapor and inert gas, generally, a desired ratio can be prepared by changing the temperature of pure water to be bubbled and changing the contact time of the gas with pure water. .

更に、窒素含有多孔質シリカ母材の脱アンモニア処理
は、600℃〜1,300℃以上の温度領域で行われるが、通
常、900℃以下が実用的である。その脱アンモニア化反
応温度は、母材のアンモニア化の程度とアンモニア離脱
の程度により、また、雰囲気中の水蒸気の濃度及び離脱
反応時間の選択と関連して決定される。
Further, the deammonification treatment of the nitrogen-containing porous silica matrix is performed in the temperature range of 600 ° C to 1,300 ° C or higher, but 900 ° C or lower is usually practical. The deammonification reaction temperature is determined by the degree of ammonialation of the base material and the degree of ammonia desorption, and in connection with the selection of the concentration of water vapor in the atmosphere and the desorption reaction time.

このようにして脱アンモニア処理された多孔質シリカ体
は、次いで、例えば、1,300〜1,450℃の温度に加熱溶融
して透明ガラス化され、実質的に均一な窒素濃度の耐熱
ガラス部材として実用的部材に形成される。
The deammonia-treated porous silica body is then heated and melted to a temperature of 1,300 to 1,450 ° C. to be transparent vitrified, which is a practical member as a heat-resistant glass member having a substantially uniform nitrogen concentration. Is formed.

上記のような処理現象は、例えば、次のように説明する
ことができよう。
The processing phenomenon as described above can be explained as follows, for example.

合成石英ガラスの多孔質シリカ母材の表面には、多量の
Si−OH基が存在し、従ってそのアンモニアガスによる窒
素化反応においては、次のような置換反応が進行する。
On the surface of the porous silica matrix of synthetic quartz glass, a large amount of
Since the Si-OH group is present, the following substitution reaction proceeds in the nitration reaction with the ammonia gas.

1)Si−OH+NH3⇒Si−NH2+H2O この反応は、特に、温度を800℃以上に保持することに
よって速やかに進行する。しかしながら、処理される多
孔質シリカ母材が大型になるほど母材全体の温度を短時
間に均一にすることが困難で、そのような不均一温度条
件でのアンモニア化は、特に母材の表面近傍で高く、母
材内部ほど低い窒素濃度分布が形成される。このよな母
材中の窒素濃度分布を均一にするため、本発明方法によ
る不活性ガスと少量の水蒸気の混合物ガスを用いて脱ア
ンモニア処理を施すときは、次の置換反応が進行する。
1) Si-OH + NH 3 ⇒Si-NH 2 + H 2 O This reaction is particularly proceeds rapidly by holding the temperature above 800 ° C.. However, the larger the size of the porous silica matrix to be treated, the more difficult it is to make the temperature of the entire matrix uniform in a short time. The nitrogen concentration distribution is higher in the base metal and lower in the base metal. In order to make such a nitrogen concentration distribution in the base material uniform, the following substitution reaction proceeds when the deammonification treatment is performed by using the mixture gas of the inert gas and a small amount of steam according to the method of the present invention.

2)Si−NH2+H2O⇒Si−OH+NH3 この反応の場合にも、上記1)の置換反応と同様に、Si
−NH2濃度の高い母材表面近傍から優先的に進行するた
め、式1)と式2)で示されたアンモニア含浸処理と脱
アンモニア処理を行うことによって、均一なSi−NH2
度分布を持った母材が得られる。この組合せ二段階処理
された母材は、その母材の溶融温度、通常1,350〜1,450
℃程度の温度に加熱して、透明な石英ガラス部材に形成
される。この加熱による透明ガラス化処理においては、
水素ガスの発生現象が観察されるので、Si−NH2基の水
素は解離して近傍のけい素及び窒素と結合し。石英ガラ
ス中に窒素は固定されるものと推定される。しかし、多
孔質体の透明化においてこのような脱ガスが発生するこ
とは好ましくなく、従って、加熱透明ガラス化処理にお
いては、発泡現象を抑えるために、多少長く時間をかけ
ても加熱温度をできるだけ低い温度で、好ましくは、1,
400℃以下の温度で行うことが実用的である。
2) In the case of Si-NH 2 + H 2 O⇒Si -OH + NH 3 In this reaction, like the substitution reaction of the 1), Si
To preferentially proceeds from a high base metal near the surface of -NH 2 concentration, by performing Equation 1) and ammonia impregnation process and the ammonia-eliminating process shown in Equation 2), a uniform Si-NH 2 concentration distribution The parent material you have is obtained. This combination two-stage treated base material has a melting temperature of the base material, usually 1,350 to 1,450.
A transparent quartz glass member is formed by heating to a temperature of about ° C. In this transparent vitrification treatment by heating,
Since the generation of hydrogen gas is observed, hydrogen in the Si-NH 2 group dissociates and bonds with silicon and nitrogen in the vicinity. It is presumed that nitrogen is fixed in quartz glass. However, it is not preferable that such degassing occurs in the transparentization of the porous body, and therefore, in the heating transparent vitrification treatment, in order to suppress the foaming phenomenon, the heating temperature can be kept as long as possible for a long time. At low temperature, preferably 1,
It is practical to carry out at a temperature of 400 ° C or lower.

〔作用〕[Action]

本発明の方法は、アンモニア処理された窒素含有多孔質
シリカ母材を、爆発のような危険を伴うことなく安全に
脱アンモニアして、ガラス全体が所望濃度の窒素を均一
に含有する高純度石英ガラス部材を効果的に製造するこ
とができる。
The method of the present invention is capable of safely deammonifying an ammonia-treated nitrogen-containing porous silica base material without danger such as explosion, and a high-purity quartz in which the entire glass uniformly contains a desired concentration of nitrogen. The glass member can be effectively manufactured.

〔実施例〕〔Example〕

次に、本発明の方法を具体的により、更に詳細に説明す
る。
Next, the method of the present invention will be described in more detail with specific examples.

実施例1 蒸留精製した四塩化けい素を酸素ガスをキャリアガスと
して酸素・水素火炎中に導入し。加水分解させてすす状
シリカを堆積させ、外径200mmφ及び長さ1,000mmの大型
多孔質シリカ母材を作成した。
Example 1 Distilled and refined silicon tetrachloride was introduced into an oxygen / hydrogen flame using oxygen gas as a carrier gas. Soot-like silica was deposited by hydrolysis to prepare a large-scale porous silica base material having an outer diameter of 200 mmφ and a length of 1,000 mm.

得られた多孔質シリカ母材を炉内に入れ、アンモニア5
モル%を含有する窒素ガス雰囲気中で、850℃の温度に
8時間保持してアンモニア化を行った。次いで、水蒸気
約3モル%を含有する窒素キャリアガスで炉内雰囲気を
置換し、連続してこの母材を850℃の温度で2時間加熱
処理し、脱アンモニアを行った。
The obtained porous silica base material was put into a furnace, and ammonia 5 was added.
Ammonia was carried out by holding at a temperature of 850 ° C. for 8 hours in a nitrogen gas atmosphere containing mol%. Then, the atmosphere in the furnace was replaced with a nitrogen carrier gas containing about 3 mol% of water vapor, and the base material was continuously heat-treated at a temperature of 850 ° C. for 2 hours for deammonification.

脱アンモニア処理したこの母材を、約1,400℃の温度に
加熱保持された炉中に入れ、約5時間加熱して透明なガ
ラス体を得た。
This deammonification-treated base material was put into a furnace heated and maintained at a temperature of about 1,400 ° C., and heated for about 5 hours to obtain a transparent glass body.

得られた透明ガラス管体の表面部分と肉厚中央部分の窒
素濃度をケルダール法で測定したところ、それぞれ900p
pm及び750ppmで、実用的に問題となる差はなかった。
The nitrogen concentration of the surface part and the central part of the wall thickness of the obtained transparent glass tube was measured by the Kjeldahl method.
At pm and 750 ppm, there was no practically significant difference.

また、加工時の発泡現象の有無を調べるために、石英ガ
ラス加工用の酸素・水素バーナで強熱したが、両部分と
も気泡の発生は観察されなかった。また、各部の1,280
℃の粘度は、それぞれ1012.2ポイズ及び1012.0ポイズ
で、顕著な耐熱性の向上が得られた。
Further, in order to examine the presence or absence of the foaming phenomenon during processing, the sample was ignited with an oxygen / hydrogen burner for processing quartz glass, but no bubble was observed in both parts. In addition, 1,280 of each part
Viscosity at ° C was 10 12.2 poise and 10 12.0 poise, respectively, and a remarkable improvement in heat resistance was obtained.

この粘度は、耐熱性が良好であるといわれる天然石英ガ
ラス(通常、1,280℃の温度における粘度は、1012.0
イズと比較しても同程度以上であり、充分使用に耐える
ことが判る。
This viscosity is a natural quartz glass that is said to have good heat resistance (usually, the viscosity at a temperature of 1,280 ° C. is about the same as or higher than 10 12.0 poise, and it can be seen that it can be sufficiently used.

本例で調製された窒素含有透明合成石英ガラス部材は、
全体にほゞ均一な窒素濃度と改善された耐熱性が得ら
れ、半導体ウエハー熱処理用部材として、高い有用性を
有することが理解されよう。
The nitrogen-containing transparent synthetic quartz glass member prepared in this example is
It will be understood that a substantially uniform nitrogen concentration over the whole and improved heat resistance are obtained, and it has high utility as a member for heat treatment of semiconductor wafers.

比較例1 実施例1と同様にして作成した外径200mmφ及び長さ1,0
00mmの大型多孔質シリカ管状母材を、実施例1と同じ条
件で、たたし加熱処理時間を6時間に短縮してアンモニ
ア化を行った。得られた多孔質体を同様に加熱透明化処
理した。透明ガラス体の表面部分と内部中央部分の窒素
濃度は、それぞれ4,000ppm及び1,200ppmであった。ま
た、石英ガラス加工用の酸素・水素バーナで強熱する発
泡現象の調査では、表面部分は激しく発泡し、内部中央
部分は若干の発泡が観察された。
Comparative Example 1 An outer diameter of 200 mmφ and a length of 1,0 made in the same manner as in Example 1
Under the same conditions as in Example 1, a 00 mm large-sized porous silica tubular base material was subjected to ammonification with the addition heat treatment time reduced to 6 hours. The obtained porous body was similarly heat-cleared. The nitrogen concentrations of the surface part and the inner center part of the transparent glass body were 4,000 ppm and 1,200 ppm, respectively. Further, in the investigation of the foaming phenomenon in which an oxygen / hydrogen burner for processing quartz glass strongly ignites, it was observed that the surface part was violently foamed and the inner central part was slightly foamed.

〔発明の効果〕〔The invention's effect〕

本発明の方法によれば、実質的に均一な窒素濃度分布を
有する耐熱性の優れた窒素含有合成石英ガラス部材を安
全且つ効果的に得ることができる。本発明の方法におい
ては、特に、脱アンモニア熱処理工程での爆発の恐れが
全くなく、多孔質シリカ母材のアンモニア化と部分脱ア
ンモニア化の条件を選択することによって、所望の窒素
濃度を均一に含有する耐熱性の優れた合成石英ガラス部
材が調製される。
According to the method of the present invention, it is possible to safely and effectively obtain a nitrogen-containing synthetic quartz glass member having a substantially uniform nitrogen concentration distribution and excellent heat resistance. In the method of the present invention, in particular, there is no fear of explosion in the deammonification heat treatment step, and by selecting the conditions for the ammonification and partial deammonification of the porous silica base material, the desired nitrogen concentration can be made uniform. A synthetic quartz glass member containing excellent heat resistance is prepared.

また、本発明の方法によって製造された顕著に向上した
耐熱性を有する窒素含有合成石英ガラス部材は、金属不
純物、特に半導体汚染物質としてのアルカリ金属類や銅
等を実質的に含まないから、半導体ウエハーの熱処理用
容器、炉芯管その他の関連治具に好適に使用することが
でき、その実用的価値は極めて高い。
Further, the nitrogen-containing synthetic quartz glass member having significantly improved heat resistance produced by the method of the present invention is substantially free of metal impurities, particularly alkali metals and copper as semiconductor contaminants, It can be suitably used for wafer heat treatment containers, furnace core tubes and other related jigs, and its practical value is extremely high.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 俊幸 福島県郡山市田村町金屋字川久保88 信越 石英株式会社石英技術研究所内 (72)発明者 関根 仁 福島県郡山市田村町金屋字川久保88 信越 石英株式会社石英技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiyuki Kato, Kawamura, Kanaya, Tamura-cho, Koriyama-shi, Fukushima 88 Shin-Etsu Quartz Co., Ltd., Quartz Research Laboratory (72) Hitoshi Sekine, 88, Kawakubo, Kanaya, Tamura-machi, Koriyama-shi, Fukushima Prefecture Quartz Co., Ltd. Quartz Technology Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】多孔質シリカ体をアンモニア含有雰囲気中
で加熱処理し、得られた窒素含有多孔質シリカ体を水蒸
気含有不活性ガス雰囲気中で600〜1,300℃の温度に加熱
処理して部分脱窒素化し、次いで透明化することを特徴
とする窒素含有合成石英ガラス部材の製造方法。
1. A porous silica body is heat-treated in an atmosphere containing ammonia, and the obtained nitrogen-containing porous silica body is heat-treated at a temperature of 600 to 1,300 ° C. in an atmosphere of an inert gas containing water vapor to partially remove it. A method for producing a nitrogen-containing synthetic quartz glass member, which comprises nitrogenizing and then transparentizing.
【請求項2】水蒸気含有不活性ガスの水蒸気濃度が、0.
1〜30モル%である請求項1記載の製造方法。
2. The water vapor concentration of the water vapor-containing inert gas is 0.
The production method according to claim 1, which is 1 to 30 mol%.
【請求項3】該多孔質シリカ体が、けい素化合物を酸
素,水素火炎中で加水分解し、堆積させたすす状シリカ
体、又はゾル,ゲル法によって作成されたシリカ体であ
る請求項1記載の製造方法。
3. A soot-like silica body obtained by hydrolyzing a silicon compound in an oxygen or hydrogen flame and depositing it, or a silica body prepared by a sol-gel method. The manufacturing method described.
JP17083690A 1990-06-28 1990-06-28 Method for manufacturing nitrogen-containing synthetic quartz glass member Expired - Fee Related JPH0764581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17083690A JPH0764581B2 (en) 1990-06-28 1990-06-28 Method for manufacturing nitrogen-containing synthetic quartz glass member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17083690A JPH0764581B2 (en) 1990-06-28 1990-06-28 Method for manufacturing nitrogen-containing synthetic quartz glass member

Publications (2)

Publication Number Publication Date
JPH0459633A JPH0459633A (en) 1992-02-26
JPH0764581B2 true JPH0764581B2 (en) 1995-07-12

Family

ID=15912233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17083690A Expired - Fee Related JPH0764581B2 (en) 1990-06-28 1990-06-28 Method for manufacturing nitrogen-containing synthetic quartz glass member

Country Status (1)

Country Link
JP (1) JPH0764581B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3578357B2 (en) * 1994-04-28 2004-10-20 信越石英株式会社 Method for producing heat-resistant synthetic quartz glass

Also Published As

Publication number Publication date
JPH0459633A (en) 1992-02-26

Similar Documents

Publication Publication Date Title
KR101605772B1 (en) Method for producing quartz glass doped with nitrogen and quartz glass grains suitable for carrying out the method
CN1817792B (en) Process for treating synthetic silica powder and synthetic silica powder treated thereof
US5735921A (en) Method of reducing laser-induced optical damage in silica
JP2000103628A (en) Treatment of silica granule using porous graphite crucible
US5766291A (en) Method for producing heat-resistant synthetic quartz glass
TW200821275A (en) Component of quartz glass for use in semiconductor manufacture and method for producing the same
US4406680A (en) Process for producing high-purity silica glass
US4753763A (en) Method of manufacturing heating furnace parts
JPH0881226A (en) Production of high-purity, high heat-resistant quartz glass
JPH0764581B2 (en) Method for manufacturing nitrogen-containing synthetic quartz glass member
JP3574577B2 (en) High viscosity synthetic quartz glass and method for producing the same
JP2522830B2 (en) Quartz glass material for semiconductor heat treatment and manufacturing method thereof
JPH07115880B2 (en) Synthetic quartz glass member with excellent heat resistance
JPH02267110A (en) Lance for decarburizing metal silicon and decarburization
JPH0764580B2 (en) Method for manufacturing nitrogen-containing synthetic quartz glass member
JP2002160930A (en) Porous quartz glass and method of producing the same
JPH05279049A (en) Production of synthetic quartz glass
JPH0436100B2 (en)
JPS60239339A (en) Preparation of parent material for optical fiber
JPH0340929A (en) Synthetic quartz glass member having excellent heat resistance and workability
JPS6133256B2 (en)
JP2002249342A (en) Glass body and method for manufacturing it
JPS6311288B2 (en)
JP2002241135A (en) Method for producing opaque synthetic quartz glass
KR830002196B1 (en) Manufacturing method of glass material for optical fiber

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees