JPH07316840A - Cubic boron nitride polycrystalline combined member having high wear resistance - Google Patents

Cubic boron nitride polycrystalline combined member having high wear resistance

Info

Publication number
JPH07316840A
JPH07316840A JP13816794A JP13816794A JPH07316840A JP H07316840 A JPH07316840 A JP H07316840A JP 13816794 A JP13816794 A JP 13816794A JP 13816794 A JP13816794 A JP 13816794A JP H07316840 A JPH07316840 A JP H07316840A
Authority
JP
Japan
Prior art keywords
cbn
composite member
resistant
polycrystalline composite
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13816794A
Other languages
Japanese (ja)
Inventor
Masayoshi Tsukamoto
雅淑 塚本
Yasuo Takemoto
泰夫 武本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP13816794A priority Critical patent/JPH07316840A/en
Publication of JPH07316840A publication Critical patent/JPH07316840A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5064Boron nitride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To improve the reliability of a punch and die punching a lead frame for fitting IC and to prolong the useful life by forming each of the punch and die from a CBN polycrystalline combined member. CONSTITUTION:A part or the whole of each of a punch die is made of a CBN polycrystalline sintered combined member having ultrahigh wear resistance and consisting of a surface layer part having a sufficiently large thickness made of a superhard CBN polycrystalline sintered compact contg. dispersed CBN as super-wear resistant particles and an inner part made of a sintered compact having lower hardness than CBN. The inner part is made preferably of WC-based cemented carbide, TiC- or TiCN-based cermet, alumina, zirconia or sialon ceramics whose hardness (HRA) is <=94. The surface layer part consists preferably of 100-50wt.% CBN and 0-30wt.% one or more kinds of components selected from among groups IIA and IV-VIA transition metals of the Periodic Table, Al, Si, Fe family metals and Cr as metallic elements and compds. of B, C, N and O as nonmetallic elements.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、信頼性及び使用寿命を
改善したリードフレーム打ち抜き型関連の超耐摩耗性C
BN多結晶複合部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead frame punching die-related super wear resistant C having improved reliability and service life.
It relates to a BN polycrystalline composite member.

【0002】[0002]

【従来の技術】リードフレームにICをマウントする工
程には従来より各種の超硬製のパンチ、ダイが数多く使
用されている。特にリードフレームの打ち抜き加工用の
パンチ、ダイは超硬や場合によってはサーメットやセラ
ミックスを使用するのが一般的である。ところが最近I
Cチップの高性能化(多ピン化)のためリードフレーム
のパターンニングもファイン化するとともにリードフレ
ームの材料も薄くかつ硬いものへと変化してきている。
そのためリードフレームを打ち抜くパンチ、ダイ素材も
硬くて耐摩耗性に優れるものが要求されるようになって
きた。
2. Description of the Related Art In the process of mounting an IC on a lead frame, various kinds of carbide punches and dies have been conventionally used. In particular, punches and dies for punching lead frames are generally made of cemented carbide or cermet or ceramics in some cases. But recently I
In order to improve the performance of C-chips (increasing the number of pins), the patterning of lead frames is becoming finer and the material of lead frames is changing to thinner and harder.
For this reason, punches for punching lead frames and die materials that are hard and have excellent wear resistance have been required.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の型材料
では、硬さとそれに随伴する耐摩耗性および部品寿命を
飛躍的に向上させることは至難の技であり、薄肉でも折
損しないだけの靱性を材料に持たせると硬さは必然的に
低くなり充分な使用寿命が得られない。
However, with the conventional die material, it is extremely difficult to dramatically improve the hardness and the accompanying wear resistance and life of the parts. If the material is made to have hardness, the hardness is inevitably lowered, and a sufficient service life cannot be obtained.

【0004】[0004]

【課題を解決するための手段】最近のリードフレームの
硬さに勝つには部材の表面を超硬合金よりもさらに硬い
材料、すなわちCBN多結晶とすることが理想的であ
る。ところが最近の多ピン化傾向のためパンチを筆頭に
部材全般が薄肉化の傾向にある。このような薄肉部材に
CBN多結晶体を用いると抗折力と破壊靱性値が従来の
超硬よりも低いために折損を起こす頻度が高くなり実用
に供せられない。本発明者らはこの相反する性質を1つ
の部材に共存させる方法について鋭意検討を行った結
果、表面は極めて硬いCBN多結晶体、内部はCBN多
結晶体よりも靱性に富む超硬またはサーメットまたはセ
ラミックスの2重構造とすることで解決するに至った以
下に請求項に従って詳細に説明する。
In order to overcome the hardness of recent lead frames, it is ideal that the surface of the member is made of a material harder than that of cemented carbide, that is, CBN polycrystal. However, due to the recent tendency to increase the number of pins, there is a tendency for the overall thickness of the members to decrease, starting with the punch. When a CBN polycrystal is used for such a thin member, the fracture strength and the fracture toughness value are lower than those of conventional cemented carbides, and therefore the frequency of breakage is high and it cannot be put to practical use. As a result of intensive studies on a method of coexisting these contradictory properties in one member, the present inventors have found that the surface has an extremely hard CBN polycrystal, and the inside has a toughness that is higher than that of the CBN polycrystal. The present invention, which has been solved by adopting a double structure of ceramics, will be described in detail below according to the claims.

【0005】[0005]

【作用】まず表層のA部の組成から説明する。主構成要
素である立方晶BNの含有量は100−50W%に限定
する。50%未満では充分な耐摩耗性が確保できず樹脂
の耐付着効果が発揮できないCBNが100%近くにな
ると極めて難燒結性となるため場合によっては燒結助剤
を用いる。燒結助剤は文字どおり燒結を援助して100
%緻密な燒結体を得るために用いるがこの場合耐摩耗性
を極端に犠牲にしては本発明の主旨に反する。このため
に耐火物と総称される一群の化合物あるいはそれらの固
溶体を添加して燒結助剤の役目を担わせると良い効果が
得られる。耐火物は一般に熱に強いことに加えてCB
N、ダイヤを除けば地球上で最も硬い物質の一群であ
り、本発明の主旨に充分適うものである。耐火物は遷移
金属と称される4A、5A、6A族の元素と非金属元素
のB、C、N、Oが化学結合したものである。
First, the composition of part A of the surface layer will be described. The content of cubic BN, which is the main constituent, is limited to 100-50 W%. If it is less than 50%, sufficient abrasion resistance cannot be ensured, and if the CBN, which cannot exhibit the anti-adhesion effect of the resin, approaches 100%, it becomes extremely difficult to sinter, so a sintering aid is used depending on the case. The sintering aid literally aids in sintering 100
% It is used to obtain a dense sintered body, but in this case, it is contrary to the gist of the present invention if the wear resistance is extremely sacrificed. For this reason, a good effect can be obtained by adding a group of compounds collectively referred to as refractories or solid solutions thereof to serve as a sintering aid. Refractory is generally resistant to heat and CB
Except for N and diamond, it is a group of the hardest substances on earth and is sufficiently suitable for the purpose of the present invention. The refractory is a chemical bond of elements of groups 4A, 5A, and 6A called transition metals and non-metal elements B, C, N, and O.

【0006】また、遷移金属ではないがAl、Siまた
は2A族元素すなわちMg、Ca、Sr、Baや該元素
と非金属元素のB、C、N、Oの化合物を添加すると適
性燒結温度を低下させたり、CBNとの濡れ性を良くし
て密度比がほぼ100%の燒結体へと導く効果が現われ
る。場合によってはCBN燒結体の靱性をいま一歩上げ
たいという特性上の要求を満足させたいこともある。こ
の場合はFe、Co、Niを適宜添加してよい。ただし
30W%を越えて添加すると耐摩耗性が低下して本発明
の主旨に反する。Crは6A族でFe族ではないがCB
Nとの濡れ性が良くほぼFe族と同様と考えて良い。C
BN多結晶体もしくはCBN含有燒結体の製造は一般に
はCBNの変態を防止するためにCBNの合成法と同様
に温度1400C以上圧力4.5万気圧以上の高温超高
圧下で行なうが、CBNはダイヤに比べて安定度が高
く、CBN体の組成を選べば一般のホットプレス条件で
もCBNの変態を生じさせることなく燒結体を得ること
が可能である。
Although not a transition metal, Al, Si or a Group 2A element, namely Mg, Ca, Sr, Ba or a compound of the element and a non-metal element B, C, N or O, lowers the suitable sintering temperature. It has the effect of improving the wettability with CBN and leading to a sintered body having a density ratio of almost 100%. In some cases, it may be necessary to satisfy the characteristic requirement that the toughness of the CBN sintered body be further improved. In this case, Fe, Co, Ni may be added as appropriate. However, if it is added in an amount of more than 30 W%, the wear resistance is lowered, which is contrary to the gist of the present invention. Cr is 6A group but not Fe group but CB
It has good wettability with N and may be considered to be almost similar to the Fe group. C
The production of a BN polycrystal or a CBN-containing sintered body is generally carried out at a temperature of 1400 C or higher and a pressure of 45,000 atm or higher under ultrahigh pressure, in order to prevent CBN transformation. The stability is higher than that of diamond, and if the composition of the CBN body is selected, it is possible to obtain a sintered body without causing CBN transformation even under general hot press conditions.

【0007】さらに、驚くべきことに例えばCBN粒の
表面に燒結の助剤となるべき、先ほど述べたような物質
をメッキ法やプラズマフレーム法で被覆した”被覆CB
N”粒を用いると所謂シンターヒップ法や通常の常圧燒
結法でも燒結体を得ることができる。これら各種の燒結
法を行なう際に基体としてB部の材料の燒結体もしくは
プレス体を用いると燒結と平行してA部とB部の接合が
可能となる。この場合例外なく両者の構成元素のうちの
1種または2種以上が他方へ移動する拡散現象が生じる
ため特に強固な接合が可能となる。なお燒結後所謂HI
P処理をして一層の高密度化と高信頼性を図ることも場
合によっては勿論可能である。
Further, surprisingly, for example, the "coated CB" obtained by coating the surface of CBN grains with the above-mentioned substance, which should be a sintering aid, by a plating method or a plasma flame method.
When N "grains are used, it is possible to obtain a sintered body by a so-called sintering hip method or an ordinary pressureless sintering method. When performing the various sintering methods, a sintered body or a pressed body of the material of part B is used as a base. It is possible to join the parts A and B in parallel with the sintering, in which case one or more of the constituent elements of both parts without exception cause a diffusion phenomenon in which one or more of the constituent elements move to the other, so that particularly strong bonding is possible. After firing, the so-called HI
In some cases, it is of course possible to perform the P treatment to achieve higher density and higher reliability.

【0008】つぎに、表層A部の基体となるB部につい
ては超硬、サーメット、セラミックスいずれでもその用
途に応じて選択が可能である。ただし超硬、サーメット
を選択する場合は、選択理由としてその高い靱性による
ことが多い。そのため硬さがHRA94以下の材種を選
択することがまずは無難である。それを越えると靱性が
低下しそれらの材料を選択した意味が不明瞭となる。な
おサーメットに関しては一般に流布しているTiC系ま
たはTiCN系が靱性面から推奨される。セラミックス
を選定する場合は選定理由がその持つ高い剛性に因る場
合が多い。アルミナ系、アルミナ−TiC系、ジルコニ
ア系、Si3N4系、サイアロン系、SiC系セラミッ
クスはいずれもその用途に応じて使用が可能である。い
ま一歩の靱性を望む場合は繊維強化あるいはウイスカ強
化された該セラミックスの使用が可能である。
Next, for the B part which is the base of the A part of the surface layer, any one of cemented carbide, cermet and ceramics can be selected according to its application. However, when selecting cemented carbide or cermet, the high toughness is often the reason for selection. Therefore, it is safe to select a material having a hardness of HRA94 or less. Beyond that, the toughness decreases and the meaning of selecting these materials becomes unclear. Regarding cermet, generally used TiC type or TiCN type is recommended from the viewpoint of toughness. When selecting ceramics, the reason for selection is often due to their high rigidity. Any of alumina-based, alumina-TiC-based, zirconia-based, Si3N4-based, sialon-based, and SiC-based ceramics can be used depending on the application. When one step toughness is desired, the fiber-reinforced or whisker-reinforced ceramics can be used.

【0009】A部とB部の接合に関しては先ほど述べた
燒結接合のほかろう付け、溶接、通電加熱接合など適宜
選択実行することができる。本発明により摩耗量の低減
と部材の使用寿命の延長および部材としての信頼性の向
上が期待できる。このため本発明のCBN複合材はIC
装着用リードフレームの打ち抜きパンチとダイ、同じく
タイバーカットパンチとダイなどの型関連部材の全体あ
るいは1部に使用すると顕著な効果が期待できる。な
お、A部の厚みは用途によって規定されるものであり、
薄すぎると充分な耐摩耗性が確保できず凹凸が生じ易く
なり本発明の主旨に反する。また厚すぎると耐摩耗性は
確保できるものの破壊靱性値の低下が生じ折損しやすく
なりやはり本発明の主旨に反する。
As for the joining of the A portion and the B portion, brazing, welding, electric heating joining, and the like can be appropriately selected and performed in addition to the above-described sintered joining. The present invention can be expected to reduce the amount of wear, extend the service life of the member, and improve the reliability of the member. Therefore, the CBN composite material of the present invention is an IC
A remarkable effect can be expected when it is used for all or a part of die-related members such as a punching punch and a die of a mounting lead frame and a tie bar cut punch and a die. In addition, the thickness of the A portion is defined by the application,
If it is too thin, sufficient abrasion resistance cannot be ensured and unevenness is likely to occur, which is contrary to the gist of the present invention. On the other hand, if it is too thick, the wear resistance can be secured, but the fracture toughness value is lowered, and it tends to be broken, which also goes against the gist of the present invention.

【0010】[0010]

【実施例】所定の組成に調合し成型し、または成型後焼
結したCBN多結晶体をA部用として用意した。さらに
B部用としてWC、Co、Crなどの原料粉末を所定の
比に秤量後アルコールを分散剤として用いボールミルで
72時間湿式混合した。次に、スプレードライで混合粉
を乾燥、造粒後所定の形状にプレス成形した。このよう
にして得られた成形体をA部用と重ねて焼結(処理1)
する、または焼結後銀ろう付けする(処理2)または焼
結後通電加熱(処理3)する、または金属薄を2種の焼
結体間に挿入し通電加熱(処理4)するなどの手段を用
いて接合した。
EXAMPLE A CBN polycrystal body prepared by mixing and molding into a predetermined composition or sintering after molding was prepared for part A. Further, raw material powders such as WC, Co, and Cr for part B were weighed to a predetermined ratio and wet-mixed for 72 hours in a ball mill using alcohol as a dispersant. Next, the mixed powder was dried by spray drying, granulated, and then press-molded into a predetermined shape. The molded body thus obtained is overlaid with that for the part A and sintered (treatment 1)
Means, or silver brazing after sintering (treatment 2) or electric heating after sintering (treatment 3), or inserting a thin metal film between two kinds of sintered bodies and conducting electric heating (treatment 4) Was joined using.

【0011】[0011]

【表1】 [Table 1]

【0012】こうして得られた接合部材をA部が作業部
位となるようにして打ち抜き用のパンチとダイ、タイバ
ーカットパンチとダイを試作した。超硬合金を素材とし
た従来品と比較し、折損頻度および耐摩耗性を調査し
た。耐摩耗性は折損しない場合の打ち抜きショット回数
の多少、折損頻度は剛性の低下や作業部位の摩滅のため
パンチの軸がずれたり摩擦抵抗が増えたりするなどのた
めに増加するため、本発明の信頼性評価の目安とした。
なお表2における適用欄はリードフレーム打ち抜きパン
チ、ダイ、タイバーカットパンチ、タイバーカットダイ
を順次K1、K2、K3およびK4で表記した。
A punch and a die for punching, and a tie bar cut punch and a die were made on a trial basis with the joining member thus obtained as the working portion at the portion A. The breakage frequency and wear resistance were investigated in comparison with conventional products made of cemented carbide. The wear resistance increases slightly due to the number of punch shots in the case of no breakage, and the breakage frequency increases because the punch axis is displaced or the frictional resistance increases due to a decrease in rigidity or abrasion of the work site. It was used as a standard for reliability evaluation.
In the applicable column in Table 2, the lead frame punching punch, die, tie bar cutting punch, and tie bar cutting die are sequentially denoted by K1, K2, K3 and K4.

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【発明の効果】このように、表面をCBN多結晶体と
し、内部をCBN粒よりも硬さの低い燒結体すなわち超
硬合金またはサーメットまたはセラミックスあるいは繊
維もしくはウイスカ強化セラミックスとした2重構造の
複合部材を用いたリードフレーム打ち抜き関連用の各種
型部材は耐摩耗性に優れかつ折損頻度も僅少で信頼性に
富むものとなり実用上有益である。
Industrial Applicability As described above, a composite having a double structure in which the surface is a CBN polycrystal and the inside is a sintered body having a hardness lower than that of CBN grains, that is, a cemented carbide or cermet or ceramics or fiber or whisker reinforced ceramics. Various die members related to lead frame punching using members are practically useful because they have excellent wear resistance, a small breakage frequency, and high reliability.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 充分な厚みを持つ表層部(以下A部と略
称する)が超耐摩耗粒子であるCBNが分散した超硬質
CBN多結晶燒結体あり、内部(以下B部と略称する)
がCBNより硬さが低い燒結体である超高耐摩耗性CB
N多結晶複合部材で部分または全体が構成さ構成される
ことを特徴とするIC装着用リードフレーム打ち抜きパ
ンチまたはダイ用の高耐摩耗性CBN多結晶複合部材。
1. A superhard CBN polycrystalline sintered body in which a surface layer portion having a sufficient thickness (hereinafter abbreviated as A portion) has CBN which is super wear-resistant particles dispersed therein, and inside (hereinafter abbreviated as B portion).
CB is a sintered body with hardness lower than CBN.
A high wear-resistant CBN polycrystalline composite member for a lead frame punching punch or die for IC mounting, characterized in that the N polycrystalline composite member is partially or entirely configured.
【請求項2】 請求項1において、打ち抜きがタイバー
部(以下タイバーカットパンチおよびダイと略称)であ
ることを特徴とする高耐摩耗性CBN多結晶複合部材。
2. The high wear-resistant CBN polycrystalline composite member according to claim 1, wherein the punching is a tie bar portion (hereinafter abbreviated as tie bar cut punch and die).
【請求項3】 請求項1および2において、B部が硬さ
HRA94以下のWC基超硬合金またはTiCまたはT
iCN基サーメットであることを特徴とする高耐摩耗性
複合部材。
3. The WC-based cemented carbide having a hardness of HRA94 or less at the B portion, TiC or T according to claim 1 or 2.
A highly wear-resistant composite member, which is an iCN-based cermet.
【請求項4】 請求項1および2において、B部がアル
ミナ系セラミックスまたはアルミナ−TiC系セラミッ
クスまたはジルコニア系セラミックスまたはSi3N4
系セラミックスまたはサイアロン系セラミックスまたは
SiC系セラミックスであることを特徴とする高耐摩耗
性CBN多結晶複合部材。
4. The method according to claim 1 or 2, wherein the portion B is alumina ceramics, alumina-TiC ceramics, zirconia ceramics or Si3N4.
A wear-resistant CBN polycrystalline composite member, which is a ceramics-based ceramic, a sialon-based ceramics, or a SiC-based ceramics.
【請求項5】 請求項4において、セラミックスが繊維
強化またはウイスカ強化されたセラミックスであること
を特徴とする高耐摩耗性CBN多結晶複合部材。
5. The high wear-resistant CBN polycrystalline composite member according to claim 4, wherein the ceramic is fiber-reinforced or whisker-reinforced ceramics.
【請求項6】 請求項1〜4において、A部がCBNが
100−50重量%(以下W%と略称)と周期律表2
A、4A、5A、6A族遷移金属およびAl、Siから
なる群より選んだ1種以上の元素とB、C、N、Oから
なる群より選んだ1種以上の非金属元素の化合物の1種
以上もしくは2種以上からなる固溶体が0−50W%お
よびFe族金属およびCrからなる群より選んだ1種以
上の金属元素が0−30W%および不可避不純物で構成
されることを特徴とする高耐摩耗性CBN多結晶複合部
材。
6. The periodic table 2 according to any one of claims 1 to 4, wherein CBN is 100-50% by weight (hereinafter abbreviated as W%) in the A part.
A compound of one or more elements selected from the group consisting of A, 4A, 5A and 6A transition metals and Al and Si and one or more non-metallic elements selected from the group consisting of B, C, N and O One or more metal elements selected from the group consisting of Fe group metals and Cr, 0 to 50 W%, and 0 to 30 W% and inevitable impurities. Abrasion resistant CBN polycrystalline composite member.
【請求項7】 請求項1〜6において、A部とB部の境
界部近傍においてA部またはB部の構成元素の1種また
は2種以上が濃度勾配を持つことを特徴とする高耐摩耗
性CBN多結晶複合部材る
7. The high wear resistance according to claim 1, wherein one or more constituent elements of the A or B portion have a concentration gradient in the vicinity of the boundary between the A and B portions. CBN polycrystalline composite material
【請求項8】 請求項1〜6において、A部とB部を金
属ろうで接合したことを特徴とする高耐摩耗性CBN多
結晶複合部材。
8. A high wear-resistant CBN polycrystalline composite member according to any one of claims 1 to 6, wherein part A and part B are joined with a metal braze.
【請求項9】 請求項1〜6において、A部とB部を通
電加熱法で接合したことを特徴とする高耐摩耗性CBN
多結晶複合部材。
9. The high wear resistance CBN according to claim 1, wherein the A part and the B part are joined by an electric heating method.
Polycrystalline composite material.
【請求項10】 請求項1〜6において、A部とB部の
間に金属の箔片を挿入して溶接接合したことを特徴とす
る高耐摩耗性CBN多結晶複合部材。
10. The high wear-resistant CBN polycrystalline composite member according to claim 1, wherein a metal foil piece is inserted between the A portion and the B portion and welded.
【請求項11】 請求項1〜6において、A部とB部を
同時に燒結してかつ接合することを特徴とする高耐摩耗
性CBN多結晶複合部材。
11. A highly wear-resistant CBN polycrystalline composite member according to any one of claims 1 to 6, wherein part A and part B are simultaneously sintered and joined.
【請求項12】 請求項1〜6において、A部材を得る
のに高温超高圧下で燒結することを特徴とする高耐摩耗
性CBN多結晶複合部材。
12. A highly wear-resistant CBN polycrystalline composite member according to claim 1, which is sintered under high temperature and ultra high pressure to obtain A member.
【請求項13】 請求項1〜6において、A部材を得る
のにいわゆるホットプレス法によることを特徴とする高
耐摩耗性CBN多結晶複合部材。
13. A highly wear-resistant CBN polycrystalline composite member according to any one of claims 1 to 6, wherein the A member is obtained by a so-called hot pressing method.
【請求項14】 請求項1〜6において、A部材を得る
のにCBN粒の表面にA材を構成する他の化合物または
金属の1種または2種以上を被覆した被覆CBN粒用い
ることを特徴とする高耐摩耗性CBN多結晶複合部材。
14. The coated CBN particles according to claim 1, wherein the CBN particles are coated with one or more kinds of other compounds or metals constituting the material A to obtain the A member. High abrasion resistance CBN polycrystalline composite member.
JP13816794A 1994-05-27 1994-05-27 Cubic boron nitride polycrystalline combined member having high wear resistance Pending JPH07316840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13816794A JPH07316840A (en) 1994-05-27 1994-05-27 Cubic boron nitride polycrystalline combined member having high wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13816794A JPH07316840A (en) 1994-05-27 1994-05-27 Cubic boron nitride polycrystalline combined member having high wear resistance

Publications (1)

Publication Number Publication Date
JPH07316840A true JPH07316840A (en) 1995-12-05

Family

ID=15215601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13816794A Pending JPH07316840A (en) 1994-05-27 1994-05-27 Cubic boron nitride polycrystalline combined member having high wear resistance

Country Status (1)

Country Link
JP (1) JPH07316840A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140415A (en) * 2010-01-06 2011-07-21 Sumitomo Electric Ind Ltd Sintered compact and cutting tool using the sintered compact
JP2011140414A (en) * 2010-01-06 2011-07-21 Sumitomo Electric Ind Ltd Sintered compact and cutting tool using the sintered compact

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140415A (en) * 2010-01-06 2011-07-21 Sumitomo Electric Ind Ltd Sintered compact and cutting tool using the sintered compact
JP2011140414A (en) * 2010-01-06 2011-07-21 Sumitomo Electric Ind Ltd Sintered compact and cutting tool using the sintered compact

Similar Documents

Publication Publication Date Title
US7459105B2 (en) Nanostructured titanium monoboride monolithic material and associated methods
US20100279138A1 (en) Diamond metal composite
US6777074B2 (en) Composite construction
JPH07316840A (en) Cubic boron nitride polycrystalline combined member having high wear resistance
JPH0724606A (en) Surface compound cubic boron nitride group extra-high pressure sintered material made cutting tool with excellent chipping resistance
JP2006111947A (en) Ultra-fine particle of cermet
JP3020765B2 (en) Surface coated tungsten carbide-alumina sintered body
JPH0641671A (en) Whisker-reinforced cermet
JPH05186844A (en) Sintered compact based on boron nitride having high density phase
JPH0328172A (en) High toughness-and high hardness-sintered material
JP2002292507A (en) Cutting tool made of cermet and its manufacturing method
JPS644989B2 (en)
JP3297535B2 (en) Cubic boron nitride sintered body
JPH07316839A (en) Cubic boron nitride polycrystalline combined member suppressed in sticking of resin
JP3152783B2 (en) Titanium compound whisker, its production method and composite material
JP4428805B2 (en) Aluminum oxide-containing composite ceramic sintered body and coated composite ceramic sintered body
JP2001187431A (en) Laminated structural material
KR19990075035A (en) Titanium Carbonitride-based Composite Carbonitride Ceramic Sintered Body and Manufacturing Method Thereof
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP3289286B2 (en) Manufacturing method of diamond-based sintered material with excellent wear resistance
JPH0891936A (en) Sintered material of boron nitride of cubic system
JP4035045B2 (en) Throw-away tip and manufacturing method thereof
JPH0641673A (en) Sintered hard alloy
JP2782524B2 (en) High density phase boron nitride based reaction sintered body and method for producing the same
JPH09239605A (en) Ticn group cermet tool and its manufacture