JP2002241135A - Method for producing opaque synthetic quartz glass - Google Patents

Method for producing opaque synthetic quartz glass

Info

Publication number
JP2002241135A
JP2002241135A JP2001033726A JP2001033726A JP2002241135A JP 2002241135 A JP2002241135 A JP 2002241135A JP 2001033726 A JP2001033726 A JP 2001033726A JP 2001033726 A JP2001033726 A JP 2001033726A JP 2002241135 A JP2002241135 A JP 2002241135A
Authority
JP
Japan
Prior art keywords
gas
quartz glass
synthetic quartz
opaque synthetic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001033726A
Other languages
Japanese (ja)
Inventor
Tomohiro Nunome
智宏 布目
Atsuro Miyao
敦朗 宮尾
Hiroto Ikuno
浩人 生野
Chuka Shu
忠華 周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2001033726A priority Critical patent/JP2002241135A/en
Publication of JP2002241135A publication Critical patent/JP2002241135A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/24Multiple flame type, e.g. double-concentric flame
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/30For glass precursor of non-standard type, e.g. solid SiH3F

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing opaque synthetic quartz glass in which heat resistance is markedly enhanced while purity and thermal insulation properties are maintained as before. SOLUTION: A high purity silicon compound and a nitrogen compound are hydrolyzed in an oxyhydrogen flame to obtain a cylindrical silica porous body. After this silica porous body is heat-treated at a temperature of 1200 to 1300 deg.C in a gaseous atmosphere containing gaseous H2, the porous body is heat-treated at a temperature of 1400 to 1600 deg.C in an atmosphere of either of gaseous N2 or O2, a rare gas having a molecular weight greater than gaseous Ar, gaseous CO, gaseous CO2 and a gas being an arbitrary mixture of these gases.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造プロセ
スの熱処理工程において使用されるフランジや炉芯管、
ダミーウェーハ等を形成する不透明合成石英ガラスの製
造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a flange or a furnace core tube used in a heat treatment step of a semiconductor manufacturing process,
The present invention relates to a method for manufacturing an opaque synthetic quartz glass for forming a dummy wafer or the like.

【0002】[0002]

【従来の技術】一般に、フランジや炉芯管、ダミーウェ
ーハ等を形成する合成石英ガラスには、高純度であるこ
と、断熱性や耐熱性(高温強度)に優れていることが求
められる。従来、上記合成石英ガラスの製造方法として
は、特公平8−5683号公報記載の耐熱性及び加工性
の優れた合成石英ガラス部材の製造方法が知られてい
る。この製造方法は、精製された揮発性珪素化合物を酸
水素火炎中で加水分解して得られた多孔質ガラス母材を
加熱条件下で、窒素化材と反応させて、該ガラス母材に
窒素を含有させる方法である。そして、上記製造方法に
よって得られる合成石英ガラス部材は、耐熱性及び加工
性に優れ、アルカリ金属等の不純物を実質的に含まない
というものである。
2. Description of the Related Art In general, synthetic quartz glass for forming a flange, a furnace core tube, a dummy wafer, and the like is required to have high purity, and excellent heat insulation and heat resistance (high-temperature strength). Conventionally, as a method of manufacturing the synthetic quartz glass, a method of manufacturing a synthetic quartz glass member excellent in heat resistance and workability described in Japanese Patent Publication No. 8-5683 is known. In this production method, a porous glass base material obtained by hydrolyzing a purified volatile silicon compound in an oxyhydrogen flame is reacted with a nitrogenation material under heating conditions, and nitrogen is added to the glass base material. It is a method of containing. And the synthetic quartz glass member obtained by the above-mentioned manufacturing method is excellent in heat resistance and workability, and does not substantially contain impurities such as alkali metals.

【発明が解決しようとする課題】しかし、従来の合成石
英ガラスの製造方法では、Si−O結合よりも結合強度
が高いSi−N結合を構造中に含有させ、粘性を高めて
シリカ多孔質体の耐熱性を向上し得るものの、シルカ多
孔質体に存在するSi−OH結合等の欠陥をSi−N結
合に置換する方法であるので、本質的に窒素含有量、す
なわち、Si−N結合を多くできず、耐熱性が十分とは
いえない不具合がある。
However, according to the conventional method for producing synthetic quartz glass, a porous silica material containing Si—N bonds having a bonding strength higher than that of Si—O bonds in the structure to increase the viscosity is used. Although it is a method of replacing defects such as Si—OH bonds existing in the porous silica material with Si—N bonds, the nitrogen content, that is, the Si—N bonds can be essentially improved. There is a problem that the heat resistance is not sufficient and the heat resistance is not sufficient.

【0003】そこで、本発明は、純度及び断熱性を従来
と同様に保持しつつ、耐熱性を格段に高め得る不透明合
成石英ガラスの製造方法を提供することを目的とする。
[0003] Accordingly, an object of the present invention is to provide a method for producing opaque synthetic quartz glass capable of significantly improving heat resistance while maintaining purity and heat insulating properties as in the past.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するため
の、本発明の第1の不透明合成石英ガラスの製造方法
は、高純度の珪素化合物と窒素化合物を酸水素火炎中で
加水分解して円柱状のシリカ多孔質体を作製し、このシ
リカ多孔質体をH2ガスを含むガス雰囲気において12
00〜1300℃の温度で熱処理した後、N2ガス、O2
ガス又はArガス以上の分子量を持つ希ガス、COガ
ス、CO2ガス及びそれらの任意の混合ガスのいずれか
のガス雰囲気において1400〜1600℃の温度で熱
処理することを特徴とする。第2の不透明合成石英ガラ
スの製造方法は、高純度の珪素化合物と窒素化合物を酸
水素火炎中で加水分解して円柱状のシリカ多孔質体を作
製し、このシリカ多孔質体をH2ガスを含むガス雰囲気
において1200〜1300℃の温度で熱処理した後、
2ガス、O2ガス又はArガス以上の分子量を持つ希ガ
ス、COガス、CO2ガス及びそれらの任意の混合ガス
のいずれかのガス雰囲気において1400〜1600℃
の温度で熱処理し、しかる後に、1700〜1850℃
の温度で成型することを特徴とする。
In order to solve the above-mentioned problems, a first method for producing opaque synthetic quartz glass according to the present invention comprises hydrolyzing a high-purity silicon compound and a nitrogen compound in an oxyhydrogen flame. A columnar silica porous body was prepared, and this silica porous body was subjected to a gaseous atmosphere containing H 2 gas for 12 hours.
After heat treatment at a temperature of 00 to 1300 ° C., N 2 gas, O 2
The heat treatment is performed at a temperature of 1400 to 1600 ° C. in a gas atmosphere of any one of a gas or a rare gas having a molecular weight equal to or higher than an Ar gas, a CO gas, a CO 2 gas, and an arbitrary mixed gas thereof. In the second method for producing opaque synthetic quartz glass, a high-purity silicon compound and a nitrogen compound are hydrolyzed in an oxyhydrogen flame to produce a columnar porous silica, and this porous silica is made of H 2 gas. After heat treatment at a temperature of 1200 to 1300 ° C. in a gas atmosphere containing
1400 to 1600 ° C. in a gas atmosphere of any one of a rare gas, a CO gas, a CO 2 gas and a mixed gas thereof having a molecular weight of N 2 gas, O 2 gas or Ar gas or more.
Heat treatment at a temperature of 1700-1850 ° C.
Molding at a temperature of

【0005】第3の不透明合成石英ガラスの製造方法
は、第1又は第2の方法において、前記円柱状のシリカ
多孔質体を作製した後、それを切り出して板状のシリカ
多孔質体とすることを特徴とする。又、第4の不透明合
成石英ガラスの製造方法は、第1又は第2の方法におい
て、前記H2ガスを含むガス雰囲気において1200〜
1300℃の温度で熱処理した後、円柱状のシリカ多孔
質体を切り出して板状のシリカ多孔質体とすることを特
徴とする。
[0005] A third method for producing opaque synthetic quartz glass is that, in the first or second method, after the columnar silica porous body is produced, it is cut out into a plate-like porous silica body. It is characterized by the following. Further, the fourth method for producing opaque synthetic quartz glass is the same as the first or second method, except that the opaque synthetic quartz glass is produced in a gas atmosphere containing the H 2 gas in a range of 1200 to 1200.
After heat treatment at a temperature of 1300 ° C., a columnar porous silica material is cut out to obtain a plate-like porous silica material.

【0006】前記珪素化合物と窒素化合物の割合は、珪
素元素100に対して窒素元素50〜1500であるこ
とが好ましい。前記珪素化合物は、SiHnCl4-n(n
=0〜4)、テトラメトキシシラン及びテトラエトキシ
シランのいずれかであり、窒素化合物は、NH3ガス、
NOガス及びそれらの混合ガスのいずれかであることが
好ましい。又、前記H2ガスを含むガス雰囲気が、1V
ol.%以上のH2ガスを含むN2ガス、Arガス及び両
者の混合ガスのいずれかであることが好ましい。
It is preferable that the ratio of the silicon compound to the nitrogen compound is 50 to 1500 nitrogen elements with respect to 100 silicon elements. The silicon compound is SiH n Cl 4-n (n
= 0 to 4), one of tetramethoxysilane and tetraethoxysilane, and the nitrogen compound is NH 3 gas,
It is preferable to use any one of NO gas and a mixed gas thereof. The gas atmosphere containing the H 2 gas is 1 V
ol. % Of H 2 gas or more, and it is preferable to use any one of N 2 gas, Ar gas and a mixed gas of both.

【0007】[0007]

【作用】第1の方法においては、円柱状のシリカ多孔質
体が、Si−OH結合等の欠陥数に関係なく、あらかじ
め結合強度の高いSi−N結合を所要数構造中に含むも
のとなり、かつ開気孔を保持した状態でOH基及びCl
基を除去された後、閉気孔のみを有するものとなる。第
2の方法においては、円柱状のシリカ多孔質体が、Si
−OH結合等の欠陥数に関係なく、あらかじめ結合強度
の高いSi−N結合を所要数構造中に含むものとなり、
かつ、開気孔を保持した状態でOH基及びCl基を除去
された後、閉気孔のみを有するものとなり、しかる後
に、所望の形状に成形される。
In the first method, the columnar porous silica body contains Si—N bonds having a high bond strength in a required number of structures in advance regardless of the number of defects such as Si—OH bonds. OH groups and Cl while maintaining open pores
After removal of the group, it will have only closed pores. In the second method, the columnar porous silica is made of Si.
Regardless of the number of defects such as -OH bonds, the required number of structures include Si-N bonds having high bond strength in advance,
In addition, after the OH group and the Cl group are removed while maintaining the open pores, only the closed pores are obtained, and thereafter, it is formed into a desired shape.

【0008】第3の方法においては、円柱状のシリカ多
孔質体が、Si−OH結合等の欠陥数に関係なく、あら
かじめ結合強度の高いSi−N結合を所要数構造中に含
むものとなった後、板状のシリカ多孔質体とされ、この
板状のシリカ多孔質体が、開気孔を保持した状態でOH
基及びCl基を除去された後、閉気孔のみを有する板状
のものとされ、又は更に所望の板形状にされる。又、第
4の方法においては、円柱状のシリカ多孔質体が、Si
−OH結合等の欠陥数に関係なく、あらかじめ結合強度
の高いSi−N結合を所要数構造中に含むものとなり、
かつ、開気孔を保持した状態でOH基及びCl基が除去
された後、板状のシリカ多孔質体とされ、この板状のシ
リカ多孔質体が、閉気孔のみを有する板状のものとさ
れ、又は更に所望の板形状とされる。
[0008] In the third method, a columnar porous silica material contains Si—N bonds having high bond strength in a required number of structures in advance regardless of the number of defects such as Si—OH bonds. After that, a plate-shaped porous silica material is formed, and the plate-shaped porous silica material is
After the group and Cl group are removed, the plate is made into a plate having only closed pores, or further into a desired plate. In the fourth method, the columnar silica porous body is made of Si.
Regardless of the number of defects such as -OH bonds, the required number of structures include Si-N bonds having high bond strength in advance,
And, after the OH group and the Cl group are removed while maintaining the open pores, a plate-like porous silica is formed, and the plate-like porous silica is a plate-like porous body having only closed pores. Or a desired plate shape.

【0009】H2 (水素)ガスを含むガス雰囲気におけ
る熱処理の温度が、1200℃未満であると、シリカ多
孔質体(石英ガラス)とH2ガスとの反応が十分に進ま
なく、OH(水酸)基及びCl(ハロゲン)基の除去効
果が低い。一方、1300℃を超えると、シリカ多孔質
体に閉気孔が一部生成し、OH基及びCl基がシリカ多
孔質体に残留してしまう。
If the temperature of the heat treatment in a gas atmosphere containing H 2 (hydrogen) gas is lower than 1200 ° C., the reaction between the porous silica (quartz glass) and H 2 gas does not proceed sufficiently, and OH (water) The effect of removing (acid) groups and Cl (halogen) groups is low. On the other hand, when the temperature exceeds 1300 ° C., some closed pores are generated in the porous silica material, and OH groups and Cl groups remain in the porous silica material.

【0010】所要の分子量を持つ希ガス等のガス雰囲気
における熱処理の温度が、1400℃未満であると、焼
成が十分に進まない、一方、1600℃を超えると、異
常発泡する確率が高くなり、好ましくない。好ましい熱
処理温度は、1450〜1550℃である。
If the temperature of the heat treatment in a gas atmosphere of a rare gas or the like having a required molecular weight is less than 1400 ° C., the sintering does not proceed sufficiently. On the other hand, if it exceeds 1600 ° C., the probability of abnormal foaming increases. Not preferred. A preferred heat treatment temperature is 1450-1550 ° C.

【0011】又、1400〜1600℃の温度での熱処
理のガス雰囲気が、N2(窒素)ガス、O2(酸素)ガス
又はAr(アルゴン)ガス以上の分子量を持つ希ガス、
CO(一酸化炭素)ガス、CO2(二酸化炭素)ガス及
びそれらの任意の混合ガス以外のガスを用いると、焼成
体が部分的に透明化するなど、所望の不透明合成石英ガ
ラスを得ることができなくなるおそれがある。
A gas atmosphere for the heat treatment at a temperature of 1400 to 1600 ° C. is a rare gas having a molecular weight equal to or higher than N 2 (nitrogen) gas, O 2 (oxygen) gas or Ar (argon) gas.
If a gas other than CO (carbon monoxide) gas, CO 2 (carbon dioxide) gas and any mixed gas thereof is used, it is possible to obtain a desired opaque synthetic quartz glass such that the fired body becomes partially transparent. It may not be possible.

【0012】成型温度が、1700℃未満であると、石
英ガラスの粘性流動が起き難いため、成型に時間がかか
り、スループットが低下する。一方、1850℃を超え
ると、石英ガラスの昇華が起き易くなるため、歩留まり
が低下すると共に、装置へのSiO(一酸化珪素)付着
等が激しくなり、メンテナンス性が悪くなる。好ましい
熱処理温度は、1700〜1800℃である。
If the molding temperature is lower than 1700 ° C., viscous flow of the quartz glass hardly occurs, so that it takes a long time for molding and the throughput is reduced. On the other hand, when the temperature exceeds 1850 ° C., sublimation of the quartz glass is apt to occur, so that the yield is lowered and the attachment of SiO (silicon monoxide) to the device becomes severe, which deteriorates the maintainability. A preferred heat treatment temperature is 1700 to 1800 ° C.

【0013】珪素化合物と窒素化合物の割合が、珪素元
素100に対して窒素元素50未満であると、石英ガラ
ス中のSi−N結合の導入数が少なく、所望の特性を得
ることができなくなる。一方、珪素元素100に対して
窒素元素1500を超えると、成型時の異常発泡の原因
となる。より好ましい珪素化合物と窒素化合物の割合
は、珪素元素100に対して窒素元素100〜1200
である。
If the ratio of the silicon compound to the nitrogen compound is less than 50 for the nitrogen element with respect to 100 for the silicon element, the number of Si—N bonds introduced into the quartz glass is small, and desired characteristics cannot be obtained. On the other hand, if the nitrogen element exceeds 1500 with respect to the silicon element 100, it causes abnormal foaming during molding. A more preferable ratio of the silicon compound and the nitrogen compound is 100 to 1200 elemental nitrogen for 100 elemental silicon.
It is.

【0014】1200〜1300℃の温度での熱処理の
ガス雰囲気に含まれるH2ガスが1Vol.%未満であ
ると、シリカ多孔質体(石英ガラス)とH2ガスとの反
応が不十分となる。H2ガスは、50〜100Vol.
%がより好ましい。又、H2ガスと混合されるガスが、
Nガス、Arガス及び両者の混合ガス以外であると、O
H基及びCl基の除去効果が低くなる。
H 2 gas contained in the gas atmosphere of the heat treatment at a temperature of 1200 to 1300 ° C. is 1 Vol. %, The reaction between the porous silica (quartz glass) and the H 2 gas becomes insufficient. H 2 gas, 50~100Vol.
% Is more preferred. Also, the gas mixed with the H 2 gas is
If it is other than N gas, Ar gas and a mixed gas of both, O
The effect of removing H groups and Cl groups is reduced.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て具体的な実施例及び比較例を参照して説明する。 実施例1,2 先ず、VAD(Vapor-phase Axial Deposition :気相軸
付)法により、表1に示す種類と割合の高純度の珪素化
合物と窒素化合物を酸水素火炎中で加水分解して円柱状
(直径250mm,長さ500mm)のシリカ多孔質体
をそれぞれ作製した。次に、各シリカ多孔質体を、表1
に示す割合でH2ガスを含む表1に示す種類のガス雰囲
気において、表1に示す温度で熱処理した。次いで、各
シリカ多孔質体を、表1に示すガス雰囲気において、表
1に示す温度で熱処理して不透明合成石英ガラスを得
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to specific examples and comparative examples. Examples 1 and 2 First, by the VAD (Vapor-phase Axial Deposition: with a gas phase shaft) method, a high purity silicon compound and nitrogen compound of the kind and ratio shown in Table 1 were hydrolyzed in an oxyhydrogen flame to obtain a circle. Columnar (diameter 250 mm, length 500 mm) silica porous bodies were produced. Next, each of the porous silica materials is shown in Table 1.
The heat treatment was performed at the temperature shown in Table 1 in a gas atmosphere of the type shown in Table 1 containing H 2 gas at the ratio shown in Table 1. Next, each porous silica was heat-treated at a temperature shown in Table 1 in a gas atmosphere shown in Table 1 to obtain an opaque synthetic quartz glass.

【0016】[0016]

【表1】 [Table 1]

【0017】得られた各不透明合成石英ガラスの純度
(OH基濃度、Cl基濃度)、断熱性及び耐熱性(粘
度)は、それぞれ表2に示すようになった
The purity (OH group concentration, Cl group concentration), heat insulation and heat resistance (viscosity) of each of the obtained opaque synthetic quartz glasses are as shown in Table 2.

【0018】[0018]

【表2】 [Table 2]

【0019】比較例 先ず、VAD法により、高純度の珪素化合物(SiCl
4)を酸水素火炎中で加水分解して円柱状(直径250
mm,長さ500mm)のシリカ多孔質体を作製した。
次に、シリカ多孔質体をNH3(アンモニア):N2=5
0:50Vol.%の混合ガス雰囲気において850℃
の温度で4時間加熱処理した後、NH3ガスのみ供給を
停止し、N2ガス単独の雰囲気においてそのままの温度
を保って1時間熱処理した。次いで、O2ガスを50V
ol.%混合したガス雰囲気において同温度を保持して
1時間加熱処理して不透明合成石英ガラスを得た。得ら
れた不透明合成石英ガラスの純度、断熱性及び耐熱性
は、表2に示すようになった。
Comparative Example First, a high purity silicon compound (SiCl
4 ) is hydrolyzed in an oxyhydrogen flame to obtain a columnar shape (250 mm diameter).
(mm, 500 mm in length).
Next, the silica porous material was subjected to NH 3 (ammonia): N 2 = 5.
0:50 Vol. 850 ° C in a mixed gas atmosphere of
After the heat treatment at a temperature of 4 hours, supply of only NH 3 gas was stopped, and heat treatment was performed for 1 hour in an atmosphere of N 2 gas alone while maintaining the temperature as it was. Next, the O 2 gas is supplied to 50 V
ol. %, And heat-treated for 1 hour while maintaining the same temperature in an atmosphere of mixed gas to obtain opaque synthetic quartz glass. Table 2 shows the purity, heat insulation and heat resistance of the obtained opaque synthetic quartz glass.

【0020】なお、実施例1と同様にして得られた不透
明合成石英ガラスを1700〜1850°の温度で成型
することによって所望の形状に成形することができた。
Incidentally, the opaque synthetic quartz glass obtained in the same manner as in Example 1 was formed at a temperature of 1700 to 1850 ° to obtain a desired shape.

【0021】[0021]

【発明の効果】以上説明したように、本発明の第1の不
透明合成石英ガラスの製造方法によれば、円柱状のシリ
カ多孔質体が、Si−OH結合等の欠陥数に関係なく、
あらかじめ結合強度の高いSi−N結合を所要数構造中
に含むものとなり、かつ、開気孔を保持した状態でOH
基及びCl基を除去された後、閉気孔のみを有するもの
となるので、従来と同様の純度と断熱性を保持しつつ、
耐熱性を格段に高めた不透明合成石英ガラスを得ること
ができる。第2の不透明合成石英ガラスの製造方法によ
れば、円柱状のシリカ多孔質体が、Si−OH結合等の
欠陥数に関係なく、あらかじめ結合強度の高いSi−N
結合を所要数構造中に含むものとなり、かつ、開気孔を
保持した状態でOH基及びCl基を除去された後、閉気
孔のみを有するものとなり、しかる後に、所望の形状に
成形されるので、従来と同様の純度と断熱性を保持しつ
つ、耐熱性を格段に高めた所望形状の不透明合成石英ガ
ラスを得ることができる。
As described above, according to the first method for producing opaque synthetic quartz glass of the present invention, the columnar porous silica can be produced regardless of the number of defects such as Si-OH bonds.
In the required number of structures, Si—N bonds having a high bond strength are contained in advance, and OH
After removing the group and Cl group, it will have only closed pores, while maintaining the same purity and heat insulation as before,
An opaque synthetic quartz glass with significantly improved heat resistance can be obtained. According to the second method for producing an opaque synthetic quartz glass, a columnar silica porous body is made of Si—N having a high bond strength in advance regardless of the number of defects such as Si—OH bonds.
The bond is included in the required number of structures, and after the OH group and the Cl group are removed while maintaining the open pores, the structure has only closed pores, and thereafter, it is formed into a desired shape. Thus, it is possible to obtain an opaque synthetic quartz glass having a desired shape with significantly improved heat resistance while maintaining the same purity and heat insulating properties as those of the related art.

【0022】第3の不透明合成石英ガラスの製造方法に
よれば、円柱状のシリカ多孔質体が、Si−OH結合等
の欠陥数に関係なく、あらかじめ結合強度の高いSi−
N結合を所要数構造中に含むものとなった後、板状のシ
リカ多孔質体とされ、この板状のシリカ多孔質体が、開
気孔を保持した状態でOH基及びCl基を除去された
後、閉気孔のみを有する板状のものとなり、又は更に所
望の板形状となるので、従来と同様の純度と断熱性を保
持しつつ、耐熱性を格段に高めた板状又は所望板形状の
不透明合成石英ガラスを得ることができる。又第4の不
透明合成石英ガラスの製造方法によれば、円柱状のシリ
カ多孔質体が、Si−OH結合等の欠陥数に関係なく、
あらかじめ結合強度の高いSi−N結合を所要数構造中
に含むものとなり、かつ、開気孔を保持した状態でOH
基及びCl基が除去された後、板状のシリカ多孔質体と
され、この板状のシリカ多孔質体が閉気孔のみを有する
板状のものとされ、又は更に所望の板形状とされるの
で、従来と同様の純度と断熱性を保持しつつ、耐熱性を
格段に高めた板状又は所望板形状の不透明合成石英ガラ
スを得ることができる。
According to the third method for producing opaque synthetic quartz glass, a columnar porous silica material has a high bonding strength in advance of Si—OH regardless of the number of defects such as Si—OH bonds.
After the N-bonds are included in the required number of structures, a plate-shaped porous silica is formed, and the OH group and the Cl group are removed while maintaining the open pores. After that, it becomes a plate having only closed pores or a more desired plate shape, so that while maintaining the same purity and heat insulation as before, a plate shape or a desired plate shape with significantly improved heat resistance Opaque synthetic quartz glass can be obtained. In addition, according to the fourth method for producing opaque synthetic quartz glass, a columnar silica porous body can be formed regardless of the number of defects such as Si-OH bonds.
In the required number of structures, Si—N bonds having a high bond strength are contained in advance, and OH
After the group and Cl group are removed, a plate-shaped porous silica is formed, and the plate-shaped porous silica is formed into a plate having only closed pores, or further formed into a desired plate shape. Therefore, it is possible to obtain an opaque synthetic quartz glass having a plate shape or a desired plate shape with significantly improved heat resistance while maintaining the same purity and heat insulating properties as in the related art.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 生野 浩人 山口県徳山市大字徳山字江口開作8231−5 徳山東芝セラミックス株式会社内 (72)発明者 周 忠華 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 Fターム(参考) 4G014 AH12 AH14 AH15 AH21 AH23 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroto Ikuno 8231-5, Eguchi Kaisaku, Tokuyama, Tokuyama-shi, Yamaguchi Prefecture Inside Tokuyama Toshiba Ceramics Co., Ltd. 4G014 AH12 AH14 AH15 AH21 AH23

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 高純度の珪素化合物と窒素化合物を酸水
素火炎中で加水分解して、円柱状のシリカ多孔質体を作
製し、このシリカ多孔質体をH2ガスを含むガス雰囲気
において1200〜1300℃の温度で熱処理した後、
2ガス、O2ガス又はArガス以上の分子量を持つ希ガ
ス、COガス、CO2ガス及びそれらの任意の混合ガス
のいずれかのガス雰囲気において1400〜1600℃
の温度で熱処理することを特徴とする不透明合成石英ガ
ラスの製造方法。
1. A high-purity silicon compound and nitrogen compound are hydrolyzed in an oxyhydrogen flame to produce a columnar silica porous body, and this silica porous body is subjected to a 1200 ppm gas atmosphere containing H 2 gas. After heat treatment at a temperature of ~ 1300 ° C,
1400 to 1600 ° C. in a gas atmosphere of any one of a rare gas, a CO gas, a CO 2 gas and a mixed gas thereof having a molecular weight of at least N 2 gas, O 2 gas or Ar gas.
A method for producing opaque synthetic quartz glass, comprising heat-treating at an ambient temperature.
【請求項2】 高純度の珪素化合物と窒素化合物を酸水
素火炎中で加水分解して、円柱状のシリカ多孔質体を作
製し、このシリカ多孔質体をH2ガスを含むガス雰囲気
において1200〜1300℃の温度で熱処理した後、
2ガス、O2ガス又はArガス以上の分子量を持つ希ガ
ス、COガス、CO2ガス及びそれらの任意の混合ガス
のいずれかのガス雰囲気において1400〜1600℃
の温度で熱処理し、しかる後に、1700〜1850℃
の温度で成型することを特徴とする不透明合成石英ガラ
スの製造方法。
2. A high-purity silicon compound and a nitrogen compound are hydrolyzed in an oxyhydrogen flame to produce a columnar porous silica, and this porous silica is subjected to a 1200 ppm gas atmosphere containing H 2 gas. After heat treatment at a temperature of ~ 1300 ° C,
1400 to 1600 ° C. in a gas atmosphere of any one of a rare gas, a CO gas, a CO 2 gas and a mixed gas thereof having a molecular weight of at least N 2 gas, O 2 gas or Ar gas.
Heat treatment at a temperature of 1700-1850 ° C.
A method for producing opaque synthetic quartz glass, characterized by molding at a temperature of
【請求項3】 前記円柱状のシリカ多孔質体を作製した
後、それを切り出して板状のシリカ多孔質体とすること
を特徴とする請求項1又は2記載の不透明合成石英ガラ
スの製造方法。
3. The method for producing an opaque synthetic quartz glass according to claim 1, wherein the columnar silica porous body is prepared and then cut out to obtain a plate-like porous silica body. .
【請求項4】 前記H2ガスを含むガス雰囲気において
1200〜1300℃の温度で熱処理した後、円柱状の
シリカ多孔質体を切り出して板状のシリカ多孔質体とす
ることを特徴とする請求項1又は2記載の不透明合成石
英ガラスの製造方法。
4. A heat treatment at a temperature of 1200 to 1300 ° C. in a gas atmosphere containing the H 2 gas, and then a columnar porous silica is cut out to obtain a plate-like porous silica. Item 3. The method for producing an opaque synthetic quartz glass according to Item 1 or 2.
【請求項5】 前記珪素化合物と窒素化合物の割合が、
珪素元素100に対して窒素元素50〜1500である
ことを特徴とする請求項1、2、3又は4記載の不透明
合成石英ガラスの製造方法。
5. The method according to claim 1, wherein the ratio of the silicon compound to the nitrogen compound is
5. The method for producing opaque synthetic quartz glass according to claim 1, wherein the nitrogen element is 50 to 1500 with respect to 100 silicon elements.
【請求項6】 前記珪素化合物がSiHnCl4-n( =0
〜4)、テトラメトキシシラン及びテトラエトキシシラ
ンのいずれかであり、窒素化合物がNH3ガス、NOガ
ス及びそれらの混合ガスのいずれかであることを特徴と
する請求項1、2、3、4又は5記載の不透明合成石英
ガラスの製造方法。
6. The method according to claim 1, wherein the silicon compound is SiH n Cl 4-n (= 0
4), any one of tetramethoxysilane and tetraethoxysilane, and the nitrogen compound is any one of NH 3 gas, NO gas, and a mixed gas thereof. Or a method for producing an opaque synthetic quartz glass according to 5.
【請求項7】 前記H2ガスを含むガス雰囲気が、1V
ol.%以上のH2ガスを含むN2ガス、Arガス及び両
者の混合ガスのいずれかであることを特徴とする請求項
1、2、3、4、5又は6記載の不透明合成石英ガラス
の製造方法。
7. A gas atmosphere containing H 2 gas is 1 V
ol. The opaque synthetic quartz glass according to any one of claims 1, 2, 3, 4, 5, and 6, wherein the gas is any one of N 2 gas, Ar gas, and a mixed gas containing both H 2 gas and H 2 %. Method.
JP2001033726A 2001-02-09 2001-02-09 Method for producing opaque synthetic quartz glass Withdrawn JP2002241135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001033726A JP2002241135A (en) 2001-02-09 2001-02-09 Method for producing opaque synthetic quartz glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001033726A JP2002241135A (en) 2001-02-09 2001-02-09 Method for producing opaque synthetic quartz glass

Publications (1)

Publication Number Publication Date
JP2002241135A true JP2002241135A (en) 2002-08-28

Family

ID=18897432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001033726A Withdrawn JP2002241135A (en) 2001-02-09 2001-02-09 Method for producing opaque synthetic quartz glass

Country Status (1)

Country Link
JP (1) JP2002241135A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238419A (en) * 2006-03-13 2007-09-20 Tosoh Quartz Corp Opaque sintered compact
KR100845506B1 (en) 2005-11-14 2008-07-10 세이코 엡슨 가부시키가이샤 Semiconductor device fabrication method and electronic device fabrication method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100845506B1 (en) 2005-11-14 2008-07-10 세이코 엡슨 가부시키가이샤 Semiconductor device fabrication method and electronic device fabrication method
JP2007238419A (en) * 2006-03-13 2007-09-20 Tosoh Quartz Corp Opaque sintered compact

Similar Documents

Publication Publication Date Title
TWI320780B (en)
CN101061075B (en) Holder made from quartz glass for the processing of semiconductor wafers and method for production of the holder
TWI393689B (en) Component of quartz glass for use in semiconductor manufacture and method for producing the same
CN1817792A (en) Process for treating synthetic silica powder and synthetic silica powder treated thereof
JPH07300324A (en) Production of heat-resistant synthetic quartz glass
US20030101748A1 (en) Silica glass member for semiconductor and production method thereof
JP4181226B2 (en) Manufacturing method of high purity, high heat resistant quartz glass
EP0477977A2 (en) Oxynitride glass and method of producing same
JP2002241135A (en) Method for producing opaque synthetic quartz glass
JP5386255B2 (en) Nitrogen-doped quartz glass crucible and method for producing such a crucible
JP3574577B2 (en) High viscosity synthetic quartz glass and method for producing the same
JPH08183621A (en) Production of high-purity highly heat resistant silica glass
EP0767761B1 (en) Sintered quartz glass products and methods for making same
JPH10114532A (en) Production of jig for heat-treating quartz-glass semiconductor
JP2747856B2 (en) Quartz glass crucible for pulling silicon single crystal and method for producing the same
JP2002160930A (en) Porous quartz glass and method of producing the same
JPH05279049A (en) Production of synthetic quartz glass
JPH04224135A (en) Foamed glass and its manufacture
JP2671062B2 (en) Method for manufacturing quartz glass crucible
JP3114936B2 (en) High heat resistant synthetic quartz glass
JP4297578B2 (en) Method for producing opaque quartz glass
JP2840164B2 (en) Quartz glass boat and its manufacturing method
JP2677293B2 (en) Manufacturing method of preform for optical fiber
JPH0733447A (en) Production of nitrogen doped glass
JP2007238419A (en) Opaque sintered compact

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041026

A711 Notification of change in applicant

Effective date: 20070711

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120