JPH0735932B2 - Operation control device for air conditioner - Google Patents

Operation control device for air conditioner

Info

Publication number
JPH0735932B2
JPH0735932B2 JP63172064A JP17206488A JPH0735932B2 JP H0735932 B2 JPH0735932 B2 JP H0735932B2 JP 63172064 A JP63172064 A JP 63172064A JP 17206488 A JP17206488 A JP 17206488A JP H0735932 B2 JPH0735932 B2 JP H0735932B2
Authority
JP
Japan
Prior art keywords
indoor
temperature
opening
degree
superheat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63172064A
Other languages
Japanese (ja)
Other versions
JPH0221165A (en
Inventor
修 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP63172064A priority Critical patent/JPH0735932B2/en
Publication of JPH0221165A publication Critical patent/JPH0221165A/en
Publication of JPH0735932B2 publication Critical patent/JPH0735932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は室外ユニットに対して複数の室内ユニットを接
続したマルチ形空気調和装置においてその冷房能力を制
御する運転制御装置に係り、特に空調能力制御範囲の拡
大対策に関する。
Description: TECHNICAL FIELD The present invention relates to an operation control device for controlling the cooling capacity of a multi-type air conditioner in which a plurality of indoor units are connected to an outdoor unit, and particularly to an air conditioning capacity. Regarding measures to expand the control range.

(従来の技術) 従来より、空気調和装置の冷房能力の制御装置として、
圧縮機の運転容量を蒸発圧力相当飽和温度が一定になる
ように制御するると共に、室内熱交換器の吸込空気温度
と設定温度との差温に応じて室内電動膨張弁の開度を制
御するもの、あるいは、吸込空気温度と設定温度との差
温に基づき圧縮機の運転容量を制御すると共に、室内熱
交換器出入口における冷媒温度の差温として検知される
冷媒の過熱度が一定になるよように室内電動膨張弁の開
度を制御するものは一般的な技術として知られている。
(Prior Art) Conventionally, as a control device for the cooling capacity of an air conditioner,
The operating capacity of the compressor is controlled so that the saturation temperature equivalent to the evaporation pressure is constant, and the opening degree of the indoor electric expansion valve is controlled according to the temperature difference between the intake air temperature of the indoor heat exchanger and the set temperature. The operating capacity of the compressor is controlled based on the temperature difference between the intake air temperature and the set temperature, and the superheat degree of the refrigerant detected as the temperature difference between the refrigerant temperature at the indoor heat exchanger inlet and outlet becomes constant. Such control of the opening degree of the indoor electric expansion valve is known as a general technique.

(発明が解決しようとする課題) ところで、一台の室外ユニットに複数の室内ユニットを
並列に接続してなるいわゆるマルチ形空気調和装置の場
合、上記従来の技術のうち後者では、冷房負荷が各室内
熱交換器で異なるために圧縮機の運転容量の制御が複雑
になることから、通常、前者が使用されている。
(Problems to be Solved by the Invention) By the way, in the case of a so-called multi-type air conditioner in which a plurality of indoor units are connected in parallel to one outdoor unit, in the latter of the above conventional techniques, the cooling load is different from each other. The former is usually used because the control of the operating capacity of the compressor is complicated because the indoor heat exchanger is different.

その場合、上記前者では、圧縮機における液圧縮を防止
するために、別途過熱度に応じて室内電動膨張弁の開度
を制限する必要があり、通常、過熱度の検出誤差等の問
題から例えば5℃程度の比較的大きな過熱度設定値が使
用されている。
In that case, in the former case, in order to prevent liquid compression in the compressor, it is necessary to separately limit the opening degree of the indoor electric expansion valve according to the degree of superheat, and usually from the problem of detection error of the degree of superheat or the like. A relatively large superheat setting value of about 5 ° C. is used.

したがって、マルチ形空気調和装置の場合、各室熱交換
器において個別に過熱度制御を行うために、冷房負荷が
大きくなっても、過熱度の値から室内電動膨張弁の開度
が制限されることになる。しかし、上記のように比較的
高い目標過熱度が設定されているために、室内熱交換器
における冷媒状態がどうしても乾き気味となって、冷房
能力が十分発揮できない憾みがあった。
Therefore, in the case of the multi-type air conditioner, since the superheat control is individually performed in each room heat exchanger, even if the cooling load becomes large, the opening degree of the indoor electric expansion valve is limited from the value of the superheat. It will be. However, since the relatively high target superheat degree is set as described above, the refrigerant state in the indoor heat exchanger is inevitably dry, and the cooling capacity cannot be sufficiently exhibited.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、圧縮機の液圧縮を生じない範囲で、できるかぎり
各室内電動膨張弁の開度を冷房負荷に対応して開き側に
制御する手段を講ずることにより、室内熱交換器におけ
る冷媒状態を湿り気味に保持して、冷房能力の低下を可
及的に抑制することにある。
The present invention has been made in view of such a point, and an object thereof is to the extent that the liquid compression of the compressor does not occur, and the opening degree of each indoor electric expansion valve is set to the opening side as much as possible corresponding to the cooling load. By taking control means, the refrigerant state in the indoor heat exchanger is kept moist and the decrease in cooling capacity is suppressed as much as possible.

(課題を解決するための手段) 上記の目的を達成するため、請求項(1)の発明の解決
手段は、第1図に示すように(破線部分を含まず)、容
量可変形圧縮機(1)および室外熱交換器(6)を有す
る一台の室外ユニット(A)に対して、室内電動膨張弁
(13)および室内熱交換器(12)を有する複数の室内ユ
ニット(B)…を並列に接続してなる空気調和装置を前
提とする。
(Means for Solving the Problem) In order to achieve the above object, the solution means of the invention of claim (1) is, as shown in FIG. 1 (not including a broken line portion), a variable displacement compressor ( 1) and one outdoor unit (A) having the outdoor heat exchanger (6), a plurality of indoor units (B) having the indoor electric expansion valve (13) and the indoor heat exchanger (12) are provided. An air conditioner connected in parallel is assumed.

そして、上記空気調和装置の運転制御装置として、該空
気調和装置の冷房運転時、各室内の空気温度を検出する
室温検出手段(TH1)…と、該各室温検出手段(TH1)…
の出力を受け、各室内空気温度と設定温度との差温に応
じて上記各室内電動膨張弁(13)…の開度を制御する開
度制御手段(54)と、室外ユニット(A)における圧縮
機(1)の吸入ライン(11a)に配置され、吸入圧力相
当飽和温度を検出する吸入圧検出手段(P1)と、該吸入
圧検出手段(P1)で検出された吸入圧力相当飽和温度に
基づき圧縮機(1)の運転容量を制御する容量制御手段
(15a)とを設ける。さらに、室外ユニット(A)にお
ける圧縮機(1)の吸入ライン(11a)配置され、吸入
ガス温度を検出する吸入温検出手段(TH6)と、該吸入
温検出手段(TH6)および上記吸入圧検出手段(P1)の
出力を受け、吸入ガス温度と吸入圧力相当飽和温度との
差温から吸入過熱度を演算する吸入過熱度演算手段(5
2)と、該吸入過熱度演算手段(52)で演算された吸入
過熱度を設定値と比較して吸入過熱度が設定値よりも低
い湿り運転状態を判別する湿り状態判別手段(53)と、
該湿り状態判別手段(53)の出力を受け、湿り運転状態
を判別したとき、上記吸入過熱度が設定値以上に保持さ
れるよう上記各室内電動膨張弁(13)…のうち少なくと
も一つの開度を制限する開度制限手段(55)…とを設け
る構成としたものとする。
Then, as the operation control device of the air conditioner, room temperature detecting means (TH1) for detecting the air temperature in each room during the cooling operation of the air conditioner, and each room temperature detecting means (TH1).
In the outdoor unit (A) and an opening control means (54) for controlling the opening of each of the indoor electric expansion valves (13) in accordance with the temperature difference between the indoor air temperature and the set temperature. A suction pressure detecting means (P1) arranged in the suction line (11a) of the compressor (1) for detecting a saturation temperature equivalent to the suction pressure, and a saturation temperature equivalent to the suction pressure detected by the suction pressure detecting means (P1). And a capacity control means (15a) for controlling the operating capacity of the compressor (1). Further, the suction line (11a) of the compressor (1) in the outdoor unit (A) is arranged, and a suction temperature detection means (TH6) for detecting the suction gas temperature, the suction temperature detection means (TH6) and the suction pressure detection. An intake superheat degree calculating means (5) for receiving the output of the means (P1) and calculating the intake superheat degree from the temperature difference between the intake gas temperature and the intake pressure equivalent saturation temperature (5
2) and a wet state determination means (53) for comparing the intake superheat degree calculated by the intake superheat degree calculation means (52) with a set value to determine a wet operating state in which the suction superheat degree is lower than the set value. ,
At least one of the indoor electric expansion valves (13) is opened so that the intake superheat is maintained at a set value or more when the wet operation state is determined by receiving the output of the wet state determination means (53). And a degree of opening limiting means (55) for limiting the degree.

また、請求項(2)の発明の解決手段は、第1図に示す
ように(破線部分を含む)、上記請求項(1)の発明に
おいて、各室内ユニット(B)…に、ユニット個別の過
熱度を検出する個別過熱度検出手段(51)…を設け、上
記開度制限手段(55)…を、上記各個別過熱度検出手段
(51)…で検出された個別過熱度が設定値よりも低くな
った室内ユニット(B)…に対応する室内電動膨張弁
(13))…のみの開度を一定開度だけ閉じるように構成
したものとする。
As shown in FIG. 1 (including the broken line portion), the solution means of the invention of claim (2) is that, in the invention of claim (1), each indoor unit (B) ... Individual superheat degree detecting means (51) for detecting the superheat degree are provided, and the opening degree limiting means (55) are set so that the individual superheat degree detected by each of the individual superheat degree detecting means (51). The indoor electric expansion valve (13) corresponding to the lowered indoor unit (B) ... is configured to be closed by a constant opening.

さらに、請求項(3)の発明の解決手段は、第1図に示
すように(破線部分を含まず)、上記請求項(1)の発
明における開度制限手段(55)…として、吸入過熱度が
上記設定値以上に保持されるように、各室内ユニット
(B)の室内電動膨張弁(13)…の開度を同じ割合で閉
じるよう構成したものとする。
Further, the solution means of the invention of claim (3) is, as shown in FIG. 1 (not including the broken line portion), the intake overheat as the opening degree restricting means (55) in the invention of claim (1). The opening degree of the indoor electric expansion valves (13) of each indoor unit (B) is configured to be closed at the same rate so that the degree is maintained above the set value.

(作用) 以上の構成により、請求項(1)の発明では、装置の冷
戻運転時、室外ユニット(A)の室外熱交換器(6)で
凝縮された冷媒が各室内ユニット(B)…で室内電動膨
張弁(13)…により減圧され、室内熱交換器(12)…で
蒸発するように循環して、各室内の冷房が行われる。そ
して、各室内ユニット(B)…では、開度制御手段(5
4)…により、室温検出手段(TH1)…で検出された室温
と設定温度との差温に基づき室内電動膨張弁(13)…の
開度が室内負荷に応じた開度に制御される一方、室外ユ
ニット(A)では、容量制御手段(15a)により、吸入
圧検出手段(P1)で検出された吸入ガス圧力に応じて圧
縮機(1)の運転容量が制御され、全体の冷媒流量が適
切な値に調節される。
(Operation) According to the invention of claim (1), the refrigerant condensed in the outdoor heat exchanger (6) of the outdoor unit (A) in each of the indoor units (B) ... Are decompressed by the indoor electric expansion valves (13) and circulated so as to evaporate in the indoor heat exchangers (12), thereby cooling each room. Then, in each indoor unit (B) ..., the opening control means (5
4) ... controls the opening degree of the indoor electric expansion valve (13) ... to an opening degree according to the indoor load based on the temperature difference between the room temperature and the set temperature detected by the room temperature detecting means (TH1). In the outdoor unit (A), the capacity control means (15a) controls the operating capacity of the compressor (1) according to the suction gas pressure detected by the suction pressure detection means (P1), and the total refrigerant flow rate is Adjusted to an appropriate value.

そして、室外ユニット(A)では、吸入過熱度演算手段
(52)により、吸入温検出手段(TH6)で検出される吸
入ガス温度と吸入圧検出手段(P1)で検出される吸入ガ
ス圧力相当飽和温度との差温としての吸入過熱度が演算
され、湿り状態判別手段(53)により、この吸入過熱度
が設定値よりも低い湿り運転状態が判別され、湿り運転
状態が判別されたときには、開度制限手段(55)…によ
り、吸入過熱度が上記設定値以上に保持されるように各
室内電動膨張弁(13)…のうち少なくとも1つの開度が
制限されて、圧縮機(1)への液バックが防止される。
In the outdoor unit (A), the intake superheat calculation means (52) causes the intake gas temperature detected by the intake temperature detection means (TH6) and the saturation equivalent to the intake gas pressure detected by the intake pressure detection means (P1). The intake superheat degree as a temperature difference from the temperature is calculated, and the wet state determination means (53) determines the wet operation state in which the intake superheat degree is lower than the set value. At least one of the indoor electric expansion valves (13) is restricted by the degree restricting means (55) so that the degree of intake superheat is maintained at the set value or more, and the compressor (1) is opened. Liquid back up is prevented.

その場合、吸入過熱度が設定値以上に維持されている間
は、室内電動膨張弁(13))…の開度は過熱度に起因す
る開度の制限を受けないので、冷房負荷の大きいときに
は負荷に応じた開度まで開かれて所定の冷房能力が発揮
され、能力制御範囲が拡大されることになる。
In that case, while the intake superheat is maintained above the set value, the opening of the indoor electric expansion valve (13) is not restricted by the superheat, so when the cooling load is large. A predetermined cooling capacity is exhibited by opening up to an opening degree according to the load, and the capacity control range is expanded.

また、請求項(2)の発明では、吸入過熱度が設定値よ
りも低い湿り運転状態のときには、開度制限手段(55)
…により、個別過熱度が上記設定値よりも低くなった室
内ユニット(B)…に対応する室内電動膨張弁(13)…
のみの開度が一定開度だけ閉じるように変更される。し
たがって、吸入過熱度が上昇して設定値以上に維持さ
れ、冷房能力が維持されるとともに、能力制御範囲が拡
大することになる。
Further, in the invention of claim (2), when the intake superheat is lower than the set value in the wet operation state, the opening degree limiting means (55)
The indoor electric expansion valve (13) corresponding to the indoor unit (B) whose individual superheat degree has become lower than the set value due to ...
The degree of opening is changed so that it is closed by a certain degree. Therefore, the intake superheat increases and is maintained at or above the set value, the cooling capacity is maintained, and the capacity control range is expanded.

さらに、請求項(3)の発明では、吸入過熱度が設定値
よりも低い湿り運転状態のときには、全室内ユニット
(B)…で、開度制限手段(55)…により、同じ一定割
合で各室内電動膨張弁(13)…の開度が絞られて、吸入
過熱度が設定値以上に保持される。よって、個別過熱度
を検知する必要がなく、簡素な制御で済む。
Further, in the invention of claim (3), when the intake superheat degree is lower than the set value in the wet operation state, the opening degree limiting means (55) in all the indoor units (B) ... The opening degree of the indoor electric expansion valves (13) ... Is throttled to maintain the intake superheat at a set value or higher. Therefore, it is not necessary to detect the individual degree of superheat, and simple control is sufficient.

(実施例) 以下、本発明の実施例について、第2図以下の図面に基
づき説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings starting from FIG.

第2図は本発明の実施例に係るマルチ型空気調和装置の
冷媒配管系統を示し、(A)は室外ユニット、(B)〜
(F)は該室外ユニット(A)に並列に接続された室内
ユニットである。上記室外ユニット(A)の内部には、
出力周波数が30〜70Hzの範囲で10Hz毎に可変に切換えら
れるインバータ(2a)により容量が調整される第1圧縮
機(1a)と、パイロット圧の高低で作動するアンローダ
(2b)により容量がフルロード(100%)状態とアンロ
ード(50%)状態との2段階に調整される第2圧縮機
(1b)とを逆止弁(1e)を介して並列に接続して構成さ
れる圧縮機(1)と、該圧縮機(1)から吐出されるガ
ス中の油を分離する油分離器(4)と、暖房運転時には
図中実線の如く切換わり冷房運転時には図中破線の如く
切換わる四路切換弁(5)と、冷房運転時に凝縮作用、
暖房運転時に蒸発作用を有する室外熱交換器(6)およ
びそのファン(6a)と、過冷却度コイル(7)と、冷房
運転時には冷媒流量を調節し、暖房運転時には冷媒の絞
り作用を行う室外電動膨張弁(8)と、液化した媒を貯
蔵するレシーバ(9)と、アキュムレータ(10)とが主
要機器として内蔵されていて、該各機器(1)〜(10)
は各々冷媒配管(11)で冷媒の流通可能に接続されてい
る。また上記室内ユニット(B)〜(F)は同一構成で
あり、各々、冷房運転時には蒸発作用、暖房運転時には
凝縮作用を有する室内熱交換器(12)…およびそのファ
ン(12a)…を備え、かつ該室内熱交換器(12)…の液
冷媒分岐管には、暖房運転時に冷房流量を調節し、冷房
運転時に冷媒の絞り作用を行う室内電動膨張弁(13)…
がそれぞれ介設され、合流後手動閉鎖弁(17)を介し連
絡配管によって室外ユニット(A)との間が接続されて
いる。また、(TH1)…は各室内熱交換器(12)の吸込
空気温度(室内空気温度、以下、室温とする)Taを検出
する室温検出手段としての室温サーモスタット、(TH
2)…および(TH3)…は各々冷房運転時に室内熱交換
(12)…の液側温度T2およびガス側温度T3を検出する温
度センサであって、該2つの温度センサ(TH2),(TH
3)により、冷房運転時に各室内熱交換器(12)個別の
過熱度を検出する個別過熱度検出手段(51)が構成され
ている。また、(TH4)は吐出ガス温度を検出する温度
センサ、(TH5)は暖房運転時に室外熱交換器(6)に
おける冷媒の液側温度を検出する温度センサ、(TH6)
は室外ユニット(A)における圧縮機(1)の吸入ライ
ン(11a)に配置され、吸入ガス温度を検出する吸入温
検出手段としての温度センサ、(P1)は冷房運転時に吸
入ライン(11a)に配置され、吸入圧力相当飽和温度を
検出する吸入圧検出手段としての圧力センサである。
FIG. 2 shows a refrigerant piping system of a multi-type air conditioner according to an embodiment of the present invention, (A) is an outdoor unit, and (B)-
(F) is an indoor unit connected in parallel to the outdoor unit (A). Inside the outdoor unit (A),
Full capacity is achieved by the first compressor (1a) whose capacity is adjusted by the inverter (2a) that can be variably switched every 10Hz in the output frequency range of 30 to 70Hz, and the unloader (2b) that operates at high and low pilot pressures. A compressor configured by connecting a second compressor (1b), which is adjusted in two stages of a load (100%) state and an unload (50%) state, in parallel via a check valve (1e). (1), an oil separator (4) for separating oil in the gas discharged from the compressor (1), and switching as shown by the solid line in the drawing during heating operation and switching as shown by the broken line in the drawing during cooling operation Four-way switching valve (5) and condensation action during cooling operation,
The outdoor heat exchanger (6) and its fan (6a) that have an evaporating effect during the heating operation, the supercooling degree coil (7), and the outdoor that adjusts the refrigerant flow rate during the cooling operation and throttles the refrigerant during the heating operation. An electric expansion valve (8), a receiver (9) for storing a liquefied medium, and an accumulator (10) are built-in as main devices, and the devices (1) to (10) are included.
Are connected to each other through a refrigerant pipe (11) so that the refrigerant can flow. The indoor units (B) to (F) have the same structure, and each includes an indoor heat exchanger (12) ... And its fan (12a) ... Moreover, in the liquid refrigerant branch pipe of the indoor heat exchanger (12), an indoor electric expansion valve (13) that adjusts the cooling flow rate during the heating operation and throttles the refrigerant during the cooling operation ...
And the outdoor unit (A) are connected by a connecting pipe via a manual shut-off valve (17) after joining. Further, (TH1) ... is a room temperature thermostat as a room temperature detecting means for detecting the intake air temperature (indoor air temperature, hereinafter referred to as room temperature) Ta of each indoor heat exchanger (12), and (TH
2) and (TH3) are temperature sensors for detecting the liquid side temperature T 2 and the gas side temperature T 3 of the indoor heat exchange (12) during the cooling operation, and these two temperature sensors (TH2), (TH
By 3), the individual superheat degree detection means (51) for detecting the individual superheat degree of each indoor heat exchanger (12) is configured during the cooling operation. Further, (TH4) is a temperature sensor for detecting the discharge gas temperature, (TH5) is a temperature sensor for detecting the liquid side temperature of the refrigerant in the outdoor heat exchanger (6) during heating operation, (TH6).
Is a temperature sensor as an intake temperature detecting means arranged in the intake line (11a) of the compressor (1) in the outdoor unit (A), and (P1) is connected to the intake line (11a) during cooling operation. The pressure sensor is arranged and serves as suction pressure detection means for detecting a saturation temperature corresponding to the suction pressure.

なお、第2図において上記各主要機器以外に補助用の諸
機器が設けられている。(1e)は第2圧縮機(1b)の分
岐吐出管部に介設された逆止弁、(1f)は第2圧縮機
(1b)のバイパス回路(11c)に介設され、第2圧縮機
(1b)の停止時およびアンロード状態時には「開」とな
り、フルロード状態で「閉」となるアンローダ用電磁
弁、(1g)はキャピラリーチューブ、(21)は吐出ライ
ン(11b)と吸入ライン(11a)とを接続する均圧ホット
ガスバイパス回路(11d)に介設され、冷房運転時室内
熱交換(12)が低負荷状態のときおよびデフロスト時等
に開作動するホットガス用電磁弁である。
In addition, in FIG. 2, various auxiliary devices are provided in addition to the above main devices. (1e) is a check valve provided in the branch discharge pipe section of the second compressor (1b), (1f) is provided in the bypass circuit (11c) of the second compressor (1b), and the second compression Solenoid valve for unloader that is "open" when the machine (1b) is stopped and unloading, and "closed" when it is fully loaded, (1g) is a capillary tube, (21) is a discharge line (11b) and suction line A solenoid valve for hot gas that is installed in a pressure equalizing hot gas bypass circuit (11d) that connects with (11a) and that opens when the indoor heat exchange (12) during cooling operation is in a low load state and during defrosting. is there.

さらに、(11g)は液管とガス管との間を接続し、冷暖
房運転時に吸入ガスの過熱度を調節するためのリキッド
インクジェクションバイパス回路であって、該リキッド
インジェクションバイパス回路(11g)には圧縮機
(1)のオン・オフと連動して開閉するインジェクショ
ン用電磁弁(29)と、感温筒(TP1)により検出される
吸入ガスの過熱度に応じて開度が調節される自動膨張弁
(30)とが介設されている。
Further, (11g) is a liquid injection bypass circuit for connecting the liquid pipe and the gas pipe, for adjusting the superheat degree of the intake gas during the heating and cooling operation, and the liquid injection bypass circuit (11g) is A solenoid valve for injection (29) that opens and closes in conjunction with on / off of the compressor (1) and automatic expansion whose opening is adjusted according to the degree of superheat of the intake gas detected by the temperature sensing tube (TP1). The valve (30) is interposed.

なお、(PS1)は圧縮機保護用の高圧圧力開閉器、(S
P)はサービスポートである。
In addition, (PS1) is a high-pressure pressure switch for compressor protection, (S1
P) is the service port.

そして、上記各電磁弁およびセンサ類は各主要機器と共
に空気調和装置の室外ユニット(A)の制御用室外制御
ユニット(15)に信号線で接続されている。
The respective solenoid valves and sensors are connected to the main control equipment together with the main equipment by a signal line to the outdoor control unit (15) for control of the outdoor unit (A) of the air conditioner.

第3図は上記室外ユニット(A)側に配置される室外制
御ユニット(15)の内部および接続される各機器の配線
関係を示す電気回路図である。図中、(MC1)はインバ
ータ(2a)の周波数変換回路(INV)に接続された第1
圧縮機(1a)のモータ、(MC2)は第2圧縮機(1b)の
モータ、(MF)は室外ファン(6a)のモータ、(52
F),(52C1)および(52C2)は各々ファンモータ(M
F)、周波数変換回路(INV)およびモータ(MC2)を作
動させる電磁接触器で、上記各機器はヒューズボックス
(FS)、漏電ブレーカ(BR1)を介して三相交流電源に
接続されるとともに、室外制御ユニット(15)とは単相
交流電源で接続されている。
FIG. 3 is an electric circuit diagram showing a wiring relationship between the inside of the outdoor control unit (15) arranged on the outdoor unit (A) side and each connected device. In the figure, (MC1) is the first connected to the frequency conversion circuit (INV) of the inverter (2a).
The compressor (1a) motor, (MC2) the second compressor (1b) motor, (MF) the outdoor fan (6a) motor, (52
F), (52C 1 ) and (52C 2 ) are fan motors (M
F), a magnetic contactor that operates a frequency conversion circuit (INV) and a motor (MC 2 ). The above devices are connected to a three-phase AC power source via a fuse box (FS) and an earth leakage breaker (BR1). , The outdoor control unit (15) is connected by a single-phase AC power supply.

次に、室外制御ユニット(15)の内部にあっては、電磁
リレーの常開接点(RY1)〜(RY7)が単相交流電流に対
して並列に接続され、これらは順に、四路切換弁(5)
の電磁リレー(20S)、周波数変換回路(INV)の電磁接
触器(52C1)、第2圧縮機(1b)の電磁接触器(52
C2)、室外ファン用電磁接触器(52F)、アンローダ用
電磁弁(1f)の電磁リレー(SV)、ホットガス用電磁
弁(21)の電磁リレー(SV)およびインジェクション
用電磁弁(29)の電磁リレー(SV)のコイルに直列に
接続されている。また、端子(CN)には、室外電動膨張
弁(8)の開度を調節するパルスモータ(EV)のコイル
が接続されている。
Next, inside the outdoor control unit (15), the normally open contacts (RY 1 ) to (RY 7 ) of the electromagnetic relay are connected in parallel to the single-phase alternating current, and these are connected in order to the four-way. Switching valve (5)
Electromagnetic relay (20S), an electromagnetic contactor of the frequency converting circuit (INV) (52C 1), an electromagnetic contactor of the second compressor (1b) (52
C 2), an electromagnetic contactor for outdoor fan (52F), an electromagnetic relay (SV L solenoid valve unloader (1f)), an electromagnetic relay (SV P) and the injection solenoid valve of the hot gas solenoid valve (21) ( It is connected in series with the coil of the electromagnetic relay (SV T) 29). A coil of a pulse motor (EV) that adjusts the opening of the outdoor electric expansion valve (8) is connected to the terminal (CN).

さらに、室外制御ユニット(15)には、入力される室温
サーモスタット(TH1および各温度センサ(TH2)〜(TH
6)が直接あるいは室内ユニット(B)〜(F)からの
連絡配線を介して接続され、これらのセンサ類の信号
は、室外御御ユニット(1)に内蔵された室外制御装置
(15a)に入力されている。該室外制御装置(15a)によ
り、上記各センサ類の信号に応じて各電磁リレー等の機
器のオン・オフ(開閉)が御されて、圧縮機(1)、室
外ファン(6a)、室外電動膨張弁(8)等の作動が御さ
れるようになされていて、室外制御装置(15a)は、圧
力センサ(吸入圧検出手段)(P1)で検出された吸入圧
力相当飽和温度Teに基づき圧縮機(1)の運転容量を制
御する容量制御手段としての機能を有するものである。
Further, the room temperature thermostat (TH1 and each temperature sensor (TH2) to (TH2) to (TH2) to be input to the outdoor control unit (15).
6) is connected directly or via communication wiring from the indoor units (B) to (F), and signals from these sensors are sent to the outdoor control device (15a) built in the outdoor control unit (1). It has been entered. The outdoor control device (15a) controls ON / OFF (open / close) of devices such as electromagnetic relays according to the signals of the above-mentioned sensors, and the compressor (1), outdoor fan (6a), outdoor electric The operation of the expansion valve (8) and the like is controlled, and the outdoor control device (15a) compresses on the basis of the suction pressure equivalent saturation temperature Te detected by the pressure sensor (suction pressure detection means) (P1). It has a function as a capacity control means for controlling the operating capacity of the machine (1).

なお、第3図右側の回路において、(CH1),(CH2)は
それぞれ第1圧縮機(1a)、第2圧縮機(1b)のオイル
フォーミング防止用ヒータで、それぞれ電磁接触器(52
C1),(52C2)と直列に接続され上記各圧縮機(1a),
(1b)が停止時に電流が流れるようになされている。さ
らに、(51C2)はモータ(MC2)の過電流リレー、(49C
1),(49C2)はそれぞれ第1圧縮機(1a)、第2圧縮
機(1b)の温度上昇保護用スイッチ、(63H1),(63
H2)はそれぞれ第1圧縮機(1a)、第2圧縮機(1b)の
圧力上昇保護用スイッチ、(51F)はファンモータ(M
F)の過電流リレーであって、これらは直列に接続され
て起動時には電磁リレー(30Fx)をオン状態にし、故障
にはオフ状態にさせる保護回路を構成している。
In the circuit on the right side of FIG. 3, (CH 1 ) and (CH 2 ) are heaters for preventing oil forming of the first compressor (1a) and the second compressor (1b), respectively, and the electromagnetic contactor (52).
C 1), (52C 2) and connected in series with each compressor (1a),
Current is made to flow when (1b) is stopped. In addition, (51C 2 ) is the overcurrent relay of the motor (MC 2 ) and (49C 2 )
1 ) and (49C 2 ) are switches for temperature rise protection of the first compressor (1a) and the second compressor (1b), (63H 1 ), (63H 1 )
H 2 ) is a switch for pressure rise protection of the first compressor (1a) and the second compressor (1b), and (51F) is a fan motor (M
F) is an overcurrent relay, which is connected in series and constitutes a protection circuit that turns on the electromagnetic relay (30Fx) at startup and turns it off in case of failure.

次に、第4図は上記室内ユニット(B)〜(F)側に配
置される室内制御ユニット(16)の内部およびそれに接
続される各機器の配線関係を示す電気回路図である。図
中、(MF)は室内ファン(12a)のモータで、単相交流
電源を受けて各リレー端子(RY1)〜(RY3)によって風
量を強風と弱風とに切換え、暖房運転時室温ササーモス
タット(TH1)の信号による停止時のみ微風にするよう
になされている。そして、室内制御ユニット(16)のプ
リント基板の端子(CN)には室内電動膨張弁(13)の開
度を調節するパルスモータ(EV)が接続されている一
方、室温サーモスタット(TH1)および温度センサ(TH
2),(TH3)の信号が入力されている。また、各室内制
御ユニット(16)には、室外制御ユニット(15)および
リモートコントロール装置(RCS)が信号線を介して信
号の授受可能に接続されているとともに、図中破線で示
す室内制御装置(16a)が内蔵されていて、該室内制御
装置(16a)により、各センサ類、室外制御ユニット(1
5)からの信号に応じて室内電動膨張弁(13)、室内フ
ァン(12a)等の各機器の動作を制御するようになされ
ている。
Next, FIG. 4 is an electric circuit diagram showing the wiring relationship between the inside of the indoor control unit (16) arranged on the indoor units (B) to (F) side and the devices connected thereto. In the figure, (MF) is a motor for an indoor fan (12a), which receives a single-phase AC power source and switches the air volume between strong wind and weak wind by each relay terminal (RY 1 ) to (RY 3 ). It is designed to make a breeze only when stopped by the signal of the thermostat (TH1). A pulse motor (EV) that adjusts the opening of the indoor electric expansion valve (13) is connected to the terminal (CN) of the printed circuit board of the indoor control unit (16), while the room temperature thermostat (TH1) and temperature are adjusted. Sensor (TH
2), (TH3) signal is input. Further, an outdoor control unit (15) and a remote control device (RCS) are connected to each indoor control unit (16) via a signal line so as to be able to send and receive signals, and the indoor control device shown by a broken line in the figure (16a) is built in, and the indoor control device (16a) controls the sensors and the outdoor control unit (1
The operation of each device such as the indoor electric expansion valve (13) and the indoor fan (12a) is controlled according to the signal from 5).

第2図において、空気調和装置の冷房運転時、冷媒はガ
ス状態で圧縮機(1)により圧縮され、四路切換弁
(5)を経て室外熱交換器(6)で凝縮され、レシーバ
(9)に貯溜された後、各室内ユニット(B)〜(F)
に分岐して送られる。各室内ユニット(B)〜(F)で
は、各室内熱交換器(12)…で熱交換を受けて蒸発され
た後合流して圧縮機(1)に戻る。
In FIG. 2, during the cooling operation of the air conditioner, the refrigerant is compressed in the gas state by the compressor (1), is condensed in the outdoor heat exchanger (6) via the four-way switching valve (5), and is received by the receiver (9). ), Each indoor unit (B)-(F)
Will be sent to the branch. In each of the indoor units (B) to (F), heat is exchanged in each of the indoor heat exchangers (12) ... After being evaporated, they merge and return to the compressor (1).

その場合、室内ユニット(B)〜(F)では、第5図に
示すように、上記室温サーモモスタット(TH1)で検出
される室温Taと室内の設定温度Tsとの差温(=Ta−Ts)
に対して、各室内電動膨脹弁(13)…の開度Evがリニア
に増大するように制御され、各室内ユニット(B)〜
(F)の空調負荷に応じて冷媒流量が分配される。そし
て、後述の開度制御により、さらに室内電動膨張弁(1
3)…の開度が微細に調節される。
In that case, in the indoor units (B) to (F), as shown in FIG. 5, the temperature difference between the room temperature Ta detected by the room temperature thermostat (TH1) and the indoor set temperature Ts (= Ta−Ts )
On the other hand, the opening degree Ev of each indoor electric expansion valve (13) is controlled so as to linearly increase, and each indoor unit (B)-
The refrigerant flow rate is distributed according to the air conditioning load of (F). Then, the indoor electric expansion valve (1
3) The opening degree of ... Is finely adjusted.

一方、室外ユニット(A)では、各室内熱交換器(12)
…における冷媒の蒸発温度の平均値Teを一定値Tesに保
持するために圧縮機(1)の容量制御が行われる。ここ
で、第2圧縮機(1b)の運転容量は、フルロード時で60
Hz、アンロード時で30Hzとなるので、第1圧縮機(1a)
のインバータ(2a)の10Hzきざみの容量変化と組み合わ
せることにより、合計0〜130Hzの範囲で10Hzきざみに
調節され得るものである。なお、圧縮機(1)の運転容
量が定められると、それに応じて室外電動膨張弁(8)
の開度が変更されるようになされている。
On the other hand, in the outdoor unit (A), each indoor heat exchanger (12)
The capacity of the compressor (1) is controlled in order to keep the average value Te of the evaporation temperature of the refrigerant in the constant value Tes. Here, the operating capacity of the second compressor (1b) is 60 at full load.
Hz, 30Hz at unloading, so the first compressor (1a)
In combination with the capacity change of the inverter (2a) in steps of 10 Hz, it can be adjusted in steps of 10 Hz in the total range of 0 to 130 Hz. When the operating capacity of the compressor (1) is determined, the outdoor electric expansion valve (8) is correspondingly determined.
The opening degree of is changed.

次に、上記室外制御装置(15a)および室内制御装置(1
6a)により行われる室内電動膨張弁(13)の開度制御に
ついて、第6図〜第8図に基づき説明する。
Next, the outdoor control device (15a) and the indoor control device (1
The opening control of the indoor electric expansion valve (13) performed by 6a) will be described with reference to FIGS. 6 to 8.

第6図は、室内電動膨張弁(13)の制御状態の遷移を示
し、図中の冷房運転中の通常運転時には、この運転中
の室内ユニット(B)〜(F)に属する室内電動膨張弁
(13)…の開度Evを室温Taに応じて所定開度変化幅内で
可変制御する。そして、この通常時に室温が室温目標値
以下になった過空調時のサーモフラグTOF=0の場合に
は、図中の停止時に移行して、開度Evを下限値(零
値)に制御する。また、この停止時に室温が上昇して上
記サーモフラグTOF=1になった場合には、図中の過
渡時に移行して開度Evを所定開度変化幅内の設定中間開
度値Asに制御した後、上記図中の通常時に移行する。
FIG. 6 shows the transition of the control state of the indoor electric expansion valve (13), and during the normal operation during the cooling operation in the figure, the indoor electric expansion valve belonging to the operating indoor units (B) to (F). (13) The opening Ev of ... Is variably controlled within a predetermined opening change range according to the room temperature Ta. Then, in the case of the thermo flag TOF = 0 at the time of over-air conditioning in which the room temperature becomes the room temperature target value or less at the normal time, the operation shifts to the stop in the figure and the opening Ev is controlled to the lower limit value (zero value) . In addition, when the room temperature rises and the above-mentioned thermo flag TOF = 1 at the time of this stop, the transition is made at the transition in the figure to control the opening Ev to the set intermediate opening value As within the predetermined opening change range. After that, the operation shifts to the normal time in the above figure.

また、上記図中の通常時において、圧縮機(1)への
潤滑油の回収を要求する油回収運転フラグDAF=1にな
った場合には、図中の運転中油回収時に移行して、開
度Evを油回効果を得るための開き気味の上値Evに制御
し、逆にこの運転中油回収時に油回収運転フラグDAF=
0になった場合には、図中の過渡時に移行して開度Ev
を所定開度変化幅内の設定中間開度値Asに制御した後、
図中の通常時に移行する。
Further, when the oil recovery operation flag DAF = 1 requesting recovery of the lubricating oil to the compressor (1) is set in the normal state in the above figure, the operation shifts to the oil recovery during operation in the figure to open. The degree Ev is controlled to the open upper value Ev M to obtain the oil recovery effect, and conversely, the oil recovery operation flag DAF = during this operation oil recovery.
When it becomes 0, the transition is made during the transition in the figure and the opening Ev
After controlling to the set intermediate opening value As within the predetermined opening change range,
It shifts to the normal time in the figure.

一方、上記図中の停止時において、他の室内ユニット
の作動に起因して圧縮機(1)の潤滑油不足が生じる油
回収運転フラグDAF=1になった場合には、図中の停
止中油回収時に移行して、開度Evを上値Evよりも一定
開度小さい値Evに制御し、その後、油回収が終了して
油回収運転フラグDAF=0になった場合には、ただちに
図中の停止時に移行する。また、上記図中の運転中
油回収時に運転フラグNDF=0になった停止時には、上
記図中の停止中油回収時に移行して、開度Evを上記一
定値Evに制御し、その後、運転フラグNDF=1になっ
た運転開始時には、再び図中の運転開始中油回収時に
移行して、開度Evを上値Evに制御する。
On the other hand, when the oil recovery operation flag DAF = 1, which causes a shortage of lubricating oil in the compressor (1) due to the operation of other indoor units at the time of the stop in the above figure, the stopped oil in the figure is stopped. When the operation shifts to the recovery, the opening Ev is controlled to a value Ev K which is smaller than the upper value Ev M by a constant opening, and then the oil recovery is completed and the oil recovery operation flag DAF = 0 is reached. Transition when stopped inside. Further, at the time of stop when the operation flag NDF = 0 during the oil recovery during operation in the above figure, the operation shifts to oil recovery during stop in the above figure to control the opening degree Ev to the above constant value Ev K , and then the operation flag At the start of operation when NDF = 1, the operation proceeds again to oil recovery during start of operation in the figure, and the opening Ev is controlled to the upper value Ev M.

次に、上記の通常時の開度制御を第7図および第8図
の制御フローに基づき説明する。
Next, the above-described normal opening control will be described with reference to the control flows of FIGS. 7 and 8.

第7図は、室外制御ユニット(15)に内蔵される室外制
御装置(15a)による制御のフローを示し、ステップR1
で、上記圧力センサ(P1)で検出された吸入圧力相当飽
和温度Teおよび吸入温センサ(TH6)で検出された吸入
ガス温度Tsucの値から、式Sho=Tsuc−Teにより、吸入
過熱度Shoを演算し、ステップR2で、吸入過熱度Shoが所
定の設定値Tsh(例えば5℃程度)よりも低いか否かを
判別し、判別がYESであれば、湿り運転状態にあると判
断して、ステップR3で湿り信号を送信する。
FIG. 7 shows a flow of control by the outdoor control device (15a) incorporated in the outdoor control unit (15), and step R 1
Then, from the values of the saturation pressure equivalent saturation temperature Te detected by the pressure sensor (P1) and the suction gas temperature Tsuc detected by the suction temperature sensor (TH6), the suction superheat degree Sho is calculated by the formula Sho = Tsuc-Te. In step R 2 , it is determined whether or not the intake superheat Sho is lower than a predetermined set value Tsh (for example, about 5 ° C.). If the determination is YES, it is determined that the vehicle is in a wet operation state. , Send a wetness signal in step R 3 .

一方、第8図は室内制御装置(16a)による制御フロー
を示し、ステップS1で室温サーモスタット(TH1)で検
出された室温Taに定数K1を乗算して、この室温Ta下で能
力が飽和する程度の室内電動膨張弁(13)の飽和開度値
Amaxを演算する。また、ステップS2でこの通常運転への
過渡時での膨張弁開度(初期値)を、上記飽和開度値Am
axに基づいて下記式 As=K2・Amax (ただし、K2は例えば0.7程度の定数)により中間設定
開度値Asを算出するとともに、通常運転時での最小開度
値Aminを下記式 Amin=K2・Amax (ただし、K3は例えば0.4程度の定数)により算出し、
室内電動膨張弁(13)の開度変化幅を飽和開度値Amaxと
最小開度値Aminの間の幅に設定する。
On the other hand, FIG. 8 shows a control flow by the indoor control device (16a). In step S 1 , the room temperature Ta detected by the room temperature thermostat (TH1) is multiplied by a constant K 1 , and the capacity is saturated under this room temperature Ta. Saturation opening value of the indoor electric expansion valve (13)
Calculate Amax. In step S 2 , the expansion valve opening (initial value) during the transition to normal operation is set to the saturation opening value Am
The intermediate set opening value As is calculated based on ax by the following formula As = K 2 · Amax (K 2 is a constant of about 0.7, for example), and the minimum opening value Amin during normal operation is calculated by the following formula Amin = K 2 · Amax (K 3 is a constant of about 0.4, for example)
The opening change width of the indoor electric expansion valve (13) is set to a width between the saturated opening value Amax and the minimum opening value Amin.

しかる後、ステップS3で除湿運転時か否かを判別し、除
湿運転時でないNOの場合には、ステップS4で室内電動膨
張弁(13)の目標開度値Aを、室温値Taと室温の設定
値Tsとの差温(Ta−Ts)および飽和開度値Amaxに基づ
き、差温(Ta−Ts)に応じた値になるよう下記式A
K4・(Ta−Ts)・Amax (ただし、K4は定数)で算出する一方、除湿運転時のYE
Sの場合には、ステップS5で目標開度値Aを飽和開度
値Amaxに固定設定する。
Thereafter, whether or not dehumidification operation determined in the step S 3, if the NO is not the time of dehumidifying operation, the indoor electric expansion valves in step S 4 a target opening value A R (13), room temperature value Ta Based on the temperature difference (Ta-Ts) between the temperature and the set value Ts at room temperature and the saturation opening value Amax, the following formula A R =
K 4 · (Ta-Ts) · Amax ( However, K 4 is a constant) while calculated, YE during dehumidifying operation
In the case of S, the target opening value A R fixed set the saturation opening value Amax in step S 5.

その後、ステップS6で室内電動膨張弁(13)の目標開度
値Aと現在開度Evとの開度偏差ΔA(ΔA−A−E
v)を算出した後、ステップS7で現在開度Evが全閉(Ev
=0)か否かを判別し、Ev=0のYESの場合には、運転
の停止時からの通常時(冷房運転時)への過渡時と判断
して、ステップS8で開度Evを中間設定開度値Asの初期値
に制御する。また、ステップS9で油回収運転フラグDAF
が「1」値から「0」値に変化した時、つまり油回収運
転から通常時への過渡時か否かを判別し、この過渡時の
YESの場合には、上記ステップS8に戻って開度Evを中間
設定開度値Asの初期値に制御する。
Then, the target opening value A R and opening deviation .DELTA.A between the current opening degree Ev (ΔA-A R -E of the indoor electric expansion valves in step S 6 (13)
v) After calculating, at step S 7 current opening Ev is fully closed (Ev
= 0) or whether to determine, in the case of YES in Ev = 0, it is determined that the transient to normal from the time of stop of the operation (cooling operation), the opening Ev at step S 8 Control to the initial value of the intermediate set opening value As. Further, the oil recovery operation flag DAF in step S 9
Is changed from a value of "1" to a value of "0", that is, it is determined whether or not there is a transition from the oil recovery operation to the normal time.
If YES, it controls the opening Ev to the initial value of the intermediate set opening value As returns to the step S 8.

一方、通常時(冷房運転中)の場合には、ステップS10
でさらに室外制御ユニット(15)からの湿り信号を受信
したか否かを判別し、受信していない場合には、開度Ev
を可変制御して該開度Evを目標開度値Aに収束させる
よう、ステップS11およびS12で上記目標開度Aとの開
度偏差ΔAを+側の微小値(例えば16パルス分に相当す
る開度値)と一側の微小値(例えば−16パルス分に相当
する開度値)と大小比較し、ΔA>16の開度小の状態で
は、開度Evを増大すべく、ステップS13で1回分の制御
幅ΔEvを+16に設定し、ΔA<−16の開度大の状態で
は、開度Evを減少すべく、ステップS14で1回分の制御
幅ΔEvを−16に設定し、−16<ΔA<16のほぼ目標開度
値Aに収束している場合には、ステップS15で1回分
の制御幅ΔEvを「0」値に設定する。
On the other hand, if the normal (cooling operation), the step S 10
It is further determined whether or not a wetness signal from the outdoor control unit (15) has been received. If not, the opening Ev
The so as to converge the variable control to the open degree Ev to the target opening value A R, steps S 11 and S 12 in the target opening A the opening deviation ΔA between R + side of the small value (e.g. 16 pulses Minutes) and a small value on one side (for example, an opening value corresponding to -16 pulses) are compared, and in the state where ΔA> 16 is small, the opening Ev should be increased. , a dose control width ΔEv at step S 13 is set to +16, the opening size of the state of .DELTA.A <-16, in order to reduce the opening Ev, -16 a dose control width ΔEv in step S 14 set, if converges to approximately the target opening value a R of -16 <ΔA <16 sets a dose control width ΔEv in step S 15 to "0" value.

また、上記ステップS10における判別が室外制御ユニッ
ト(15)からの湿り信号を受けているYESの場合には、
ステップS16で、各室内熱交換器(12)の出入口の2つ
の温度センサ(TH2)および(TH3)で検出された液側温
度T2とガス側温度T3との差温(T3−T2)から各室内熱交
換(12)の個別過熱度Shiを算出し、ステップS17で、該
個別過熱度Shiが所定値Tsh′よりも低いか否かを判別し
て、YESであれば、室内ユニットにおける湿り運転を防
止すべく、ステップS18で下記式 ΔEv=(Shi−Tsh′)・K5 (ただし、K5は定数)により1回分の制御幅ΔEvを設定
する。
In the case of YES where the determination in step S 10 is receiving a wetness signal from the outdoor control unit (15),
In step S 16 , the temperature difference between the liquid side temperature T 2 and the gas side temperature T 3 detected by the two temperature sensors (TH2) and (TH3) at the inlet and outlet of each indoor heat exchanger (12) (T 3 − From T 2 ), the individual superheat degree Shi of each indoor heat exchange (12) is calculated, and in step S 17 , it is determined whether or not the individual superheat degree Shi is lower than a predetermined value Tsh ′, and if YES, , In order to prevent the wet operation in the indoor unit, the control width ΔEv for one time is set by the following formula ΔEv = (Shi-Tsh ′) · K 5 (K 5 is a constant) in step S 18 .

なお、上記ステップS17における判別がNOの場合には、
当該室内ユニットにおいては湿り運転状態でないと判断
して、上記のステップS12に移行するようになされてい
る。
Note that when the determination in step S 17 is NO,
In the indoor unit is judged not to be wet operation state, is adapted to transition to the above step S 12.

以上により、1回分の制御幅ΔEvの設定を終了すると、
ステップS19で、制御後の仮定開度Evを式Ev=Ev+ΔEv
で算出する。
From the above, when the setting of the control width ΔEv for one time is completed,
In step S 19 , the post-control assumed opening Ev is calculated by the equation Ev = Ev + ΔEv
Calculate with.

次に、ステップS20〜S23で仮定開度Evの値を飽和開度値
Amaxおよび最小開度値Aminと大小比較し、仮定開度Evが
飽和開度値Amaxよりも大きければ飽和開度値Amaxに、最
小開度値Aminよりも小さければ最小開度値Aminにそれぞ
れ修正した後、ステップS24でタイマをカウントし、ス
テップS25でこのタイマ値TMSがサンプリング周期(例
えば20秒)を経過したYESの場合には上記ステップS1
戻る。また、TMS<20秒のNOの場合には、ステップS26
およびS27で各々油回収運転フラグDAFおよびサーモフ
ララグTOFの値が「1」か否かを判別し、DAF=1の場
合には、上記第6図のの運転中油回収時の開度制御を
行うべく、運転中油回収時フロー(図示せず)に進む。
また、TOF=0の場合には、第6図のの停止時での開
度制御を行うべく、停止時フロー(図示せず)に進む。
Next, the saturation degree value the value of the hypothetical opening Ev in step S 20 to S 23
Amax and minimum opening value Amin are compared, and if the assumed opening Ev is greater than the saturation opening value Amax, then it is corrected to the saturation opening value Amax, and if it is less than the minimum opening value Amin, it is corrected to the minimum opening value Amin. After that, the timer is counted in step S 24 , and if the timer value TMS is YES after the sampling period (for example, 20 seconds) has elapsed in step S 25 , the process returns to step S 1 . If TMS <20 seconds NO, step S 26
In S 27 and S 27 , it is determined whether or not the values of the oil recovery operation flag DAF and the thermo-flag lag TOF are “1”, and when DAF = 1, the opening degree control during oil recovery during operation in FIG. 6 is performed. Therefore, the flow proceeds to the oil recovery during operation (not shown).
When TOF = 0, the process proceeds to a stop flow (not shown) in order to control the opening degree at the time of stop shown in FIG.

上記制御フローにおいて、請求項(1)の発明では、ス
テップR1により、上記吸入温センサ(吸入温検出手段)
(TH6)および圧力センサ(吸入圧検出手段)(P1)の
出力を受け、吸入ガス温度Tsucと吸入圧力相当飽和温度
Teとの偏差から吸入過熱度Shoを演算する吸入過熱度演
算手段(52)が構成され、ステップR2により、該吸入過
熱度演算手段(52)で演算された吸入過熱度Shoが設定
値Tshよりも低いか否かに基づき湿り運転状態を判別す
る湿り状態判別手段(53)が構成されている。そして、
ステップS11〜S15により、室温サーモスタット(室温検
出手段)(TH1)の出力を受け、室温Taと設定温度Tsと
の偏差(Ta−Ts)に応じて室内電動膨張弁(13)の開度
を制御する開度制御手段(54)が構成され、ステップS
16〜S18により、上記湿り状態判別手段(53)の出力を
受け、湿り運転状態が判別された時に、吸入過熱度Sho
が設定値Tsh以上になるように室内電動膨張弁(13)の
開度を制限する開度制限手段(55)が構成されている。
In the above control flow, in the invention of claim (1), the suction temperature sensor (suction temperature detecting means) is executed in step R 1.
(TH6) and pressure sensor (suction pressure detection means) (P1) output, suction gas temperature Tsuc and suction pressure equivalent saturation temperature
Intake superheat calculation means (52) for calculating the intake superheat Sho from the deviation from Te is configured, and in step R 2 , the intake superheat Sho calculated by the intake superheat calculation means (52) is set to the set value Tsh. A wet state determination means (53) for determining the wet operating state based on whether or not it is lower than And
In step S 11 to S 15, the opening degree of the room thermostat (room temperature detecting means) receives the output (TH1), the indoor electric expansion valve in accordance with the deviation (Ta-Ts) between the set temperature Ts and ambient temperature Ta (13) The opening control means (54) for controlling the
16 to S 18 , the output of the wet state determination means (53) is received, and when the wet operating state is determined, the intake superheat degree Sho
An opening degree restricting means (55) for restricting the opening degree of the indoor electric expansion valve (13) is configured so that is greater than or equal to the set value Tsh.

また、上記制御のフローは請求項(2)の発明に対応し
ており、ステップS16〜S18により、個別過熱度検出手段
(51)で検出された個別過熱度Shiが設定値Tsh′以上に
なるように室内電動膨張弁(13)の開度を制御する開度
制限手段(55)が構成されている。
Also, the flow of the control corresponds to the invention of claim (2), in step S 16 to S 18, the detected individual superheat Shi set value Tsh 'or more separate superheating degree detecting means (51) The opening degree restricting means (55) for controlling the opening degree of the indoor electric expansion valve (13) is configured so that.

なお、請求項(2)の発明において、その他の各手段
(52)〜(54)は上記請求項(1)の発明と同様であ
る。
In the invention of claim (2), the other respective means (52) to (54) are the same as the invention of claim (1).

したがって、上記実施例における請求項(1)の発明で
は、装置の冷房運転時、各室内ユニット(B)では、開
度制御手段(54)より、室内電動膨張弁(13)の開度Ev
が室温Taと設定温度Tsとの差温(Ta−Ts)に基づいて、
室内の空調負荷に対応した値に制御される。一方、室外
ユニット(A)では、吸入過熱度演算手段(52)によ
り、吸入温センサ(吸入温検出手段)(TH6)で検出さ
れる吸入ガス温度Tsucと圧力センサ(P1)で検出される
吸入圧力相当飽和温度Teとの差温(Tsuc−Te)で表され
る吸入過熱度Shoが演算され、湿り状態判別手段(53)
によりこの吸入過熱度Shoが設定値Tshよりも小さいとき
が判別される。そして、湿り状態のときには、湿り信号
が室外制御ユニット(15)から室内制御ユニット(16)
に出力され、開度制限手段(55)により、吸入過熱度Sh
oが設定値Tsh以上になるるように室内電動膨張弁(13)
の開度が制限されるので、吸入過熱度Shoの値が設定値T
sh以上に維持され、圧縮機(1)への液バックが防止さ
れる。
Therefore, according to the invention of claim (1) in the above embodiment, during the cooling operation of the apparatus, the opening degree control means (54) of each indoor unit (B) causes the opening degree Ev of the indoor electric expansion valve (13).
Is based on the temperature difference (Ta-Ts) between the room temperature Ta and the set temperature Ts,
It is controlled to a value corresponding to the air conditioning load in the room. On the other hand, in the outdoor unit (A), the suction superheat calculation means (52) detects the suction gas temperature Tsuc detected by the suction temperature sensor (suction temperature detection means) (TH6) and the suction detected by the pressure sensor (P1). The suction superheat degree Sho represented by the temperature difference (Tsuc-Te) from the pressure equivalent saturation temperature Te is calculated, and the wet state determination means (53)
Thus, it is determined that the suction superheat degree Sho is smaller than the set value Tsh. In the wet state, the wetness signal is transmitted from the outdoor control unit (15) to the indoor control unit (16).
Is output to the intake superheat degree Sh by the opening degree limiting means (55).
Indoor electric expansion valve (13) so that o is greater than or equal to the set value Tsh
The intake superheat degree Sho is set to the set value T
It is maintained above sh, and liquid back to the compressor (1) is prevented.

ここで、吸入過熱度Shoは各室内熱交換器(12)におけ
る個別過熱度Shiの平均的な値となり、しかも室内ユニ
ット(B)〜(F)から室外ユニット(A)に至る配管
中の圧力損失を考慮すると、室内ユニット(B)〜
(F)における個別過熱度Shiが一部で低くなっても圧
縮機(1)には必ずしも液バックするわけではない。し
かるに、従来のものでは、各室内ユニット(B)〜
(F)で室内電動膨張弁(13))の開度が個別過熱度Sh
iに対応して制限される。その場合、過熱度検知誤差等
を考慮すると制限値が例えば5℃程度の大きな値となら
ざるを得ず、しかも室外ユニット(A)への配管中の圧
力損失があるので、結果的に渇き気味の運転に陥りやす
く、室内熱交換(12)の熱交換能力を十分発揮すること
ができない虞れがある。また、特定の室内ユニットで冷
房負荷が大きくなっても、常に一定の過熱度以下になる
ように室内電動膨張弁(13)の開度Evが制限される結
果、その室内では十分負荷要求に応えることができな
い。
Here, the intake superheat degree Sho is an average value of the individual superheat degree Shi in each indoor heat exchanger (12), and moreover, the pressure in the pipe from the indoor units (B) to (F) to the outdoor unit (A). Considering loss, indoor unit (B) ~
Even if the individual superheat degree Shi in (F) becomes low in part, it does not necessarily cause liquid back to the compressor (1). However, in the conventional type, each indoor unit (B)-
In (F), the opening degree of the indoor electric expansion valve (13) is set to the individual superheat degree Sh.
Limited according to i. In that case, considering the superheat detection error, etc., the limit value must be a large value, for example, about 5 ° C, and there is a pressure loss in the piping to the outdoor unit (A), resulting in a slight thirst. There is a fear that the heat exchange capacity of the indoor heat exchange (12) cannot be fully exerted due to the tendency to fall into the operation of. Further, even if the cooling load becomes large in a specific indoor unit, the opening Ev of the indoor electric expansion valve (13) is limited so that it is always below a certain degree of superheat, and as a result, the load request is sufficiently satisfied in that room. I can't.

それに対して、本発明では、各室内電動膨張弁(13)の
開度Evは、湿り信号が受信されないときには開き側の制
限を受けないので、各室内熱交換(12)において湿り気
味の開度制御が可能となり、熱交換能力が増大する方向
に能力制御範囲が拡大することになる。すなわち、室内
負荷が大きい室内ユニットでは、開度制御手段(54)に
より室内電動膨張弁(13)の開度Evが個別過熱度Shiに
起因する制限を受けることなく、大きく制御されるの
で、所要の冷房負荷に応えることができ、他の冷房負荷
の小さい室内ユニットで過熱度Shiが上昇した分と相殺
して、圧縮機(1)への液バックも防止することができ
るのである。
On the other hand, in the present invention, since the opening degree Ev of each indoor electric expansion valve (13) is not restricted on the opening side when the wetness signal is not received, the opening degree that is slightly wet in each indoor heat exchange (12). The control becomes possible, and the capacity control range is expanded in the direction of increasing the heat exchange capacity. That is, in an indoor unit with a large indoor load, the opening degree control means (54) controls the opening degree Ev of the indoor electric expansion valve (13) largely without being limited by the individual superheat degree Shi. It is possible to meet the cooling load of (1), and to offset the increase in the superheat degree Shi in the other indoor units having a small cooling load, and to prevent liquid back to the compressor (1).

さらに、そのように吸入過熱度Shoが従来よりも低く押
さえられる結果、低圧が低めに維持されるので、容量制
御手段(15a)により制御される圧縮機(1)の運転容
量が小さく制御されることとなって、運転効率が向上す
る効果も得る。
Further, as a result of the intake superheat degree Sho being kept lower than in the conventional case, the low pressure is maintained at a low level, so that the operating capacity of the compressor (1) controlled by the capacity control means (15a) is controlled small. As a result, there is an effect that the operation efficiency is improved.

また、請求項(2)の発明では、上記請求項(1)の発
明と同様の作用で、各室内ユニット(B)〜(F)の冷
房能力を冷房負荷に応じて発揮しながら、装置全体の運
転効率が向上することになる。そして、湿り状態判別手
段(53)から湿り信号が出力された場合、各室内ユニッ
ト(B)〜(F)において、個別過熱度Shiが設定値Tsh
以上になるように室内電動膨張弁(13)の開度Evが制限
されるので、全体としての過熱度つまり吸入過熱度Sho
が上昇し、圧縮機(1)への液バックを防止することが
できるのである。
Further, in the invention of claim (2), by the same operation as the invention of claim (1), while the cooling capacity of each indoor unit (B) to (F) is exerted in accordance with the cooling load, the entire apparatus The operating efficiency of will be improved. When the wetness signal is output from the wetness state determination means (53), the individual superheat degree Shi is set to the set value Tsh in each of the indoor units (B) to (F).
Since the opening degree Ev of the indoor electric expansion valve (13) is limited as described above, the overall superheat degree, that is, the intake superheat degree Sho.
Is increased, and liquid back to the compressor (1) can be prevented.

さらに、制御フローは省略するが、上記第8図のフロー
において、ステップS18における開度Evのフイードバッ
ク制御を、室内電動膨張弁(13)の開度Evを一定値だけ
減少させる制御に置換えることにより、ステップS16〜S
18で請求項(2)の発明の開度制限手段(55)が構成さ
れることになる。
Furthermore, the control flow is omitted in the flow of the FIG. 8, the feedback control of the opening degree Ev in step S 18, replacing the control to reduce the indoor electric expansion valves the opening Ev (13) by a predetermined value by, step S 16 to S
The opening degree limiting means (55) of the invention of claim (2) is constituted by 18 .

この場合、上記請求項(1)の発明に対して、開度Evの
フィードバック制御を行う必要がない点で、制御を簡素
化しうる利点がある。
In this case, there is an advantage over the invention of claim 1 in that the feedback control of the opening degree Ev is not required and the control can be simplified.

次に、請求項(3)の発明について、第9図のフローチ
ャートに基づき説明する。このフローにおいて、各ステ
ップの符号S′(N=1〜29)は上記第8図における
各ステップの符号Sとほぼ対応し、異なる部分のみ説
明する。
Next, the invention of claim (3) will be described based on the flowchart of FIG. In this flow, the reference symbols S N ′ (N = 1 to 29) of the respective steps substantially correspond to the reference symbols SN of the respective steps in FIG. 8, and only different portions will be described.

すなわち、ステップS10で湿り信号を受信した場合、ス
テップS16′で、全室内電動膨張弁(13)の開度Evを式E
v=K6・Ev(K6は例えば0.99程度の定数)に基づき一律
の一定割合K6だけ閉じるようにしている。
That is, when receiving the wet signal in step S 10, in step S 16 ', the opening Ev of all the indoor electric expansion valve (13) wherein E
Based on v = K 6 · Ev (K 6 is a constant of about 0.99, for example), a uniform fixed rate K 6 is set.

つまり、ステップS16′により、湿り運転時に室内電動
膨張弁(13)の開度を同じ割合で閉じる開度制限手段
(55)が構成されている。そして、この場合、他の手段
(52)〜(54)は上記請求項(2)の発明と同様である
が、個別過熱度検出手段(51)は必要でない。
That is, step S 16 ′ constitutes an opening degree restricting means (55) that closes the opening degree of the indoor electric expansion valve (13) at the same rate during the wet operation. In this case, the other means (52) to (54) are the same as those of the invention of claim (2), but the individual superheat degree detecting means (51) is not necessary.

よって、請求項(3)の発明では、個別過熱度Shoを検
知することなく、圧縮機(1)への液バックを有効に防
止しながら、運転効率の向上と所定の冷房能力の維持と
を実現することができる。
Therefore, according to the invention of claim (3), it is possible to improve the operation efficiency and maintain a predetermined cooling capacity while effectively preventing the liquid back to the compressor (1) without detecting the individual superheat degree Sho. Can be realized.

(発明の効果) 以上説明したように、請求項(1)の発明によれば、複
数の室内ユニットを一台の室外ユニットに接続したマル
チ形空気調和装置において、吸入過熱度を検知して吸入
過熱度が設定値よりも低くなった湿り運転状態の時にの
み、吸入過熱度が設定値以上に保持されるように室内電
動膨張弁の開度を制限したので、各室内ユニットにおい
て、渇き運転による冷房能力の減少を招くことなく所定
の冷房能力を維持しながら、能力制御範囲の拡大を図る
ことができる。
(Effect of the invention) As described above, according to the invention of claim (1), in the multi-type air conditioner in which a plurality of indoor units are connected to one outdoor unit, the intake superheat is detected and the intake air is sucked. Since the opening degree of the indoor electric expansion valve is limited so that the intake superheat is kept above the set value only in the wet operation state where the superheat becomes lower than the set value, each indoor unit is It is possible to expand the capacity control range while maintaining a predetermined cooling capacity without reducing the cooling capacity.

また、請求項(2)の発明によれば、吸入過熱度が設定
値よりも低くなった湿り運転状態のときには、個別過熱
度が設定値よりも低い室内ユニットに対応する室内電動
膨張弁のみの開度を一定値だけ小さくするようにしたの
で、吸入過熱度が所定値以上に維持され、所定の冷房能
力の維持と能力制御範囲の拡大化とを図ることができ
る。
Further, according to the invention of claim (2), when the intake superheat degree is lower than the set value in the wet operation state, only the indoor electric expansion valve corresponding to the indoor unit whose individual superheat degree is lower than the set value is provided. Since the opening degree is reduced by a constant value, the intake superheat is maintained at a predetermined value or higher, and it is possible to maintain a predetermined cooling capacity and expand the capacity control range.

さらに、請求項(3)の発明によれば、吸入過熱度が所
定値よりも低くなったときには、各室内電動膨張弁を同
じ割合で閉じるようにしたので、個別過熱度を検知する
手段を要することなく、所定の冷房能力の維持と、能力
制御範囲の拡大化とを図ることができる。
Further, according to the invention of claim (3), when the intake superheat degree becomes lower than the predetermined value, the indoor electric expansion valves are closed at the same rate, so that means for detecting the individual superheat degree is required. Without this, it is possible to maintain a predetermined cooling capacity and to expand the capacity control range.

【図面の簡単な説明】[Brief description of drawings]

第1図は請求項(1)〜(3)の発明の構成を示すブロ
ック図である。第2図〜第6図は請求項(1)〜(3)
の発明の実施例を示し、第2図はその全体構成を示す冷
媒系統図、第3図は室外制御ユニットの内部構成を示す
電気回路図、第4図は室内制御ユニットの内部構成を示
す電気回路図、第5図は室内の設定温度と室温との差温
に対する室内電動膨張弁開度の関係を示す特性図、第6
図は制御状態の遷移図、第7図は請求項(1)〜(3)
の発明の制御内容を示すフローチャート図、第8図は請
求項(1)および(2)の発明の制御内容を示すフロー
チャート図、第9図は請求項(3)の発明の制御内容を
示すフローチャート図である。 (1)……圧縮機、(6)……室外熱交換器、(11a)
……吸入ライン、(12)……室内熱交換器、(13)……
室内電動膨張弁、(15a)……室外制御装置(容量制御
手段)、(51)……個別過熱度検出手段、(52)……吸
入過熱度検出手段、(53)……湿り状態判別手段、(5
4)……開度制御手段、(55)……開度制限手段、
(A)……室外ユニット、(B)〜(F)……室内ユニ
ット、(P1)……圧力センサ(吸入圧検出手段)、(TH
1)……室温サーモスタット(室温検出手段)、(TH6)
……吸入温センサ(吸入温検出手段)。
FIG. 1 is a block diagram showing the configuration of the invention of claims (1) to (3). 2 to 6 are claims (1) to (3).
2 shows an embodiment of the invention of FIG. 2, FIG. 2 is a refrigerant system diagram showing the entire configuration thereof, FIG. 3 is an electric circuit diagram showing the internal configuration of the outdoor control unit, and FIG. 4 is an electrical diagram showing the internal configuration of the indoor control unit. Circuit diagram, FIG. 5 is a characteristic diagram showing the relationship between the indoor electric expansion valve opening and the temperature difference between the indoor set temperature and room temperature, FIG.
The figure is a transition diagram of the control state, and the figure 7 is claims (1) to (3).
FIG. 8 is a flowchart showing the control contents of the invention, FIG. 8 is a flowchart showing the control contents of the inventions of claims (1) and (2), and FIG. 9 is a flowchart showing the control contents of the invention of claim (3). It is a figure. (1) …… Compressor, (6) …… Outdoor heat exchanger, (11a)
…… Inhalation line, (12) …… Indoor heat exchanger, (13) ……
Indoor electric expansion valve, (15a) ... Outdoor control device (capacity control means), (51) ... Individual superheat detection means, (52) ... Intake superheat detection means, (53) ... Wet state determination means ,(Five
4) …… Opening control means, (55) …… Opening restriction means,
(A) ... Outdoor unit, (B) to (F) ... Indoor unit, (P1) ... Pressure sensor (suction pressure detection means), (TH
1) Room temperature thermostat (room temperature detection means), (TH6)
...... Inhalation temperature sensor (inhalation temperature detection means).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】容量可変形圧縮機(1)および室外熱交換
器(6)を有する一台の室外ユニット(A)に対して、
室内電動膨張弁(13)および室内熱交換器(12)を有す
る複数の室内ユニット(B)…を並列に接続してなる空
気調和装置において、 該空気調和装置の冷房運転時、各室内の空気温度を検出
する室温検出手段(TH1)…と、該各室温検出手段(TH
1)…の出力を受け、各室内空気温度と設定温度との差
温に応じて上記各室内電動膨張弁(13)…の開度を制御
する開度制御手段(54)…と、室外ユニット(A)にお
ける圧縮機(1)の吸入ライン(11a)に配置され、吸
入圧力相当飽和温度を検出する吸入圧検出手段(P1)
と、該吸入圧検出手段(P1)で検出された吸入圧力相当
飽和温度に基づき圧縮機(1)の運転容量を制御する容
量制御手段(15a)とを備えるとともに、 室外ユニット(A)における圧縮機(1)の吸入ライン
(11a)に配置され、吸入ガス温度を検出する吸入温検
出手段(TH6)と、 該吸入温検出手段(TH6)および上記吸入圧検出手段(P
1)の出力を受け、吸入ガス温度と吸入圧力相当飽和温
度との差温から吸入過熱度を演算する吸入過熱度演算手
段(52)と、 該吸入過熱度演算手段(52)で演算された吸入過熱度を
設定値と比較して吸入過熱度が設定値よりも低い湿り運
転状態を判別する湿り状態判別手段(53)と、 該湿り状態判別手段(53)の出力を受け、湿り運転状態
が判別されたとき、上記吸入過熱度が設定値以上に保持
されるよう上記各室内電動膨張弁(13)…のうち少なく
とも一つの開度を制限する開度制限手段(55)…と を備えたことを特徴とする空気調和装置の運転制御装
置。
1. An outdoor unit (A) having a variable capacity compressor (1) and an outdoor heat exchanger (6),
In an air conditioner in which a plurality of indoor units (B) having an indoor electric expansion valve (13) and an indoor heat exchanger (12) are connected in parallel, the air in each room during the cooling operation of the air conditioner Room temperature detecting means (TH1) for detecting temperature and each room temperature detecting means (TH
1), the opening control means (54) for controlling the opening of each indoor electric expansion valve (13) according to the temperature difference between each indoor air temperature and the set temperature, and the outdoor unit. Suction pressure detection means (P1) arranged in the suction line (11a) of the compressor (1) in (A) for detecting a saturation temperature equivalent to suction pressure
And a capacity control means (15a) for controlling the operating capacity of the compressor (1) based on the suction pressure equivalent saturation temperature detected by the suction pressure detection means (P1), and the compression in the outdoor unit (A) A suction temperature detecting means (TH6) arranged in the suction line (11a) of the machine (1) for detecting the suction gas temperature, the suction temperature detecting means (TH6) and the suction pressure detecting means (P).
The intake superheat degree calculating means (52) for receiving the output of 1) and calculating the intake superheat degree from the temperature difference between the intake gas temperature and the saturation pressure equivalent saturation temperature, and the intake superheat degree calculating means (52) Wet state determination means (53) for comparing the intake superheat degree with a set value to determine a wet operation state in which the intake superheat degree is lower than the set value, and a wet operation state received from the output of the wet state determination means (53) When it is determined that the intake superheat is maintained at a set value or higher, the opening degree limiting means (55) for limiting the opening degree of at least one of the indoor electric expansion valves (13). An operation control device for an air conditioner characterized by the above.
【請求項2】上記各室内ユニット(B)…には、ユニッ
ト個別の過熱度を検出する個別過熱度検出手段(51)…
が配置されているとともに、 上記開度制限手段(55)…は、上記各個別過熱度検出手
段(51)…で検出された個別過熱度が上記設定値よりも
低くなった室内ユニット(B)…に対応する室内電動膨
張弁(13)…のみの開度を一定開度だけ閉じるように構
成されている ことを特徴とする請求項(1)記載の空気調和装置の運
転制御装置。
2. Each of the indoor units (B) ... Individual superheat detection means (51) for detecting the superheat of each unit.
And the opening degree restricting means (55) ... are arranged in the indoor unit (B) in which the individual superheat degree detected by the individual superheat degree detecting means (51) is lower than the set value. The operation control device for an air conditioner according to claim 1, wherein the opening degree of only the indoor electric expansion valve (13) corresponding to ... is closed by a fixed opening degree.
【請求項3】上記開度制限手段(55)…は、吸入過熱度
が上記設定値以上に保持されるように各室内ユニット
(B)…の室内電動膨張弁(13)…の開度を同じ割合で
閉じるように構成されていることを特徴とする請求項
(1)記載の空気調和装置の運転制御装置。
3. The opening degree limiting means (55) ... Open the opening degree of the indoor electric expansion valves (13) of each indoor unit (B) so that the intake superheat is maintained at the set value or more. The operation control device for an air conditioner according to claim 1, wherein the operation control device is configured to be closed at the same rate.
JP63172064A 1988-07-11 1988-07-11 Operation control device for air conditioner Expired - Fee Related JPH0735932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63172064A JPH0735932B2 (en) 1988-07-11 1988-07-11 Operation control device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63172064A JPH0735932B2 (en) 1988-07-11 1988-07-11 Operation control device for air conditioner

Publications (2)

Publication Number Publication Date
JPH0221165A JPH0221165A (en) 1990-01-24
JPH0735932B2 true JPH0735932B2 (en) 1995-04-19

Family

ID=15934866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63172064A Expired - Fee Related JPH0735932B2 (en) 1988-07-11 1988-07-11 Operation control device for air conditioner

Country Status (1)

Country Link
JP (1) JPH0735932B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021149150A1 (en) * 2020-01-21 2021-07-29

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2156112B1 (en) 2007-06-12 2011-04-13 Danfoss A/S A method for controlling a refrigerant distribution
JP2013108685A (en) * 2011-11-22 2013-06-06 Fujitsu General Ltd Air conditioner
JP6400187B2 (en) * 2015-04-14 2018-10-03 三菱電機株式会社 Refrigeration cycle equipment
JP6719659B2 (en) * 2017-04-07 2020-07-08 三菱電機株式会社 Air conditioner
CN114688689B (en) * 2022-03-31 2023-08-11 安徽奥克斯智能电气有限公司 Opening degree adjusting method and device of electronic expansion valve and multi-connected air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182666U (en) * 1984-05-14 1985-12-04 ダイキン工業株式会社 air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021149150A1 (en) * 2020-01-21 2021-07-29

Also Published As

Publication number Publication date
JPH0221165A (en) 1990-01-24

Similar Documents

Publication Publication Date Title
JPH0769087B2 (en) Operation control device for air conditioner
JPH07117327B2 (en) Air conditioner
JPH0735932B2 (en) Operation control device for air conditioner
JPH0765792B2 (en) Air conditioner
JP2689599B2 (en) Operation control device for air conditioner
JPH02230056A (en) Operation control device for freezer
JPH0784956B2 (en) Operation control device for air conditioner
JPH0463303B2 (en)
JPH052902B2 (en)
JPH0772654B2 (en) Operation control device for air conditioner
JPH07101130B2 (en) Operation control device for air conditioner
JPH0816556B2 (en) Operation control device for air conditioner
JP2598513B2 (en) Operation control device for air conditioner
JPH0694954B2 (en) Refrigerator superheat control device
JPH0820140B2 (en) Oil recovery operation control device for air conditioner
JPH0772653B2 (en) Operation control device for air conditioner
JPH02272249A (en) Operation control device for air conditioner
JPH02230063A (en) Capacity control device for air conditioner
JPH0723816B2 (en) Air conditioner
JPH07117328B2 (en) Operation control device for air conditioner
JPH061133B2 (en) Electric expansion valve controller for air conditioner
JPH0381061B2 (en)
JPH07122522B2 (en) Refrigeration equipment
JPH07122518B2 (en) Heat shock prevention device for air conditioner
JPH02208452A (en) Pressure equalizing control device for refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees