JPH07316839A - Cubic boron nitride polycrystalline combined member suppressed in sticking of resin - Google Patents

Cubic boron nitride polycrystalline combined member suppressed in sticking of resin

Info

Publication number
JPH07316839A
JPH07316839A JP13816694A JP13816694A JPH07316839A JP H07316839 A JPH07316839 A JP H07316839A JP 13816694 A JP13816694 A JP 13816694A JP 13816694 A JP13816694 A JP 13816694A JP H07316839 A JPH07316839 A JP H07316839A
Authority
JP
Japan
Prior art keywords
cbn
resin
composite member
polycrystalline composite
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13816694A
Other languages
Japanese (ja)
Inventor
Yasuo Takemoto
泰夫 武本
Masayoshi Tsukamoto
雅淑 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP13816694A priority Critical patent/JPH07316839A/en
Publication of JPH07316839A publication Critical patent/JPH07316839A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5064Boron nitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To suppress the sticking of resin to a member brought into contact with the resin, to improve the reliability of the member and to prolong the useful life by forming the member such as a plunger or pot for a resin mold of a semiconductor device from a CBN polycrystalline combined member. CONSTITUTION:This CBN polycrystalline combined member consists of a surface layer part having a sufficiently large thickness made of a superhard CBN polycrystalline sintered compact contg. dispersed CBN as super-wear resistant particles and an inner part made of a sintered compact having lower hardness than CBN. The inner part is made preferably of WC-based cemented carbide, TiC- or TiCN-based cermet, alumina, zirconia or sialon ceramics whose hardness (HRA) is <=94. The surface layer part consists preferably of 100-50wt.% CBN and 0-30wt.% one or more kinds of components selected from among respective groups IIA and IV-VIA transition metals of the Periodic Table, Al, Si, Fe family metals and Cr as metallic elements and compds. of B, C, N and O as nonmetallic elements.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、樹脂の付着を低減して
信頼性及び使用寿命を改善した各種CBN多結晶複合部
材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various CBN polycrystalline composite members having reduced resin adhesion and improved reliability and service life.

【0002】[0002]

【従来の技術】リードフレームにICをマウントする工
程には従来より 各種の超硬製のパンチ、ダイが数多く
使用されている。特にICを環境から保護するための樹
脂モールドが一般的であるため、樹脂タブレット製造の
ための臼、杵 射出成形部のポット、プランジャー、樹
脂導入口のゲート、レジン樹脂を除去するレジンカット
パンチなどは直接または間接に樹脂と接触するものが数
多くある。ところが、最近樹脂の高性能化のためフィラ
ー剤であるシリカの含有量が高くかつ腐食性のガスを多
量に発生させるような種類の樹脂が使用されはじめた。
2. Description of the Related Art Various punches and dies made of various kinds of carbide have been used in the process of mounting an IC on a lead frame. In particular, resin molds are commonly used to protect ICs from the environment. Therefore, dies for manufacturing resin tablets, pots for punch injection molding parts, plungers, gates for resin introduction ports, resin cut punches for removing resin resin. There are many that directly or indirectly contact the resin. However, recently, in order to improve the performance of the resin, a kind of resin having a high content of silica as a filler and generating a large amount of corrosive gas has begun to be used.

【0003】そのため、このような樹脂と接触する超硬
部材は硬いシリカによって表面が摩耗して凹凸がはげし
くなる。凹凸が激しくなると樹脂が 部材の表面に付着
しやすくなり、次には付着した樹脂から発生する腐食性
のガスのために超硬部材の金属バインダー部分が侵食さ
れ表面のダメージが助長される。
Therefore, the surface of the cemented carbide member that comes into contact with such a resin is abraded by the hard silica, and the irregularities are easily peeled off. If the irregularities become severe, the resin easily adheres to the surface of the member, and then the corrosive gas generated from the adhered resin erodes the metal binder portion of the cemented carbide member, which promotes surface damage.

【0004】[0004]

【発明が解決しようとする課題】このように、従来の超
硬では最近の樹脂に含有されるシリカの硬さおよび腐食
性ガスに負けて表面の凹凸が激しくなりそれが樹脂の付
着を誘発し、信頼性および使用寿命を激減させる。
As described above, in the conventional cemented carbide, the hardness of the silica contained in the recent resin and the corrosive gas cause the surface to become rough and the resin surface becomes rough, which induces the adhesion of the resin. Drastically reduce reliability and service life.

【0005】[0005]

【課題を解決するための手段】シリカの硬さに勝つには
超硬合金よりもさらに硬い材料、例えばセラミックスや
CBN多結晶とすることが理想的である。
In order to overcome the hardness of silica, it is ideal to use a material that is harder than cemented carbide, such as ceramics or CBN polycrystal.

【0006】本発明者らは、当初超硬合金に替え各種の
セラミックスならびにサーメットを用いて本発明の目的
を達すべく種々検討を行なってきた。しかしながらセラ
ミックスやサーメットでは多少の効果はあるもののある
時間使用するとやはり超硬合金と同様に凹凸が激しくな
り樹脂の付着が生じてしまうことが問題であった。そこ
で、超耐摩耗物質であるCBNを含有したCBN多結晶
で部材全体を作製することを考えたが、狙いとする部材
あるいは部品は総じて複雑形状を呈しているため実際上
は不可能と思われる。そこで作業を担う部材の表面近傍
のみをCBN多結晶体とし、その他の部位は用途に応じ
て超硬やサーメットもしくはセラミックスとした複合の
材料とすることで目的を達成することが出来た。以下、
特許請求の範囲に従って詳細に説明する。
The present inventors initially conducted various studies in order to achieve the object of the present invention by using various ceramics and cermets instead of cemented carbide. However, ceramics and cermets have some effects, but when used for a certain period of time, as with cemented carbides, there is a problem in that unevenness becomes severe and resin adhesion occurs. Therefore, it was considered to manufacture the entire member with CBN polycrystal containing CBN which is a super wear resistant material, but it seems that it is practically impossible because the target member or component generally has a complicated shape. . Therefore, the object could be achieved by making the CBN polycrystal only in the vicinity of the surface of the member that is responsible for the work and making the other parts a composite material such as cemented carbide, cermet or ceramics depending on the application. Less than,
A detailed description is given according to the claims.

【0007】[0007]

【作用】まず、表層のA部の組成から説明する。主構成
要素である立方晶BN(CBN)の含有量は100−5
0W%に限定する。50W%未満では充分な耐摩耗性が
確保できず樹脂の耐付着効果が発揮できないCBNが1
00W%近くになると極めて難燒結性となるため場合に
よっては燒結助剤を用いる。燒結助剤は文字どおり燒結
を援助して100%緻密な燒結体を得るために用いるが
この場合耐摩耗性を極端に犠牲にしては本発明の主旨に
反する。このために耐火物と総称される一群の化合物あ
るいはそれらの固溶体を添加して燒結助剤の役目を担わ
せると良い効果が得られる。耐火物は一般に熱に強いこ
とに加えてCBN、ダイヤを除けば地球上で最も硬い物
質の一群であり、本発明の主旨に充分適うものである。
First, the composition of part A of the surface layer will be described. The content of cubic BN (CBN), which is the main component, is 100-5.
Limited to 0 W%. If it is less than 50 W%, sufficient abrasion resistance cannot be ensured and the resin adhesion resistance effect cannot be exhibited.
When it is close to 00 W%, it becomes extremely difficult to sinter, so a sinter aid is used depending on the case. The sintering aid is used literally to assist sintering and obtain a sintered body which is 100% dense, but in this case, the abrasion resistance is extremely sacrificed, which is contrary to the gist of the present invention. For this reason, a good effect can be obtained by adding a group of compounds collectively referred to as refractories or solid solutions thereof to serve as a sintering aid. Refractory is generally a group of the hardest substances on earth except CBN and diamond in addition to being resistant to heat, and is sufficiently suitable for the purpose of the present invention.

【0008】耐火物は、遷移金属と称される4A、5
A、6A族の元素と非金属元素のB、C、N、Oが化学
結合したものである。また遷移金属ではないがAl、S
iまたは2A族元素すなわちMg、Ca、Sr、Baや
該元素と非金属元素のB、C、N、Oの化合物を添加す
ると適性燒結温度を低下させたり、CBNとの濡れ性を
良くして密度比がほぼ100%の燒結体へと導く効果が
現われる。場合によってはCBN燒結体の靱性をいま一
歩上げたいという特性上の要求を満足させたいこともあ
る。この場合はFe、Co、Niを適宜添加してよい。
ただし30W%を越えて添加すると耐摩耗性が低下して
本発明の主旨に反する。Crは6A族でFe族ではない
がCBNとの濡れ性が良くほぼFe族と同様と考えて良
い。
Refractory materials are 4A and 5 called transition metals.
The elements of the A and 6A groups and the non-metal elements B, C, N and O are chemically bonded. Although not a transition metal, Al, S
Addition of an i or 2A group element, namely Mg, Ca, Sr, Ba or a compound of the element and a non-metallic element B, C, N or O lowers the appropriate sintering temperature and improves wettability with CBN. The effect of leading to a sintered body having a density ratio of almost 100% appears. In some cases, it may be necessary to satisfy the characteristic requirement that the toughness of the CBN sintered body be further improved. In this case, Fe, Co, Ni may be added as appropriate.
However, if it is added in an amount of more than 30 W%, the wear resistance is lowered, which is contrary to the gist of the present invention. Although Cr is a 6A group and not a Fe group, it has good wettability with CBN and can be considered to be almost the same as the Fe group.

【0009】CBN多結晶体もしくはCBN含有燒結体
の製造は一般にはCBNの変態を防止するためにCBN
の合成法と同様に温度1400C以上圧力4.5万気圧
以上の高温超高圧下で行なうが、CBNはダイヤに比べ
て安定度が高く、CBN体の組成を選べば一般のホット
プレス条件でもCBNの変態を生じさせることなく燒結
体を得ることが可能である。さらに驚くべきことに例え
ばCBN粒の表面に燒結の助剤となるべき、先ほど述べ
たような物質をメッキ法やプラズマフレーム法で被覆し
た”被覆CBN”粒を用いると所謂シンターヒップ法や
通常の常圧燒結法でも燒結体を得ることができる。これ
ら各種の燒結法を行なう際に基体としてB部の材料の燒
結体もしくはプレス体を用いると燒結と平行してA部と
B部の接合が可能となる。この場合例外なく両者の構成
元素のうちの1種または2種以上が他方へ移動する拡散
現象が生じるため特に強固な接合が可能となる。
The production of a CBN polycrystal or a sintered body containing CBN is generally carried out in order to prevent the transformation of CBN.
Similar to the synthesis method of 1), the temperature is higher than 1400C and the pressure is higher than 45,000 atm under high temperature and ultra-high pressure. It is possible to obtain a sintered body without causing the transformation. Even more surprisingly, for example, when the "coated CBN" particles coated with the above-mentioned substance by plating or plasma flame method, which should be a sintering aid on the surface of CBN particles, are used, the so-called sinter-hip method and ordinary A sintered body can also be obtained by the normal pressure sintering method. When a sintered body or a pressed body of the material of the B portion is used as the base body when performing these various sintering methods, the A portion and the B portion can be joined in parallel with the sintering. In this case, since a diffusion phenomenon occurs in which one or more of the constituent elements of both of them move to the other without exception, particularly strong bonding becomes possible.

【0010】なお、燒結後所謂HIP処理をして一層の
高密度化と高信頼性を図ることも場合によっては勿論可
能である。つぎに、表層A部の基体となるB部について
は超硬、サーメット、セラミックスいずれでもその用途
に応じて選択が可能である。ただし超硬、サーメットを
選択する場合は、選択理由としてその高い靱性によるこ
とが多い。そのため硬さがHRA94以下の材種を選択
することがまずは無難である。それを越えると靱性が低
下しそれらの材料を選択した意味が不明瞭となる。なお
サーメットに関しては一般に流布しているTiC系また
はTiCN系が靱性面から推奨される。セラミックスを
選定する場合は選定理由がその持つ高い剛性に因る場合
が多い。アルミナ系、アルミナ−TiC系、ジルコニア
系、Si3N4系、サイアロン系、SiC系セラミック
スはいずれもその用途に応じて使用が可能である。いま
一歩の靱性を望む場合は繊維強化あるいはウイスカ強化
された該セラミックスの使用が可能である。
In some cases, so-called HIP processing may be performed after sintering to achieve higher density and higher reliability. Next, with respect to the B part which is the base of the A part of the surface layer, any one of cemented carbide, cermet and ceramics can be selected according to its application. However, when selecting cemented carbide or cermet, the high toughness is often the reason for selection. Therefore, it is safe to select a material having a hardness of HRA94 or less. Beyond that, the toughness decreases and the meaning of selecting these materials becomes unclear. Regarding cermet, generally used TiC type or TiCN type is recommended from the viewpoint of toughness. When selecting ceramics, the reason for selection is often due to their high rigidity. Any of alumina-based, alumina-TiC-based, zirconia-based, Si3N4-based, sialon-based, and SiC-based ceramics can be used depending on the application. When one step toughness is desired, the fiber-reinforced or whisker-reinforced ceramics can be used.

【0011】A部とB部の接合に関しては、先ほど述べ
た燒結接合のほかろう付け、溶接、通電加熱接合など適
宜選択実行することができる。本発明は、樹脂付着の低
減と部材の使用寿命の延長が主目的である。このため本
発明のCBN複合材は樹脂モールド用のポット、プラン
ジャー、樹脂タブレット成形用の臼と杵、ICモールド
金型 のゲート、樹脂除去用のレジンカットやダイなど
の部材の全体あるいは1部に使用すると顕著な効果が期
待できる。なお、A部の厚みは用途によって規定される
ものであり、薄すぎると充分な耐摩耗性が確保できず凹
凸が生じ易くなり本発明の主旨に反する。また厚すぎる
と耐摩耗性は確保できるものの破壊靱性値の低下が生じ
折損しやすくなりやはり本発明の主旨に反する。
Regarding the joining of the A portion and the B portion, in addition to the above-mentioned sinter joining, brazing, welding, electric heating joining, etc. can be appropriately selected and executed. The main purpose of the present invention is to reduce resin adhesion and extend the service life of members. Therefore, the CBN composite material of the present invention is used as a whole or a part of a member such as a pot for resin molding, a plunger, a die and a punch for molding a resin tablet, a gate of an IC molding die, a resin cut for resin removal and a die. When used for, a remarkable effect can be expected. It should be noted that the thickness of the portion A is defined by the application, and if it is too thin, sufficient abrasion resistance cannot be ensured and unevenness is likely to occur, which is contrary to the gist of the invention. On the other hand, if it is too thick, the wear resistance can be secured, but the fracture toughness value is lowered, and it tends to be broken, which also goes against the gist of the present invention.

【0012】[0012]

【実施例】所定の組成に調合し成型し、または成型後焼
結したCBN多結晶体をA部用として用意した。さら
に、B部用としてWC、Co、Crなどの原料粉末を所
定の比に秤量後アルコールを分散剤として用いボールミ
ルで72時間湿式混合した。 次にスプレードライで混
合粉を乾燥、造粒後所定の形状にプレス成形した。この
ようにして得られた成形体をA部用と重ねて焼結(処理
1)する、または焼結後銀ろう付けする(処理2)また
は焼結後通電加熱(処理3)する、または金属薄を2種
の焼結体間に挿入し通電加熱(処理4)するなどの手段
を用いて接合した。
EXAMPLE A CBN polycrystal body prepared by mixing and molding into a predetermined composition or sintering after molding was prepared for part A. Further, raw material powders such as WC, Co, and Cr for the part B were weighed in a predetermined ratio and wet-mixed for 72 hours in a ball mill using alcohol as a dispersant. Next, the mixed powder was dried by spray drying, granulated, and then press-molded into a predetermined shape. The molded body thus obtained is overlaid on the part A and sintered (treatment 1), or silver brazed after sintering (treatment 2), or electrically heated after sintering (treatment 3), or metal. The thin body was inserted between two types of sintered bodies and joined by means of heating by heating (treatment 4) or the like.

【0013】こうして得られた接合部材をA部が樹脂と
の接触部であるようにして樹脂モールド用のポット、プ
ランジャー、樹脂タブレット成形用臼、杵、ICの樹脂
モールド金型のゲート、レジンカットパンチおよびダイ
を作製し従来品と比較し、樹脂の付着状況、折損頻度お
よび耐摩耗性を調査した。折損頻度は樹脂の付着により
パンチの軸がずれたり摩擦抵抗が増えたりするなどのた
めに増加するため、本発明の効果の目安とした。
The joining member thus obtained is made so that the portion A is the contact portion with the resin, a pot for resin molding, a plunger, a die for resin tablet molding, a punch, a gate of a resin mold for IC, a resin. Cut punches and dies were produced and compared with conventional products, and the resin adhesion state, breakage frequency and wear resistance were investigated. The breakage frequency is increased because the punch axis is displaced or the frictional resistance is increased due to the adhesion of the resin.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【発明の効果】このように、表面をCBN多結晶複合材
料とし、内部をCBN粒よりも硬さが低い材料とした2
重構造の複合部材を用いた各種部材は樹脂の付着が少な
く、折損頻度も僅少でかつ耐摩耗性に富む性質を得るこ
とが出来る。
INDUSTRIAL APPLICABILITY As described above, the surface is made of the CBN polycrystalline composite material and the inside is made of a material having a hardness lower than that of the CBN grains.
Various members using the composite member having a heavy structure have less resin adhesion, are less likely to be broken, and have excellent wear resistance.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 充分な厚みを持つ表層部(以下A部と略
称する)が超耐摩耗粒子であるCBNが分散した超硬質
CBN多結晶燒結体あり、内部(以下B部と略称する)
がCBNより硬さが低い燒結体であることを特徴とする
樹脂付着を低減したCBN多結晶複合部材。
1. A superhard CBN polycrystalline sintered body in which a surface layer portion having a sufficient thickness (hereinafter abbreviated as A portion) has CBN which is super wear-resistant particles dispersed therein, and inside (hereinafter abbreviated as B portion).
Is a sintered body having a hardness lower than that of CBN. A CBN polycrystalline composite member with reduced resin adhesion, characterized in that
【請求項2】 請求項1において、B部が硬さHRA9
4以下のWC基超硬合金またはTiCまたはTiCN基
サーメットであることを特徴とする樹脂付着を低減した
CBN多結晶複合部材。
2. The hardness according to claim 1, wherein the portion B has hardness HRA9.
A CBN polycrystalline composite member with reduced resin adhesion, which is a WC-based cemented carbide of 4 or less or TiC or TiCN-based cermet.
【請求項3】 請求項1において、B部がアルミナ系セ
ラミックスまたはアルミナ−TiC系セラミックスまた
はジルコニア系セラミックスまたはSi3N4系セラミ
ックスまたはサイアロン系セラミックスまたはSiC系
セラミックスであることを特徴とする樹脂付着を低減し
たCBN多結晶複合部材。
3. The resin adhesion according to claim 1, wherein the portion B is made of alumina ceramics, alumina-TiC ceramics, zirconia ceramics, Si3N4 ceramics, sialon ceramics or SiC ceramics. CBN polycrystalline composite member.
【請求項4】 請求項3において、セラミックスが繊維
強化またはウイスカ強化されたセラミックスであること
を特徴とする樹脂付着を低減したCBN多結晶複合部
材。
4. The CBN polycrystalline composite member with reduced resin adhesion according to claim 3, wherein the ceramic is fiber-reinforced or whisker-reinforced ceramics.
【請求項5】 請求項1〜4において、A部がCBNが
100−50重量%(以下W%と略称)と周期律表2
A、4A、5A、6A族遷移金属およびAl、Siから
なる群より選んだ1種以上の元素とB、C、N、Oから
なる群より選んだ1種以上の非金属元素の化合物の1種
以上もしくは2種以上からなる固溶体が0−50W%お
よびFe族金属およびCrからなる群より選んだ1種以
上の金属元素が0−30W%および不可避不純物で構成
されることを特徴とする樹脂付着を低減したCBN多結
晶複合部材。
5. The periodic table 2 according to any one of claims 1 to 4, wherein CBN is 100-50% by weight (hereinafter abbreviated as W%) in the A part.
A compound of one or more elements selected from the group consisting of A, 4A, 5A and 6A transition metals and Al and Si and one or more non-metallic elements selected from the group consisting of B, C, N and O A resin characterized in that a solid solution consisting of one or more or two or more kinds is composed of 0 to 50 W% and one or more kinds of metal elements selected from the group consisting of Fe group metal and Cr is composed of 0 to 30 W% and inevitable impurities. CBN polycrystalline composite member with reduced adhesion.
【請求項6】 半導体素子(以下ICと略称)の樹脂モ
ールド用のポットまたはプランジャーの全体または1部
が特許請求の範囲1〜5項で構成されることを特徴とす
る樹脂付着を低減したCBN多結晶複合部材。
6. A resin adhesion pot for a semiconductor element (hereinafter abbreviated as IC) or a part or part of a plunger for resin molding is constituted by any one of claims 1 to 5 to reduce resin adhesion. CBN polycrystalline composite member.
【請求項7】 ICの樹脂モールド用の樹脂タブレット
を成形するための臼または杵の全体または1部が特許請
求の範囲1〜5項で構成されることを特徴とする樹脂付
着を低減したCBN多結晶複合部材。
7. A CBN with reduced resin adhesion, characterized in that a die or a punch for molding a resin tablet for resin molding of an IC is wholly or partly constituted by the claims 1 to 5. Polycrystalline composite material.
【請求項8】 ICの樹脂モールド用金型の樹脂が注入
されるゲート部部品(以下ゲートと略称)の全体または
1部が請求項1〜5項で構成されることを特徴とする樹
脂付着を低減したCBN多結晶複合部材。
8. A resin attachment characterized in that all or a part of a gate part (hereinafter abbreviated as a gate) into which a resin of a resin mold for an IC is injected is constituted by any one of claims 1 to 5. CBN polycrystalline composite member with reduced
【請求項9】 リードフレーム上へのIC装着工程にお
いて付着した樹脂を除去するためのパンチまたはダイ
(以下レジンカットパンチまたはダイと略称)の全体ま
たは1部が請求項1〜5項で構成されることを特徴とす
る樹脂付着を低減したCBN多結晶複合部材。
9. The punch or die (hereinafter abbreviated as resin cut punch or die) for removing the resin attached in the step of mounting the IC on the lead frame is wholly or partly constituted by claims 1 to 5. A CBN polycrystalline composite member with reduced resin adhesion characterized by the following.
【請求項10】 請求項1〜9において、A部とB部の
境界部近傍においてA部またはB部の構成元素の1種ま
たは2種以上が濃度勾配を持つことを特徴とする樹脂付
着を低減したCBN多結晶複合部材。
10. The resin adhesion according to claim 1, wherein one or more constituent elements of the A or B portion has a concentration gradient in the vicinity of the boundary between the A and B portions. Reduced CBN polycrystalline composite member.
【請求項11】 請求項1〜9において、A部とB部を
金属ろうで接合したことを特徴とする樹脂付着を低減し
たCBN多結晶複合部材。
11. The CBN polycrystalline composite member according to claim 1, wherein the A portion and the B portion are joined with a metal brazing material to reduce resin adhesion.
【請求項12】 請求項1〜5において、請求項1に示
すA部とB部を通電加熱法で接合したことを特徴とする
樹脂付着を低減したCBN多結晶複合部材。
12. A CBN polycrystalline composite member with reduced resin adhesion, according to claim 1, wherein part A and part B of claim 1 are joined by an electric heating method.
【請求項13】 請求項1〜10において、A部とB部
の間に金属の箔片を挿入して溶接接合したことを特徴と
するCBN多結晶複合部材。
13. A CBN polycrystalline composite member according to claim 1, wherein a metal foil piece is inserted between the A portion and the B portion and welded.
【請求項14】 請求項1〜10において、A部とB部
を同時に燒結してかつ接合することを特徴とするCBN
多結晶部材。
14. The CBN according to claim 1, wherein the A portion and the B portion are simultaneously sintered and joined.
Polycrystalline material.
【請求項15】 請求項1〜13において、A部材を得
るのに高温超高圧下で燒結することを特徴とする樹脂付
着を低減したCBN多結晶複合部材。
15. The CBN polycrystalline composite member with reduced resin adhesion according to claim 1, which is sintered under high temperature and ultrahigh pressure to obtain A member.
【請求項16】 請求項1〜13において、A部材を得
るのにいわゆるホットプレス法によることを特徴とする
樹脂付着を低減したCBN多結晶複合部材。
16. A CBN polycrystalline composite member with reduced resin adhesion, characterized in that a so-called hot pressing method is used to obtain a member A.
【請求項17】 請求項1〜16において、A部材を得
るのにCBN粒の表面にA材を構成する他の化合物また
は金属の1種または2種以上を被覆した被覆CBN粒用
いることを特徴とする樹脂付着を低減したCBN多結晶
複合部材。
17. The coated CBN particles according to claim 1, wherein the CBN particles are coated with CBN particles having a surface coated with one or more of other compounds or metals constituting the A material. A CBN polycrystalline composite member with reduced resin adhesion.
JP13816694A 1994-05-27 1994-05-27 Cubic boron nitride polycrystalline combined member suppressed in sticking of resin Pending JPH07316839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13816694A JPH07316839A (en) 1994-05-27 1994-05-27 Cubic boron nitride polycrystalline combined member suppressed in sticking of resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13816694A JPH07316839A (en) 1994-05-27 1994-05-27 Cubic boron nitride polycrystalline combined member suppressed in sticking of resin

Publications (1)

Publication Number Publication Date
JPH07316839A true JPH07316839A (en) 1995-12-05

Family

ID=15215576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13816694A Pending JPH07316839A (en) 1994-05-27 1994-05-27 Cubic boron nitride polycrystalline combined member suppressed in sticking of resin

Country Status (1)

Country Link
JP (1) JPH07316839A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512300A (en) * 2006-12-11 2010-04-22 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Cubic boron nitride molded body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010512300A (en) * 2006-12-11 2010-04-22 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Cubic boron nitride molded body
JP2013032285A (en) * 2006-12-11 2013-02-14 Element Six (Production) (Pty) Ltd Cubic boron nitride compact
US9597774B2 (en) 2006-12-11 2017-03-21 Element Six Abrasives S.A. Cubic boron nitride compacts
US9636800B2 (en) 2006-12-11 2017-05-02 Element Six Abrasives S.A. Cubic boron nitride compacts

Similar Documents

Publication Publication Date Title
US6203897B1 (en) Sintered composites containing superabrasive particles
KR100227879B1 (en) Group ivb boride based cutting tools
EP2152921B1 (en) Cemented carbide with ultra-low thermal conductivity
US5952102A (en) Diamond coated WC and WC-based composites with high apparent toughness
US8414229B2 (en) cBN composite material and tool
JP2003205352A (en) Member for molten metal, composed of sintered alloy having excellent corrosion resistance and wear resistance to molten metal, its producing method and machine structural member using it
EP0731186B1 (en) Composite material and process for producing the same
JPH07316839A (en) Cubic boron nitride polycrystalline combined member suppressed in sticking of resin
US20130318883A1 (en) Cutting tools made from stress free cbn composite material and method of production
JPH05186844A (en) Sintered compact based on boron nitride having high density phase
JPH07316840A (en) Cubic boron nitride polycrystalline combined member having high wear resistance
JP4976626B2 (en) Sintered alloy material, method for producing the same, and mechanical structural member using the same
JP4428805B2 (en) Aluminum oxide-containing composite ceramic sintered body and coated composite ceramic sintered body
JP2604155B2 (en) Ceramic tool with coating layer
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP3560629B2 (en) Manufacturing method of high toughness hard sintered body for tools
JPH10310839A (en) Super hard composite member with high toughness, and its production
JP2735919B2 (en) Sintered body for tool and manufacturing method thereof
KR19990075035A (en) Titanium Carbonitride-based Composite Carbonitride Ceramic Sintered Body and Manufacturing Method Thereof
JPH09184030A (en) Production of high strength hard composite material excellent in thermal shock resistance
JPH07207398A (en) Material made of cemented carbide with reduced adhesion of resin
JPH04322903A (en) Cutting tool excellent in hard phase adhesion, made of ultra-high pressure sintered material
JPH04300105A (en) Ultra-high pressure-sintered-material cutting tool excellent in hard phase adhesion
JPH07172906A (en) Ceramic sintered compact
JPH0987035A (en) Hard composite material and its production