JPH0764580B2 - Method for manufacturing nitrogen-containing synthetic quartz glass member - Google Patents

Method for manufacturing nitrogen-containing synthetic quartz glass member

Info

Publication number
JPH0764580B2
JPH0764580B2 JP16733690A JP16733690A JPH0764580B2 JP H0764580 B2 JPH0764580 B2 JP H0764580B2 JP 16733690 A JP16733690 A JP 16733690A JP 16733690 A JP16733690 A JP 16733690A JP H0764580 B2 JPH0764580 B2 JP H0764580B2
Authority
JP
Japan
Prior art keywords
quartz glass
nitrogen
synthetic quartz
porous silica
silica body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16733690A
Other languages
Japanese (ja)
Other versions
JPH0459632A (en
Inventor
裕幸 西村
朗 藤ノ木
仁 関根
俊幸 加藤
敦之 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP16733690A priority Critical patent/JPH0764580B2/en
Publication of JPH0459632A publication Critical patent/JPH0459632A/en
Publication of JPH0764580B2 publication Critical patent/JPH0764580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/24Doped silica-based glasses containing non-metals other than boron or halide containing nitrogen, e.g. silicon oxy-nitride glasses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体ウエハー熱処理に用いられる容器や関
連治具類等として好適に使用し得る窒素含有高純度耐熱
性合成石英ガラス部材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a method for producing a nitrogen-containing high-purity heat-resistant synthetic quartz glass member that can be suitably used as a container or related jigs used for heat treatment of semiconductor wafers. Regarding

〔従来の技術〕[Conventional technology]

従来、半導体ウエハーの熱処理用としては、耐熱温度の
高い天然石英ガラスが広く用いられてきた。しかし、最
近は、高集積化に伴うウエハーの大型化及びそのクリー
ン性の要求から、高純度の耐熱性石英ガラスが着目され
た。合成石英ガラスは、含有不純物が極めて少なく、特
にアルカリ金属や銅等のウエハーを汚染する金属類を実
質的に含まない点で優れたものであるが、耐熱性が劣
り、例えば、半導体ウエハー熱処理温度領域における1,
280℃の粘度が1011.5ポイズ以下であるため、熱変形し
易く、ウエハーの熱処理用部材として長期にわたって安
定に使用することはできない。
Conventionally, natural quartz glass having a high heat resistant temperature has been widely used for heat treatment of semiconductor wafers. However, recently, attention has been paid to high-purity heat-resistant quartz glass due to the demand for large-sized wafers and their cleanliness due to high integration. Synthetic quartz glass is excellent in that it contains very few impurities and in particular does not substantially contain metals such as alkali metals and copper that contaminate the wafer, but it is inferior in heat resistance. In the area 1,
Since the viscosity at 280 ° C. is 10 11.5 poise or less, it is easily deformed by heat and cannot be stably used for a long time as a member for heat treatment of a wafer.

このような実状において、合成石英ガラスの耐熱性を向
上させる方法として、アンモニア処理による窒素ドープ
法が提案された(アメリカ特許第3,113,008号明細
書)。該明細書には、高シリカ含量、例えば、シリカ96
%のシリカガラス多孔質体を少なくとも約5容量%のア
ンモニアガスを含有する非酸化性雰囲気中で900〜1,050
℃の温度に加熱し、次いで、その処理ガラスを非酸化性
雰囲気下に1,300〜1,350℃の温度で処理するアニリング
温度の改善されたシリカ体を得る方法が記載されてい
る。
Under such circumstances, a nitrogen doping method by ammonia treatment has been proposed as a method for improving the heat resistance of synthetic quartz glass (US Pat. No. 3,113,008). The specification describes a high silica content, for example silica 96
% Silica glass in a non-oxidizing atmosphere containing at least about 5% by volume ammonia gas in the range of 900-1,050.
A method for obtaining a silica body with an improved anneal temperature by heating to a temperature of ° C and then treating the treated glass at a temperature of from 1,300 to 1,350 ° C under a non-oxidizing atmosphere is described.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、このアメリカ特許第3,113,008号明細書に記載
された方法では、多孔質シリカ体の厚さ方向に大きな窒
素濃度勾配が生じ、特に大型の多孔質母材を窒素化処理
するとき窒素濃度の不均一性が一層顕著になるという不
都合がある。すなわち、この方法により所望の耐熱性に
向上させようとすれば、多孔質シリカ母材の表面近傍の
窒素濃度は必要以上に高くなり、透明ガラス化や部材へ
の溶融加工の際にガス放出に基づく発泡現象を伴うので
製品の品質を損なうという問題がある。また、表面部の
窒素含有量を適切にすれば、その母材内部の窒素濃度が
低く、従って、満足し得るガラス部材の耐熱性改善効果
は得られない。
However, in the method described in this U.S. Pat.No. 3,113,008, a large nitrogen concentration gradient is generated in the thickness direction of the porous silica body, and especially when the large-sized porous base material is subjected to the nitriding treatment, the nitrogen concentration is unbalanced. There is an inconvenience that the uniformity becomes more remarkable. That is, if an attempt is made to improve the desired heat resistance by this method, the nitrogen concentration in the vicinity of the surface of the porous silica base material will be unnecessarily high, and gas will be released during transparent vitrification or melt processing to a member. There is a problem that the quality of the product is impaired due to the foaming phenomenon. Further, if the nitrogen content in the surface portion is made appropriate, the nitrogen concentration inside the base material is low, and therefore a satisfactory heat resistance improving effect of the glass member cannot be obtained.

本発明の技術的課題は、特に、大型多孔質合成石英ガラ
ス母材を可及的均一で且つ所望の窒素濃度に窒素化し得
る耐熱性合成石英ガラス母材の製造方法を提供すること
にある。また、他の課題は、半導体ウエハー熱処理用容
器や炉芯管その他の治具として有用な耐熱性に優れ、且
つウエハーを汚染するアルカリ金属や銅等の金属不純物
を含まない高純度石英ガラス部材を工業的に有利に提供
することにある。
A technical object of the present invention is to provide a method for producing a heat-resistant synthetic quartz glass preform capable of nitrogenizing a large-scale porous synthetic quartz glass preform as uniformly as possible and having a desired nitrogen concentration. Further, another problem is to provide a high-purity quartz glass member having excellent heat resistance, which is useful as a container for heat treatment of semiconductor wafers, furnace core tubes and other jigs, and which does not contain metal impurities such as alkali metals and copper that contaminate the wafer. It is to provide it industrially advantageously.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明者らは、上記課題を解決する方法として、特に、
大型の多孔質シリカ母材の均質窒素化について多くの実
験研究を行った結果、アンモニア処理して得られた窒素
含有多孔質シリカ母材を、逆に部分脱窒素化させること
が均一化に極めて有効であり、その脱窒素化を酸素ガス
含有雰囲気中で行うことにより効果的に上記課題を解決
し得ることを知った。
The present inventors, as a method for solving the above problems,
As a result of many experimental studies on the homogeneous nitrogenation of a large-scale porous silica base material, conversely partial denitrification of the nitrogen-containing porous silica base material obtained by ammonia treatment is extremely effective for homogenization. It has been found that it is effective and that the above problems can be effectively solved by performing the denitrification in an atmosphere containing oxygen gas.

すなわち、本発明は、窒素含有合成石英ガラス部材を製
造する方法において、多孔質シリカ体をアンモニア含有
雰囲気中で加熱処理し、得られた窒素含有多孔質シリカ
体を少なくとも10モル%の酸素ガスを含有する不活性ガ
ス雰囲気中で、600〜1,300℃の温度に加熱処理して部分
脱窒素化し、次いで、透明ガラス化することを特徴とす
る耐熱性窒素含有合成石英ガラス部材の製造方法を要旨
とするものである。
That is, the present invention, in the method for producing a nitrogen-containing synthetic quartz glass member, the porous silica body is heat-treated in an ammonia-containing atmosphere, and the obtained nitrogen-containing porous silica body is treated with at least 10 mol% oxygen gas. In an inert gas atmosphere containing, a method for producing a heat-resistant nitrogen-containing synthetic quartz glass member characterized by heat-treating to a temperature of 600 to 1,300 ° C. to partially denitrify and then vitrifying the glass. To do.

本発明の方法は、まず多孔質高純度シリカ体をアンモニ
ア含有非酸化性雰囲気中で加熱して所望の窒素濃度より
僅かに過度にアンモニア化(窒素化)させ、次いで、こ
れを酸素ガス雰囲気中で加熱して部分脱窒素化反応を行
わせる組合せ処理に技術的特徴がある。
According to the method of the present invention, first, a porous high-purity silica body is heated in a non-oxidizing atmosphere containing ammonia to slightly ammonify (nitrogenate) slightly more than a desired nitrogen concentration, and then this is kept in an oxygen gas atmosphere. There is a technical feature in the combined treatment in which the partial denitrification reaction is performed by heating at.

上記窒素化処理においては、表面に近いほど窒素濃度は
高く、厚さ方向の中心部ほど窒素濃度の低い不均質体が
得られる。次に、このようにして得られた不均質窒素含
有シリカ体を、酸素ガスを含有する酸化性雰囲気中で加
熱反応させて部分脱窒素化することにより、主として表
面部近傍のみを、あるいは表面部を強く、そして中心部
を弱く脱窒素化させて窒素を均質な所望濃度に残留させ
るのである。この部分脱窒素化反応は、アンモニア化反
応に比べて反応速度が大きいという反応特性を好都合に
利用するものであって、短い反応時間に所望の部分脱窒
素化を効果的に行うことができるので、実用的に極めて
望ましい方法である。
In the above-mentioned nitrogen treatment, a heterogeneous body having a higher nitrogen concentration closer to the surface and a lower nitrogen concentration closer to the central portion in the thickness direction can be obtained. Next, the heterogeneous nitrogen-containing silica body thus obtained is heated and reacted in an oxidizing atmosphere containing oxygen gas to partially denitrify, mainly in the vicinity of the surface portion or in the surface portion. Is strongly depleted and the center is weakly denitrified to leave the nitrogen at a homogeneous desired concentration. This partial denitrification reaction advantageously utilizes the reaction characteristic that the reaction rate is higher than that of the ammoniatation reaction, and the desired partial denitrification can be effectively performed in a short reaction time. It is a highly desirable method for practical use.

かかる本発明の方法に用いられる合成石英ガラス部材
は、例えば、一辺の長さが30mm以上のブロック,シリン
ダー,ロッド,板あるいはその他の任意形状を有する比
較的大型の高純度合成シリカ体であって、好ましくは、
10〜30m2/g程度の比表面積を持つ多孔質シリカ母材であ
る。また、このような高純度多孔質合成シリカ体は、例
えば、けい素化合物を酸素,水素火炎中で加水分解し、
堆積させたすす状シリカ体、あるいはゾル・ゲル法によ
って得られた多孔質シリカ体が好適であり、また、各種
合成法によって得られた合成石英ガラスの粉末を圧力を
印加して固化したものも有利に適用することができる。
The synthetic quartz glass member used in the method of the present invention is, for example, a relatively large-sized high-purity synthetic silica body having a block, cylinder, rod, plate, or any other arbitrary shape with a side length of 30 mm or more. ,Preferably,
It is a porous silica matrix with a specific surface area of about 10 to 30 m 2 / g. In addition, such a high-purity porous synthetic silica body is obtained by, for example, hydrolyzing a silicon compound in an oxygen or hydrogen flame,
Soot-like silica bodies deposited or porous silica bodies obtained by the sol-gel method are suitable, and also synthetic silica glass powder obtained by various synthesis methods is solidified by applying pressure. It can be applied advantageously.

本発明方法においては、上記のような多孔質シリカ体
を、まず、通常知られたアンモニア含有ガス雰囲気中、
例えば前記米国特許第3,113,008号に記載されるような
アンモニア5容量%程度を含有する非酸化性雰囲気下で
900〜1,050℃の温度に加熱して窒素化し、次いで、非酸
化性雰囲気下における透明化ガラス化に先だって、酸素
ガス含有不活性ガス雰囲気中で600〜1,300℃の温度で部
分脱窒素化される。この部分脱窒素化反応は、少なくと
も10モル%の酸素ガスを含有する不活性ガス雰囲気下に
行うことが重要である。酸素濃度が10モル%より低いと
脱窒素化反応が極度に遅くなるばかりでなく、厚さ方向
の均一な窒素濃度の形成が困難となるので採用し難い。
また、酸素濃度が高すぎると、脱窒素化反応が速くなり
すぎ、反応をコントロールすることが難しいため均一な
窒素濃度分布の達成が期待できない。更に、高濃度酸素
を使用した場合には、反応によって離脱するアンモニア
と酸素ガスとの混合ガスが形成され、反応管等のちょっ
とした亀裂や破損が発生した場合、容易に引火して爆発
するので、酸素濃度が高いほど装置の点検や操作を慎重
にしなければならないので厄介であり、従って、あまり
高すぎる酸素濃度は好ましくない。実用的に好ましい酸
素ガス濃度は、10〜70モル%である。
In the method of the present invention, the porous silica body as described above, first, in a generally known ammonia-containing gas atmosphere,
For example, in a non-oxidizing atmosphere containing about 5% by volume of ammonia as described in US Pat. No. 3,113,008.
Nitrogen is heated to a temperature of 900-1,050 ° C, and then partially denitrified at a temperature of 600-1,300 ° C in an inert gas atmosphere containing oxygen gas prior to vitrification and vitrification in a non-oxidizing atmosphere. . It is important to carry out this partial denitrification reaction in an inert gas atmosphere containing at least 10 mol% oxygen gas. When the oxygen concentration is lower than 10 mol%, not only is the denitrification reaction extremely slowed down, but also it becomes difficult to form a uniform nitrogen concentration in the thickness direction, which makes it difficult to employ.
On the other hand, if the oxygen concentration is too high, the denitrification reaction becomes too fast, and it is difficult to control the reaction, so that achievement of a uniform nitrogen concentration distribution cannot be expected. Furthermore, when high-concentration oxygen is used, a mixed gas of ammonia and oxygen gas that is released by the reaction is formed, and if a small crack or damage occurs in the reaction tube, etc., it easily ignites and explodes. The higher the oxygen concentration is, the more troublesome it is that the equipment must be carefully inspected and operated. Therefore, too high an oxygen concentration is not preferable. A practically preferable oxygen gas concentration is 10 to 70 mol%.

また、かかる雰囲気中での脱窒素化反応は600〜1,300℃
の温度範囲で行うことが重要である。この処理温度が60
0℃より低いと脱窒素化反応の進行が遅く工業的に著し
く不利であり、1,300℃を超える温度では、適切な脱窒
素化反応を実質的に行うことができないので不都合であ
る。好ましい温度範囲は、800℃〜1,000℃である。
In addition, the denitrification reaction in such an atmosphere is 600-1,300 ℃
It is important to do this within the temperature range. This processing temperature is 60
When the temperature is lower than 0 ° C, the denitrification reaction proceeds slowly and is industrially disadvantageous. At a temperature higher than 1,300 ° C, an appropriate denitrification reaction cannot be substantially performed, which is disadvantageous. A preferred temperature range is 800 ° C to 1,000 ° C.

上記部分脱窒素化の酸素ガスと混合して用いられる不活
性ガスとしては、例えば、窒素,ヘリウムあるいはアル
ゴンなどが代表的に挙げられる。このような酸素ガス含
有雰囲気ガスは、通常、不活性ガスと酸素ガスとを予め
所定割合に混合して使用される。
Typical examples of the inert gas used by mixing with the oxygen gas for partial denitrification include nitrogen, helium, and argon. Such an oxygen gas-containing atmosphere gas is usually used by previously mixing an inert gas and an oxygen gas in a predetermined ratio.

このようにして窒素濃度が均質化された多孔質シリカ体
は、次いで、1,300〜1,450℃の温度に加熱溶融して透明
ガラス体にされ、特に、半導体ウエハー熱処理用の容器
やその他の治具として有用な部材を提供する。
The porous silica body in which the nitrogen concentration is homogenized in this manner is then heated and melted at a temperature of 1,300 to 1,450 ° C. to be a transparent glass body, particularly as a container for heat treatment of semiconductor wafers and other jigs. A useful member is provided.

〔作用〕[Action]

本発明の方法によれば、アンモニア処理によって表面部
が高濃度に、厚さの中心部ほど相対的に低濃度に窒素化
された窒素含有多孔質シリカ母材を、表面側を優先的に
部分脱窒素化することにより、ガラス全体を実用的に均
一な所望濃度の窒素含有高純度石英ガラス体を効果的に
製造することができる。
According to the method of the present invention, the surface portion is preferentially parted with the nitrogen-containing porous silica base material whose surface portion is highly concentrated by ammonia treatment and whose central portion of thickness is relatively low-nitrogenated. By denitrifying, it is possible to effectively produce a high-purity quartz glass body containing nitrogen having a desired concentration that is practically uniform throughout the glass.

〔実施例〕〔Example〕

次に、本発明の方法を実施例及び比較例により、更に具
体的且つ詳細に説明する。
Next, the method of the present invention will be described more specifically and in detail with reference to Examples and Comparative Examples.

実施例1 蒸留精製した四塩化けい素を酸素ガスをキャリアガスと
して酸素・水素火炎中に導入して、外径200mmφ及び長
さ1,000mmの大型多孔質シリカ母材を作成した。
Example 1 Distilled and refined silicon tetrachloride was introduced into an oxygen / hydrogen flame using oxygen gas as a carrier gas to prepare a large-scale porous silica preform having an outer diameter of 200 mmφ and a length of 1,000 mm.

得られた多孔質シリカ母材を炉内に入れ、アンモニア5
モル%を含有する窒素ガス雰囲気中で、850℃の温度に
8時間保持してアンモニア化を行った。次いで、酸素ガ
ス10モル%を含有する窒素キャリアガスで炉内雰囲気を
置換し、連続してこの母材を850℃の温度で2時間加熱
処理して脱アンモニアを行った。
The obtained porous silica base material was put into a furnace, and ammonia 5 was added.
Ammonia was carried out by holding at a temperature of 850 ° C. for 8 hours in a nitrogen gas atmosphere containing mol%. Then, the atmosphere in the furnace was replaced with a nitrogen carrier gas containing 10 mol% of oxygen gas, and the base material was continuously heat-treated at a temperature of 850 ° C. for 2 hours for deammonification.

脱アンモニア処理した上記母材を、約1,400℃の温度に
加熱保持された炉の中に入れ、約5時間加熱して透明な
ガラス体を得た。
The deammonification-treated base material was placed in a furnace heated and maintained at a temperature of about 1,400 ° C., and heated for about 5 hours to obtain a transparent glass body.

得られた透明ガラス体の表面部分と内部の窒素濃度をケ
ルダール法で測定したところ、それぞれ1,000ppm及び70
0ppmであった。この差は実質的に問題となる差ではな
く、実質的に均質とみなし得るものである。
When the nitrogen concentration inside and outside the obtained transparent glass body was measured by the Kjeldahl method, 1,000 ppm and 70 ppm, respectively.
It was 0 ppm. This difference is not a problematic difference and can be regarded as substantially uniform.

また、加工時の発泡現象の有無を調べるために、石英ガ
ラス加工用の酸素・水素バーナーで強熱したところ、両
部分とも気泡の発生は観察されなかった。また、各部の
1,280℃の温度における粘度は、それぞれ1012.2ポイズ
及び1011.9ポイズで、顕著な耐熱性の向上が得られた。
Further, in order to examine the presence or absence of the foaming phenomenon during processing, when an oxygen / hydrogen burner for processing quartz glass was ignited, no bubbles were observed in both parts. Also, for each part
The viscosities at a temperature of 1,280 ° C. were 10 12.2 poise and 10 11.9 poise, respectively, and a remarkable improvement in heat resistance was obtained.

この粘度は、耐熱性が良好であるといわれる天然石英ガ
ラス(通常、1,280℃の温度における粘度は、約1012.0
ポイズ)と比較しても同程度以上であり、充分使用に耐
えることが判る。
This viscosity is natural quartz glass which is said to have good heat resistance (usually, the viscosity at a temperature of 1,280 ° C is about 10 12.0
Compared with Poise), it is about the same or more, and it can be seen that it can withstand sufficient use.

本例で調製された窒素含有透明合成石英ガラス部材は、
全体にほゞ均一な窒素濃度と改善された耐熱性が得ら
れ、半導体ウエハー熱処理用部材として、高い有用性を
有することが理解されよう。
The nitrogen-containing transparent synthetic quartz glass member prepared in this example is
It will be understood that a substantially uniform nitrogen concentration over the whole and improved heat resistance are obtained, and it has high utility as a member for heat treatment of semiconductor wafers.

比較例1 実施例1と同様にして作成した外径200mmφ及び長さ1,0
00mmの大型多孔質シリカ母材を、実施例1と同じ条件
で、ただし加熱処理時間を6時間に短縮してアンモニア
化を行った。得られた多孔質体を同様に加熱透明化処理
した。
Comparative Example 1 An outer diameter of 200 mmφ and a length of 1,0 made in the same manner as in Example 1
A large porous silica base material of 00 mm was subjected to ammonialation under the same conditions as in Example 1 except that the heat treatment time was shortened to 6 hours. The obtained porous body was similarly heat-cleared.

透明ガラス体の表面部分と内部中央部分の窒素濃度は、
それぞれ4,000ppm及び1,200ppmであった。また、石英ガ
ラス加工用の酸素・水素バーナーで強熱する発泡現象の
調査では、表面部分は激しく発泡し、内部は若干の発泡
が観察された。
The nitrogen concentration of the surface part and the inner center part of the transparent glass body is
It was 4,000 ppm and 1,200 ppm, respectively. Further, in the investigation of the foaming phenomenon in which an oxygen / hydrogen burner for processing quartz glass strongly ignites, the surface part was vigorously foamed, and some foaming was observed inside.

〔発明の効果〕〔The invention's effect〕

本発明の方法によって、大型の多孔性母材全体に、実質
的に均一な所望濃度の窒素を効果的に含有させることが
でき、その透明化やガラスの二次加工において、発泡現
象を伴うことのない高い耐熱性を有する大型の合成石英
ガラス部材が容易に提供される。
By the method of the present invention, it is possible to effectively contain a substantially uniform desired concentration of nitrogen in the entire large-sized porous base material, and to cause a foaming phenomenon in the transparency and the secondary processing of glass. A large-sized synthetic quartz glass member having high heat resistance without being provided is easily provided.

本発明方法によって得られる高純度合成石英ガラスは、
ウエハー汚染性金属類を含まず、しかも耐熱性が優れて
いるので、ウエハー熱処理用炉芯管やその他の各種治具
類に好適に使用することができる。
The high-purity synthetic quartz glass obtained by the method of the present invention,
Since it does not contain wafer-contaminating metals and has excellent heat resistance, it can be suitably used for a furnace core tube for wafer heat treatment and other various jigs.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 俊幸 福島県郡山市田村町金屋字川久保88 信越 石英株式会社石英技術研究所内 (72)発明者 嶋田 敦之 福島県郡山市田村町金屋字川久保88 信越 石英株式会社石英技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiyuki Kato 88 Kawakubo, Kanaya, Tamura-cho, Koriyama-shi, Fukushima Prefecture Shin-Etsu Quartz Co., Ltd. Quartz Research Laboratory (72) Atsushi Shimada 88, Kawakubo, Kanaya, Kaneyama-shi, Koriyama-shi, Fukushima Prefecture Quartz Co., Ltd. Quartz Technology Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】窒素含有合成石英ガラス部材を製造する方
法において、多孔質シリカ体をアンモニア含有雰囲気中
で加熱処理し、得られた窒素含有多孔質シリカ体を少な
くとも10モル%の酸素ガスを含有する不活性ガス雰囲気
中で、600℃〜1,300℃の温度に加熱処理して部分脱窒素
化し、次いで、透明ガラス化することを特徴とする耐熱
性窒素含有合成石英ガラス部材の製造方法。
1. A method for producing a synthetic quartz glass member containing nitrogen, wherein the porous silica body is heat-treated in an atmosphere containing ammonia, and the obtained nitrogen-containing porous silica body contains at least 10 mol% oxygen gas. A method for producing a heat-resistant nitrogen-containing synthetic quartz glass member, which comprises heat-treating at a temperature of 600 ° C. to 1,300 ° C. in an inert gas atmosphere to partially denitrify and then vitrifying it.
【請求項2】該多孔質シリカ体が、けい素化合物を酸
素,水素火炎中で加水分解し、堆積させて得られた合成
石英ガラスのすす状シリカ体、又はゾル・ゲル法によっ
て形成された合成石英ガラス多孔質シリカ体である請求
項1記載の製造方法。
2. The soot-like silica body of synthetic quartz glass obtained by hydrolyzing a silicon compound in an oxygen or hydrogen flame and depositing the porous silica body, or formed by a sol-gel method. The production method according to claim 1, which is a synthetic silica glass porous silica body.
【請求項3】該多孔質シリカ体が、合成石英ガラスの微
粉末に圧力を印加して、所望形状に固化して成るシリカ
体である請求項1記載の製造方法。
3. The method according to claim 1, wherein the porous silica body is a silica body formed by applying pressure to fine powder of synthetic quartz glass to solidify it into a desired shape.
JP16733690A 1990-06-26 1990-06-26 Method for manufacturing nitrogen-containing synthetic quartz glass member Expired - Fee Related JPH0764580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16733690A JPH0764580B2 (en) 1990-06-26 1990-06-26 Method for manufacturing nitrogen-containing synthetic quartz glass member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16733690A JPH0764580B2 (en) 1990-06-26 1990-06-26 Method for manufacturing nitrogen-containing synthetic quartz glass member

Publications (2)

Publication Number Publication Date
JPH0459632A JPH0459632A (en) 1992-02-26
JPH0764580B2 true JPH0764580B2 (en) 1995-07-12

Family

ID=15847848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16733690A Expired - Fee Related JPH0764580B2 (en) 1990-06-26 1990-06-26 Method for manufacturing nitrogen-containing synthetic quartz glass member

Country Status (1)

Country Link
JP (1) JPH0764580B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008003728B4 (en) * 2008-02-27 2017-01-19 Heraeus Quarzglas Gmbh & Co. Kg Method for producing an optical component made of quartz glass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2875686B2 (en) * 1992-06-15 1999-03-31 信越石英株式会社 High purity silica glass foam and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008003728B4 (en) * 2008-02-27 2017-01-19 Heraeus Quarzglas Gmbh & Co. Kg Method for producing an optical component made of quartz glass

Also Published As

Publication number Publication date
JPH0459632A (en) 1992-02-26

Similar Documents

Publication Publication Date Title
DE102008033945B4 (en) Process for the preparation of quartz glass doped with nitrogen and quartz glass grains suitable for carrying out the process, process for producing a quartz glass strand and method for producing a quartz glass crucible
US10843954B2 (en) Synthetic opaque quartz glass and method for producing the same
US4102666A (en) Method of surface crystallizing quartz
JP3578357B2 (en) Method for producing heat-resistant synthetic quartz glass
JP3092675B2 (en) Oxynitride glass and method for producing the same
JPH029727A (en) Production of optical fiber preform
JPH0136981B2 (en)
JP3368547B2 (en) Opaque quartz glass and method for producing the same
JPH0881226A (en) Production of high-purity, high heat-resistant quartz glass
JPH0764580B2 (en) Method for manufacturing nitrogen-containing synthetic quartz glass member
JP3931351B2 (en) Method for producing high-purity, high-heat-resistant silica glass
JP3574577B2 (en) High viscosity synthetic quartz glass and method for producing the same
JP2522830B2 (en) Quartz glass material for semiconductor heat treatment and manufacturing method thereof
JPH0383833A (en) Synthetic quartz glass member having excellent heat resistance
JPH085683B2 (en) Method for producing synthetic quartz glass member having excellent heat resistance and processability
JPH0459633A (en) Production of nitrogen-containing synthetic quartz glass member
JP2002160930A (en) Porous quartz glass and method of producing the same
JP2671062B2 (en) Method for manufacturing quartz glass crucible
JPH03279238A (en) Quartz glass for light transmission and production thereof
JPH0733447A (en) Production of nitrogen doped glass
JPS61186293A (en) Production of star ruby
JPS61186295A (en) Production of star sapphire
JPH05279049A (en) Production of synthetic quartz glass
JP2878916B2 (en) Silica glass member for semiconductor heat treatment and method for producing the same
JPS61186294A (en) Production of star sapphire

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20080712

LAPS Cancellation because of no payment of annual fees