JPH0987035A - Hard composite material and its production - Google Patents

Hard composite material and its production

Info

Publication number
JPH0987035A
JPH0987035A JP7276368A JP27636895A JPH0987035A JP H0987035 A JPH0987035 A JP H0987035A JP 7276368 A JP7276368 A JP 7276368A JP 27636895 A JP27636895 A JP 27636895A JP H0987035 A JPH0987035 A JP H0987035A
Authority
JP
Japan
Prior art keywords
powder
volume
pressure
cbn
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7276368A
Other languages
Japanese (ja)
Inventor
Masami Uzawa
正美 鵜沢
Makoto Kyoda
誠 鏡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to JP7276368A priority Critical patent/JPH0987035A/en
Publication of JPH0987035A publication Critical patent/JPH0987035A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a composite sintered compact having high hardness and high wear resistance at a low cost by mixing cubic BN powder with Al2 O3 powder and powders of other specified compds. and carrying out sintering under the conditions of relatively low pressure and temp. SOLUTION: A mixture is prepd. by wet-mixing 30-70vol.% cubic BN powder of <=100μm particle diameter with 20-50vol.% Al2 O3 powder, 0.1-5vol.% (expressed in terms of oxide) powder of an oxygen-contg. compd. of one or more among Li, Na and K and 10-30vol.% powder of one or more kinds of compds. selected from among carbides, nitrides and borides of Si and groups IVa, Va and VIa elements of the Periodic Table by means of a ball mill, etc., using ethanol, etc. The mixture is then dried, compacted in a desired shape and press-sintered at 1,000-1,500 deg.C under <=100MPa pressure in vacuum or in an inert gaseous atmosphere to obtain the objective hard composite material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は高硬度を有する立方
晶窒化硼素含有複合材料及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to a cubic boron nitride-containing composite material having high hardness and a method for producing the same.

【0002】[0002]

【従来の技術】立方晶窒化硼素(以下cBNという)
は、ダイヤモンドに次ぐ高い硬度であり、動的及び静的
耐摩耗材として広く使用されているアルミナ等のセラミ
ックス部材に比較して極めて高い耐摩耗性を示す。さら
にcBNは高い熱伝導度を有すると共に高温下での鉄系
金属との反応性がダイヤモンドに比較して著しく小さい
ことからその焼結体は、鋳鉄、高硬度鋼、及び従来の部
材では切削が困難とされている耐熱合金等に対する切削
工具用部材として極めて適している。
2. Description of the Related Art Cubic boron nitride (hereinafter referred to as cBN)
Has the second highest hardness after diamond, and exhibits extremely high wear resistance as compared with ceramic members such as alumina which are widely used as dynamic and static wear resistant materials. Furthermore, since cBN has high thermal conductivity and its reactivity with iron-based metals at high temperatures is significantly smaller than that of diamond, its sintered body can be cut with cast iron, high hardness steel, and conventional members. It is extremely suitable as a member for cutting tools against heat-resistant alloys, which are considered difficult.

【0003】このようなcBN焼結体を得るためには通
常5000MPa以上の超高圧で焼結される。これはc
BNが高圧安定型の結晶であるため、低圧安定型の六方
晶窒化硼素(以下、hBNという)への相転移を防ぐた
めである。しかしながら超高圧焼結は他の焼結方法に比
べ生産コストが著しく高く、必ずしも生産性が優れてい
るとは云えない為、超高圧焼結によって製造された硬質
材料は低圧力下で製造された硬質セラミックス、サーメ
ット及び超硬合金に比較して数十倍以上の価格になると
いう経済的な問題があった。
In order to obtain such a cBN sintered body, it is usually sintered at an ultrahigh pressure of 5000 MPa or more. This is c
This is because BN is a high-pressure stable type crystal, and therefore a phase transition to a low-pressure stable type hexagonal boron nitride (hereinafter referred to as hBN) is prevented. However, the production cost of ultra-high pressure sintering is significantly higher than that of other sintering methods, and it cannot be said that the productivity is necessarily superior. Therefore, the hard material produced by ultra-high pressure sintering was produced under low pressure. There is an economic problem that the price is several tens of times higher than that of hard ceramics, cermet and cemented carbide.

【0004】この為、cBNにセラミックス、サーメッ
ト、超硬合金等の比較的高融点の無機物質を加えて複合
化することによって焼結体製造時の圧力を低下させる試
みが行われてきた。このようなcBN含有無機複合焼結
体は、本来cBNが準安定となる圧力、例えば2000
MPa以下、及び温度、例えば1500℃未満の条件下
であってもcBNの相転移速度を著しく低減することが
できる為、実質的にはhBNを生成することなく、ある
程度緻密なcBN含有無機複合焼結体を作製することが
可能であることが報告されている(平成2年特許公開第
302371号)。しかしこの場合、複合焼結体に占め
るcBNの存在割合が多くなるにつれhBNへの転移を
抑えて高緻密な焼結体を得るのが困難になり、一方cB
Nの存在割合が少なくなるにつれ焼結体に反映されるc
BN本来の性状が急激に失われる傾向がある。更に、こ
のような複合焼結体ではcBN含有量の多少に拘わら
ず、cBNと該無機物質との強固な結合が見られないの
で、機械的な性状面に於いては必ずしも優れているとは
云い難く、複合化による効果が十分発揮されなかった。
For this reason, attempts have been made to reduce the pressure at the time of producing a sintered body by adding an inorganic substance having a relatively high melting point such as ceramics, cermet or cemented carbide to cBN to form a composite. Such a cBN-containing inorganic composite sintered body has a pressure at which cBN originally becomes metastable, for example, 2000
Since the phase transition rate of cBN can be remarkably reduced even under the conditions of MPa or less and temperature, for example, less than 1500 ° C., it does not substantially generate hBN, and the cBN-containing inorganic composite calcined to some extent is dense. It has been reported that it is possible to produce a bound body (Patent Publication No. 302371 of 1990). However, in this case, it becomes difficult to obtain a highly dense sintered body by suppressing the transition to hBN as the abundance ratio of cBN in the composite sintered body increases.
As the N content decreases, it is reflected in the sintered body c
The original properties of BN tend to be lost rapidly. Further, in such a composite sintered body, a strong bond between cBN and the inorganic substance is not observed regardless of the content of cBN, so that the mechanical properties are not necessarily excellent. It was hard to say, and the effect of compounding was not fully exhibited.

【0005】一方、cBN粉末を主に高融点の無機物質
で予め被覆し、これを原料として焼結したものは、前記
のようなcBNの準安定な圧力温度域に於いても比較的
高緻密な焼結体が得られることが報告されている。(平
成7年特許公開第172923号、平成7年特許公開第
53270号)この場合、被覆処理によるコストが生産
コストに加算されるが、焼結圧力を低下させることによ
ってもたらされる生産コストの大幅な低下も考慮する必
要があり、比較的安価な被覆処理法で対応できればよい
が一般に高融点化合物の場合はCVD法やプラズマ法に
よって処理しなければ十分被覆することができず、何れ
も高価な製造装置を要する。
On the other hand, the cBN powder, which is preliminarily coated with an inorganic substance having a high melting point in advance and is sintered as a raw material, has a relatively high density even in the above-mentioned metastable pressure temperature range of cBN. It has been reported that various sintered bodies can be obtained. (1995 Patent Publication No. 172923, 1995 Patent Publication No. 53270) In this case, the cost of the coating treatment is added to the production cost, but the production cost caused by lowering the sintering pressure is significantly increased. It is necessary to consider the decrease, and it is sufficient if a relatively inexpensive coating treatment method can be used, but in general, in the case of a high melting point compound, it can not be sufficiently coated unless it is treated by the CVD method or the plasma method, and both are expensive manufacturing processes. Requires equipment.

【0006】[0006]

【発明が解決しようとする課題】本発明は、予め高融点
無機化合物で被覆処理を施したcBN粉末原料を用いな
くとも、本来cBNが準安定状態となるような比較的低
い圧力、温度下に於いて、機械的性状が脆弱なhBNを
生成させることなく、かつcBNが有する優れた耐摩耗
性や高熱伝導特性等を極力損なうことなく高緻密なcB
N含有無機系硬質複合材料を得ることにある。
SUMMARY OF THE INVENTION According to the present invention, even if a cBN powder raw material preliminarily coated with a high melting point inorganic compound is not used, it is possible to obtain cBN at a relatively low pressure and temperature at which metastable state is obtained. In this, a highly precise cB is produced without producing hBN having a fragile mechanical property and without impairing the excellent wear resistance and high thermal conductivity characteristics of cBN.
To obtain an N-containing inorganic hard composite material.

【0007】[0007]

【課題を解決するための手段】本発明者らは前記の目的
に鑑み、種々研究を行った結果、予め高融点無機化合物
で被覆を施したcBN粉末を用いることなく、cBN粉
末と酸化アルミニウム粉末、周期律表4A、5A、6A
族の元素及びSiの何れかの炭化物、窒化物、硼化物ま
たはこれら2種以上を組み合わせた粉末に低融点化合物
であるLi、Na、Kの何れか1種以上の酸素を含む化
合物粉末を混合したものを、本来cBNが準安定な状態
となるような焼結条件で焼結することにより、cBNが
hBNに相転移することなく、高硬度で高緻密な複合焼
結体が比較的安価に得られることを見い出し、本発明を
完成するに至った。
Means for Solving the Problems The present inventors have conducted various studies in view of the above-mentioned objects, and as a result, as a result, without using cBN powder previously coated with a high-melting inorganic compound, cBN powder and aluminum oxide powder have been used. , Periodic Table 4A, 5A, 6A
A compound powder containing any one or more oxygen of Li, Na, and K, which is a low-melting compound, is mixed with a carbide, a nitride, a boride of any one of the group III elements and Si, or a powder of a combination of two or more thereof. By sintering the above-mentioned material under the sintering conditions in which cBN is originally in a metastable state, cBN does not undergo phase transition to hBN, and a high-hardness, high-density composite sintered body is relatively inexpensive. The inventors have found that they can be obtained and completed the present invention.

【0008】即ち、本発明は立方晶窒化硼素30〜70
容量%、酸化アルミニウム20〜50容積%、Li、N
a、Kの何れか1種以上の酸素を含む化合物を酸化物換
算で0.1〜5容量%、Si及び周期律表4A、5A、
6A族元素の炭化物、窒化物、硼化物より選択された1
種以上を10〜30容量%を含むものであって、圧力1
00MPa以上、温度1000〜1500℃以上で焼結
してなることを特徴とする硬質複合材料である。
That is, the present invention is based on cubic boron nitride 30-70.
% By volume, aluminum oxide 20-50% by volume, Li, N
a, a compound containing oxygen of at least one kind of 0.1 to 5% by volume in terms of oxide, Si and Periodic Table 4A, 5A,
1 selected from carbides, nitrides and borides of 6A group elements
10 to 30% by volume of seeds or more, pressure 1
It is a hard composite material characterized by being sintered at a pressure of at least 00 MPa and a temperature of at least 1000 to 1500 ° C.

【0009】また、好ましくは、前記圧力が500〜2
000MPa、温度1100〜1250℃で焼結してな
る硬質複合材料である。
Preferably, the pressure is 500 to 2
It is a hard composite material obtained by sintering at 000 MPa and a temperature of 1100 to 1250 ° C.

【0010】また、本発明は立方晶窒化硼素30〜70
容量%、酸化アルミニウム20〜50容積%、Li、N
a、Kの何れか1種以上の酸素を含む化合物を酸化物換
算で0.1〜5容量%、Si及び周期律表4A、5A、
6A族元素の炭化物、窒化物、硼化物より選択された1
種以上を10〜30容量%を含むものであって、圧力1
00MPa以上、温度1000〜1500℃以上で焼結
してなることを特徴とする硬質複合材料の製造方法であ
る。
The present invention also relates to cubic boron nitride 30-70.
% By volume, aluminum oxide 20-50% by volume, Li, N
a, a compound containing oxygen of at least one kind of 0.1 to 5% by volume in terms of oxide, Si and Periodic Table 4A, 5A,
1 selected from carbides, nitrides and borides of 6A group elements
10 to 30% by volume of seeds or more, pressure 1
A method for producing a hard composite material, which comprises sintering at a pressure of at least 00 MPa and a temperature of at least 1000 to 1500 ° C.

【0011】また、好ましくは、前記圧力が500〜2
000MPa、温度1100〜1250℃で焼結してな
る硬質複合材料の製造方法である。
Further, preferably, the pressure is 500 to 2
This is a method for producing a hard composite material by sintering at 000 MPa and a temperature of 1100 to 1250 ° C.

【0012】[0012]

【発明の実施の形態】本発明の硬質複合材料は、酸化ア
ルミニウムと、Si及び周期律表4A、5A、6A族元
素の炭化物、窒化物、硼化物より選択された1種以上の
成分を主体とし、これにアルカリ金属であるLi、N
a、Kの何れか1種以上の酸素を含む化合物が加わった
ものから成る連続した基材相と、Li、Na、Kが関与
することによって形成された化学的な結合関係を該基材
相との間に保有するcBN粒子が該基材相中に分散され
た高緻密で高硬度の複合焼結体である。
BEST MODE FOR CARRYING OUT THE INVENTION The hard composite material of the present invention mainly comprises aluminum oxide and one or more components selected from Si and carbides, nitrides and borides of elements of the periodic tables 4A, 5A and 6A. And alkali metal such as Li and N
a, K, a continuous base material phase formed by adding a compound containing one or more oxygen, and a base material phase having a chemical bond formed by the involvement of Li, Na, and K. Is a highly dense and high-hardness composite sintered body in which cBN particles held between and are dispersed in the base material phase.

【0013】本発明の硬質複合材料に於けるcBNの含
有量は30〜70容量%、望ましくは45〜65容量%
とする。30容量%未満ではcBN固有の硬度を十分活
かせた優れた耐摩耗性を有する材料が得られず、70容
量%を越えると、材料中でのcBN量が過多となり、c
BN以外の成分を主体とする連続したセラミックス基材
相が形成され難くなり、その結果、高緻密で高強度の材
料を得ることができ難くなるので好ましくない。また、
本硬質複合材料に於いてcBN粒子は、前記の基材相中
に分散された状態にあり、特に低融点化合物であるL
i、Na、Kの酸素を含む化合物とcBN粒表層部近傍
に於いて化合物若しくは固溶体を形成し、該基材相と化
学的な結合関係を生じている。
The content of cBN in the hard composite material of the present invention is 30 to 70% by volume, preferably 45 to 65% by volume.
And If it is less than 30% by volume, a material having excellent wear resistance making full use of the hardness inherent in cBN cannot be obtained, and if it exceeds 70% by volume, the amount of cBN in the material becomes excessive, and c
It becomes difficult to form a continuous ceramic base material phase mainly composed of components other than BN, and as a result, it becomes difficult to obtain a highly dense and high-strength material, which is not preferable. Also,
In the present hard composite material, the cBN particles are in a state of being dispersed in the above-mentioned base material phase, and particularly L which is a low melting point compound.
A compound or a solid solution is formed in the vicinity of the surface layer of the cBN grain with a compound containing oxygen such as i, Na, and K, and a chemical bond with the base material phase is generated.

【0014】また硬質複合材料中の酸化アルミニウム含
有量は20〜50容量%、好ましくは25〜40容量%
とする。20容量%未満ではcBNと酸化アルミニウム
以外の物質の存在割合が多くなって焼結に際しより高
温、高圧を必要とするので好ましくなく、また50容量
%を越えると、cBNや酸化アルミニウム以外の成分の
割合が少なくなり耐摩耗性や高温特性が低下するので好
ましくない。
The content of aluminum oxide in the hard composite material is 20 to 50% by volume, preferably 25 to 40% by volume.
And If it is less than 20% by volume, the existence ratio of substances other than cBN and aluminum oxide increases, and higher temperature and pressure are required for sintering, which is not preferable, and if it exceeds 50% by volume, components other than cBN and aluminum oxide are not contained. It is not preferable because the ratio becomes small and the wear resistance and high temperature characteristics deteriorate.

【0015】また硬質複合材料中に含まれるSi及び周
期律表4A、5A、6A族元素の炭化物、窒化物、硼化
物より選択される具体的成分としては、4A族ではTi
C、ZrC、TiN、ZrN、TiB2、ZrB2が、5
A族ではVC、TaC、VN、TaN、TaB2、Nb
2が、6A族ではWC、Mo2C、Cr2N、WB、M
oB2が、更にSiではSiC、Si34、SiB4を挙
げることができる。本発明の硬質複合材料は前記成分の
うちの何れか1種または2種以上を含有するものであ
り、また2種以上を含有する場合は固溶体を形成した状
態のものであっても良い。これらの成分は該複合材料中
に10〜30容量%、より望ましくは15〜25容量%
含まれる。10容量%未満では前記成分に概ね共通する
高温特性、即ち高温高硬度、高温高強度等が十分反映さ
れた複合材料が得難くなる為好ましくなく、30容量%
を越えると、一般に難焼結性の高融点化合物である前記
成分の割合が多くなって緻密化が進み難くなるので好ま
しくない。
Further, as a specific component selected from Si contained in the hard composite material and carbides, nitrides and borides of 4A, 5A and 6A elements of the Periodic Table, 4A group is Ti.
C, ZrC, TiN, ZrN, TiB 2 and ZrB 2 are 5
VC, TaC, VN, TaN, TaB 2 , Nb in Group A
B 2 is WC, Mo 2 C, Cr 2 N, WB, M in the 6A group.
When oB 2 is Si, SiC, Si 3 N 4 and SiB 4 can be mentioned. The hard composite material of the present invention contains any one kind or two or more kinds of the above components, and when it contains two kinds or more, it may be in a state of forming a solid solution. These components are contained in the composite material in an amount of 10 to 30% by volume, more preferably 15 to 25% by volume.
included. If it is less than 10% by volume, it is difficult to obtain a composite material in which high-temperature characteristics generally common to the above-mentioned components, that is, high temperature and high hardness, high temperature and high strength, etc. are difficult to obtain.
If it exceeds, the proportion of the above-mentioned components, which are generally refractory high-melting-point compounds, increases, and it becomes difficult for densification to proceed, which is not preferable.

【0016】また更に、本発明の硬質複合材料はLi、
Na、Kの何れか1種以上の酸素を含む化合物を酸化物
換算で0.1容量%〜5容量%含有したものである。こ
のような焼結体中に存在するLi、Na、Kの化合物と
しては例えばアルミン酸塩等を挙げることができるが、
大部分は酸素化合物として存在する。また、cBNとの
反応生成物、或いはcBN中に固溶したものとしても存
在する。焼結体中に於けるLi、Na、Kの何れか1種
以上の酸素を含む化合物の酸化物換算量が0.1容量%
以下では緻密化が不足したり、cBN粒と基材相との結
合状態が低下し、例えば大型肉厚の焼結体を得難くなる
ので好ましくない。また5容量%以上では焼結体中に存
在するLi、Na、Kの酸素を含む低融点化合物の割合
が増大し、硬度や靱性などの機械的性質が低下するので
好ましくない。
Furthermore, the hard composite material of the present invention comprises Li,
A compound containing one or more kinds of oxygen selected from Na and K is contained in an amount of 0.1% by volume to 5% by volume in terms of oxide. Examples of the compounds of Li, Na, and K existing in such a sintered body include aluminates.
Most are present as oxygen compounds. It also exists as a reaction product with cBN or as a solid solution in cBN. Oxide conversion amount of the compound containing oxygen of at least one of Li, Na and K in the sintered body is 0.1% by volume
In the following, the densification will be insufficient and the bonding state between the cBN grains and the base material phase will be deteriorated, which makes it difficult to obtain, for example, a large-sized sintered body, which is not preferable. On the other hand, if the content is 5% by volume or more, the proportion of low melting point compounds containing oxygen such as Li, Na, and K present in the sintered body increases, and mechanical properties such as hardness and toughness deteriorate, which is not preferable.

【0017】以下、本発明に於ける硬質複合材料の製造
方法を詳しく説明する。硬質複合材料を得るための原料
としては、cBN粉末、酸化アルミニウム粉末、及びS
i及び周期律表4A、5A、6A族の元素の炭化物、窒
化物、硼化物より選択された1種以上の金属化合物若し
くは固溶体からなる粉末、更にLi、Na、Kの1種以
上の酸素を含む化合物粉末の何れかを混合したものを用
いる。
The method for producing the hard composite material according to the present invention will be described in detail below. Raw materials for obtaining the hard composite material include cBN powder, aluminum oxide powder, and S.
i and powder of one or more metal compounds or solid solutions selected from carbides, nitrides and borides of elements of groups 4A, 5A and 6A of the Periodic Table, and one or more oxygens of Li, Na and K. A mixture of any of the compound powders containing is used.

【0018】ここで原料に用いるcBN粉末としては、
粒径が100μm未満の粉末が望ましい。粒径が100
μm以上では強度の低下が顕著となるので好ましくな
い。また、原料に用いる酸化アルミニウム粉末としては
比較的純度の高い市販品であれば何れのものでも用いる
ことができる。また本発明では、通常酸化アルミニウム
の高緻密焼結体作製時に使用される公知の焼結助剤、例
えばMgO、TiO2、Al金属等、が含まれた酸化ア
ルミニウム粉末を用いても良い。
The cBN powder used as the raw material here is
A powder having a particle size of less than 100 μm is desirable. Particle size is 100
If it is more than μm, the strength is significantly decreased, which is not preferable. As the aluminum oxide powder used as the raw material, any commercially available product having a relatively high purity can be used. Further, in the present invention, an aluminum oxide powder containing a known sintering aid, which is generally used when producing a highly dense sintered body of aluminum oxide, such as MgO, TiO 2 , or Al metal may be used.

【0019】また、原料に用いるSiの炭化物、窒化
物、硼化物の粉末としては市販のSiC粉末、Si34
粉末、SiB4粉末を用いることができ、このような金
属珪素化合物に於いてはそれ自体の高緻密焼結の際用い
られている公知の助剤、例えばSi34ならY23等が
混入された粉末を用いても良い。また、原料に用いる周
期律表4A、5A、6A族元素の炭化物、窒化物、硼化
物の粉末としては市販のTiC、ZrC、HfC、V
C、NbC、TaC、Cr32、Mo2C、WC、Ti
N、ZrN、HfN、VN、NbN、TaN、Cr
32、Mo2N、WN、TiB2、ZrB2、HfB2、V
2、NbB2、TaB2、Cr34、MoB2、WB2
の各粉末、又はこのうち2種以上からなる混合粉末、或
いはTiC、ZrC、HfC、VC、NbC、TaC、
Cr32、Mo2C、WC、TiN、ZrN、HfN、
VN、NbN、TaN、Cr32、Mo2N、WN、T
iB2、ZrB2、HfB2、VB2、NbB2、TaB2
Cr34、MoB2、WB2の何れか2種以上からなる固
溶体粉末を用いる。
Further, as powders of Si carbide, nitride and boride used as raw materials, commercially available SiC powder and Si 3 N 4 are used.
Powders and SiB 4 powders can be used. In such metal silicon compounds, known auxiliaries used in high-density sintering of themselves, for example, Si 3 N 4 is Y 2 O 3 etc. You may use the powder which mixed. In addition, as powders of carbides, nitrides, and borides of Group 4A, 5A, and 6A elements used in the periodic table, commercially available TiC, ZrC, HfC, and V are available.
C, NbC, TaC, Cr 3 C 2 , Mo 2 C, WC, Ti
N, ZrN, HfN, VN, NbN, TaN, Cr
3 N 2 , Mo 2 N, WN, TiB 2 , ZrB 2 , HfB 2 , V
B 2, NbB 2, TaB 2 , Cr 3 B 4, MoB 2, powders of WB 2 or the like, or a mixed powder Among composed of two or more, or TiC, ZrC, HfC, VC, NbC, TaC,
Cr 3 C 2 , Mo 2 C, WC, TiN, ZrN, HfN,
VN, NbN, TaN, Cr 3 N 2 , Mo 2 N, WN, T
iB 2 , ZrB 2 , HfB 2 , VB 2 , NbB 2 , TaB 2 ,
A solid solution powder composed of any two or more of Cr 3 B 4 , MoB 2 and WB 2 is used.

【0020】また、原料に用いるアルカリ金属の酸素含
有化合物としては、市販のLi、Na、Kの1種以上の
酸化物、炭酸化物、水酸化物、アルコキシド等の粉末の
何れかを用いる。また、これらのアルカリ金属の酸素含
有化合物粉末を他の原料と直接混合せずに、予め、L
i、Na、Kの1種以上の酸素を含む化合物をcBN粉
末に被覆したものも用いることもできる。この場合、焼
結過程中でcBN粒子と他の成分からなる基材相との間
にのみLi、Na、Kの酸素含有化合物が集中的に存在
することを防ぎ、基材相構成成分間にも存在させる為、
全てを被覆用に使用せずにその一部を単独の粉末として
混合するのが望ましい。尚、この場合の被覆処理方法と
しては、例えば湿式法、PVD法、スパッタリング法等
で対応できるが、生産コストを抑える観点からは最も簡
単な湿式法が望ましい。
As the oxygen-containing compound of an alkali metal used as a raw material, any of commercially available powders of one or more kinds of Li, Na and K oxides, carbonates, hydroxides, alkoxides and the like is used. In addition, without directly mixing the oxygen-containing compound powder of these alkali metals with other raw materials, L
It is also possible to use a cBN powder coated with a compound containing at least one oxygen of i, Na, and K. In this case, it is possible to prevent the oxygen-containing compounds of Li, Na, and K from being concentratedly present only between the cBN particles and the base phase composed of other components during the sintering process, and to prevent the presence of the oxygen between the components. To exist,
It is desirable to mix some as a single powder rather than use all for coating. As the coating method in this case, for example, a wet method, a PVD method, a sputtering method, or the like can be used, but the simplest wet method is preferable from the viewpoint of suppressing the production cost.

【0021】前記各原料粉末を硬質複合材料中に於い
て、立方晶窒化硼素30〜70容量%、酸化アルミニウ
ム20〜50容積%、Li、Na、Kの1種以上の酸素
を含む化合物を酸化物換算で0.1〜5容量%、Si及
び周期律表4A、5A、6A族元素の炭化物、窒化物、
硼化物より選択された1種以上を10〜30容量%を含
むように所定量混合する。混合は、例えばエチルアルコ
ール或いはイソプロピルアルコール等を用いた湿式混合
を、例えばボールミル中などで行うことで対応できる。
次いでこの混合物粉末を適宜乾燥させ、乾燥混合粉末、
若しくは該粉末をプレス成形等で所望の形状に成形した
成形物を加圧焼結する。
In the hard composite material, each raw material powder was used to oxidize a compound containing 30 to 70% by volume of cubic boron nitride, 20 to 50% by volume of aluminum oxide, and one or more oxygen of Li, Na and K. 0.1 to 5% by volume in terms of material, Si and carbides, nitrides of 4A, 5A and 6A group elements of the periodic table,
A predetermined amount of one or more selected from borides is mixed so as to contain 10 to 30% by volume. The mixing can be performed, for example, by performing wet mixing using ethyl alcohol, isopropyl alcohol, or the like, for example, in a ball mill.
Then, the mixture powder is appropriately dried to obtain a dry mixed powder,
Alternatively, a molded product obtained by molding the powder into a desired shape by press molding or the like is pressure-sintered.

【0022】加圧焼結は、圧力100MPa以上、温度
1000〜1500℃で行う。例えばcBNが単独で安
定に存在する領域で加圧焼結するのであれば圧力500
0〜6000MPa、温度1400〜1500℃が一般
的な条件となるが、cBNが単独では準安定に存在する
と考えられる比較的低い圧力、温度領域では製造コスト
の著しい低減化が図れ、本発明ではこのような加圧温度
条件に於いても複合材料中でcBNが脆弱相であるhB
Nへ相転移することを十分抑えることができる為、cB
Nが単独では準安定に存在すると考えられる圧力及び温
度条件で加圧焼結することが特に推奨される。このよう
な条件として好ましくは、圧力500〜2000MP
a、温度1100〜1250℃で行うのが良い。一方、
温度1000℃未満では焼結が十分進展し難く緻密化が
不十分になり易く、逆に温度が1500℃を越える場合
や圧力が100MPa未満では、cBNが非安定とされ
ている領域となるため、脆弱相であるhBNへの相転移
が生じることがあるので好ましくない。また加圧焼結の
保持時間は圧力と温度に依存するが、概ね5〜30分程
度で対応できる。特に、圧力又は温度を本発明の下限値
に近い条件で行う場合にも同程度の時間で対応できる。
尚、焼結時の雰囲気についてはcBNや基材相の非酸化
物成分の酸化を直接引き起こすような高い酸化性雰囲気
でなければ良く、空気中でも可能であるが、より望まし
くは真空中やアルゴンガス等の不活性ガス中で焼結する
と良い。このような加圧焼結に用いる装置としては圧力
100MPa以上、温度1000℃以上を発生できる装
置であれば特に限定されない。そのような装置の一例と
しては、ホットプレス装置、HIP装置、ピストンシリ
ンダー型、フラットベルト型、ガードル型、ブリッジマ
ン型、キュービックアンビル型等の高圧、又は超高圧加
熱装置を挙げることができる。このような条件、装置に
て加圧焼結を行うことによって高緻密でhBNを含まな
い硬質複合材料を製造することができる。
The pressure sintering is performed at a pressure of 100 MPa or more and a temperature of 1000 to 1500 ° C. For example, if pressure sintering is performed in a region where cBN exists independently and stably, a pressure of 500
The general conditions are 0 to 6000 MPa and a temperature of 1400 to 1500 ° C., but the production cost can be significantly reduced in a relatively low pressure and temperature range where cBN is considered to exist metastable alone. CB is a brittle phase in the composite material even under such pressure temperature conditions
Since the phase transition to N can be sufficiently suppressed, cB
It is particularly recommended to perform pressure sintering under the pressure and temperature conditions where N is considered to exist metastable by itself. As such a condition, the pressure is preferably 500 to 2000 MP.
a, the temperature is preferably 1100 to 1250 ° C. on the other hand,
If the temperature is lower than 1000 ° C., the sintering is difficult to progress sufficiently and the densification tends to be insufficient. Conversely, if the temperature exceeds 1500 ° C. or the pressure is lower than 100 MPa, the cBN becomes an unstable region. It is not preferable because a phase transition to hBN, which is a brittle phase, may occur. Further, the holding time of the pressure sintering depends on the pressure and the temperature, but can be dealt with by about 5 to 30 minutes. In particular, even when the pressure or temperature is set to a value close to the lower limit of the present invention, it can be dealt with in about the same time.
It should be noted that the atmosphere at the time of sintering should not be a highly oxidizing atmosphere that directly causes the oxidation of the non-oxide components of the cBN and the base material phase, and it is also possible in air, but more preferably in vacuum or argon gas. It is recommended to sinter in an inert gas such as. The apparatus used for such pressure sintering is not particularly limited as long as it can generate a pressure of 100 MPa or more and a temperature of 1000 ° C. or more. Examples of such a device include a hot press device, a HIP device, a piston cylinder type, a flat belt type, a girdle type, a Bridgman type, and a cubic anvil type high pressure or ultra high pressure heating device. By performing pressure sintering under such conditions and an apparatus, a highly dense hard composite material containing no hBN can be manufactured.

【0023】[0023]

【作用と効果】本発明に於けるLi、Na、Kのような
アルカリ金属の酸素含有化合物は、加圧焼結の前又は初
期段階においてcBN粒子、及び他の基材相構成成分と
それぞれ反応若しくは固溶し、焼結中に於けるcBN粒
子と基材相との反応活性を増大させると考えられ、その
結果複合焼結体中に於いて、分散相であるcBN粒子と
基材相との間に比較的強固で化学的な結合状態が形成さ
れる。更に、該アルカリ金属の酸素含有化合物は基材相
中においても難焼結性の高融点化合物間の反応活性を高
める作用も有す為、基材相の焼結の駆動力が増進され、
その緻密化の促進に寄与する。その結果、基材相として
の強固なネットワークが容易に形成され易く、複合焼結
体の機械的性状を一層向上させるものとなる。このた
め、本発明によれば、高硬度、高耐摩耗性のみならず、
優れた靱性、耐欠損性、強度、及び加工性を備えた複合
材料を得ることができる。その応用面としては、高硬度
鋼、鋳鉄、耐熱合金、鉄筋入り建材等の切削工具部材や
ノズル、スリーブ、パンチやダイ等の耐摩耗用部材とし
て十分値する材料となる。
FUNCTION AND EFFECT The alkali metal oxygen-containing compound such as Li, Na and K in the present invention reacts with the cBN particles and other base phase constituents before or during pressure sintering, respectively. Or, it is considered that the solid solution forms a solid solution and increases the reaction activity between the cBN particles and the base material phase during sintering. As a result, in the composite sintered body, the cBN particles as the disperse phase and the base material phase A relatively strong and chemically bonded state is formed between the two. Furthermore, since the oxygen-containing compound of the alkali metal also has the effect of increasing the reaction activity between the refractory compounds having high sintering resistance even in the base material phase, the driving force for sintering the base material phase is increased,
It contributes to the promotion of densification. As a result, a strong network as a base material phase is easily formed, and the mechanical properties of the composite sintered body are further improved. Therefore, according to the present invention, not only high hardness, high wear resistance,
A composite material having excellent toughness, fracture resistance, strength, and workability can be obtained. In terms of its application, it is a material that is sufficiently valuable as a cutting tool member such as high-hardness steel, cast iron, heat-resistant alloys, and building materials with reinforcing bars, and a wear-resistant member such as nozzles, sleeves, punches and dies.

【0024】また、本発明によれば、cBN粉末は例え
ば高融点無機化合物で予め被覆しなくともhBNを生成
することなくcBNの準安定領域といわれている圧力、
温度によっても十分緻密な高硬度の複合焼結体を製造す
ることができる。この理由についてはcBN粒の界面付
近に比較的低温下の焼結の前段階から一早く生成する低
融点のアルカリ金属を含む化合物、若しくは固溶体がh
BNの相転移を抑制するものと考えられる。このように
本法は従来方法よりも特に焼結圧力を低くすることがで
きるため生産コストの大幅な低減化が可能となる。
Further, according to the present invention, the cBN powder has a pressure which is said to be a metastable region of cBN without forming hBN without being previously coated with, for example, a high melting point inorganic compound,
A sufficiently dense and high-hardness composite sintered body can be manufactured even by the temperature. The reason for this is that a compound containing an alkali metal having a low melting point or a solid solution, which is formed near the interface of the cBN grains at a relatively low temperature earlier than the previous stage of sintering, is h
It is considered to suppress the phase transition of BN. As described above, since the present method can lower the sintering pressure more than the conventional method, the production cost can be significantly reduced.

【0025】[0025]

【実施例】以下、実施例によりこの発明を具体的に説明
する。 [実施例1] 酸化チタン2重量%を含む平均粒径0.
5μmの酸化アルミニウム粉末、平均粒径1μmの窒化
チタン粉末(純度99.5%)、平均粒径1μmの硼化
タンタル粉末(純度99.5%)、平均粒径1μmの炭
化タングステン粉末(純度99.5%)、平均粒径0.
7μmの炭化珪素粉末(純度99.5%)、平均粒径3
μmのcBN粉末、平均粒径10μmの炭酸リチウム粉
末、平均粒径17μmの炭酸ナトリウム粉末、平均粒径
11μmの炭酸カリウム粉末を、表1に記した原料配合
量それぞれアルミナ製ポットに入れアルミナボールで7
2時間エチルアルコールを用いて湿式混合後、該混合粉
末をプレス成形にて直径約4cm厚さ約2cmの円柱形
状に成形し、これをピストンシリンダー型高圧焼結炉を
用いて空気中、1000MPa、1230℃で15分間
加圧焼結した。得られた複合焼結体(本発明品1〜6)
の成分は、蛍光X線及び粉末X線解折による分析から表
1に記載した値(体積%)となった。
The present invention will be specifically described below with reference to examples. [Example 1] An average particle size of 0.
5 μm aluminum oxide powder, titanium nitride powder with an average particle size of 1 μm (purity 99.5%), tantalum boride powder with an average particle size of 1 μm (purity 99.5%), tungsten carbide powder with an average particle size of 1 μm (purity 99 0.5%), average particle size of 0.
7 μm silicon carbide powder (purity 99.5%), average particle size 3
μBN cBN powder, lithium carbonate powder having an average particle size of 10 μm, sodium carbonate powder having an average particle size of 17 μm, and potassium carbonate powder having an average particle size of 11 μm were placed in alumina pots, respectively, in an alumina ball, and the mixture was filled with alumina balls. 7
After wet-mixing with ethyl alcohol for 2 hours, the mixed powder was molded into a columnar shape having a diameter of about 4 cm and a thickness of about 2 cm by press molding, and this was molded in air using a piston-cylinder type high pressure sintering furnace at 1000 MPa, Pressure sintering was performed at 1230 ° C. for 15 minutes. The obtained composite sintered body (invention products 1 to 6)
The component (1) had the value (volume%) described in Table 1 from the analysis by fluorescent X-ray and powder X-ray analysis.

【0026】[0026]

【表1】 [Table 1]

【0027】また、この複合焼結体の機械的性質を以下
の如く測定し、測定値を表1に記す。相対密度について
はJIS−C2141に準じた方法で測定した嵩比重と
真比重から算出し、ビッカース硬度については圧子荷重
を5kgとして測定し、曲げ強度についてはJIS−R
1601に準拠した三点曲げ強度を測定した。
The mechanical properties of this composite sintered body were measured as follows, and the measured values are shown in Table 1. The relative density was calculated from the bulk specific gravity and the true specific gravity measured by the method according to JIS-C2141, the Vickers hardness was measured with an indenter load of 5 kg, and the bending strength was JIS-R.
The three-point bending strength according to 1601 was measured.

【0028】[実施例2] 酸化チタン2重量%を含む
平均粒径0.5μmの酸化アルミニウム粉末11.25
g、平均粒径1μmの窒化チタン粉末(純度99.5
%)12.26g、平均粒径11μmの炭酸カリウム粉
末0.62g、平均粒径5μmのcBN粉末19.61
gを原料とし、前記実施例1と同様の方法にて直径約4
cm厚さ約2cmの円柱形状の未焼成成形物を作製し
た。これをピストンシリンダー型高圧焼結炉、又は、S
US310製容器中に脱気封入にしてArガスを圧力媒
体とした熱間等方加圧装置(HIP)にて表2に示す焼
結条件でそれぞれ焼結を行い、複合焼結体(本発明品7
〜13)を作製した。
Example 2 Aluminum oxide powder 11.25 containing 2% by weight of titanium oxide and having an average particle size of 0.5 μm
g, titanium nitride powder having an average particle size of 1 μm (purity 99.5)
%) 12.26 g, 0.62 g of potassium carbonate powder having an average particle size of 11 μm, and 19.61 g of cBN powder having an average particle size of 5 μm.
Using g as a raw material, a diameter of about 4 was obtained in the same manner as in Example 1.
A cylindrical unfired molded product having a thickness of about 2 cm was produced. This is a piston cylinder type high pressure sintering furnace or S
US310 container was degassed and sealed, and each was sintered under the sintering conditions shown in Table 2 by a hot isotropic pressurizer (HIP) using Ar gas as a pressure medium. Item 7
~ 13) were prepared.

【0029】[0029]

【表2】 [Table 2]

【0030】得られた複合焼結体(本発明品7〜13)
の成分は、蛍光X線及び粉末X線解折による分析から何
れもcBNが52.0容量%、Al23が25.9容量
%、TiNが20.7容量%、及びK2Oを主体とする
カリウムの酸素含有化合物1.7容量%となった。ま
た、この複合焼結体の機械的性質を実施例1と同様の方
法で測定した結果を表2に記す。
The obtained composite sintered body (invention products 7 to 13)
CBN was 52.0% by volume, Al 2 O 3 was 25.9% by volume, TiN was 20.7% by volume, and K 2 O was analyzed by fluorescent X-ray and powder X-ray analysis. The oxygen-containing compound of potassium as the main component was 1.7% by volume. Table 2 shows the results of measuring the mechanical properties of this composite sintered body by the same method as in Example 1.

【0031】[比較例] 酸化チタン2重量%を含む平
均粒径0.5μmの酸化アルミニウム粉末12.00
g、平均粒径1μmの窒化チタン粉末(純度99.5
%)12.26g、平均粒径3μmのcBN粉末19.
61gを原料とし、実施例1と同様の条件、方法にて複
合焼結体を作製した。該焼結体の機械的性質を実施例1
と同様の方法で測定した結果、相対密度92%、ビッカ
ース硬度2450、曲げ強度109MPaとなり機械的
性状が低いものとなった。
Comparative Example Aluminum oxide powder 12.00 containing 2% by weight of titanium oxide and having an average particle size of 0.5 μm.
g, titanium nitride powder having an average particle size of 1 μm (purity 99.5)
%) 12.26 g, cBN powder with an average particle size of 3 μm 19.
Using 61 g as a raw material, a composite sintered body was produced under the same conditions and methods as in Example 1. The mechanical properties of the sintered body are shown in Example 1.
As a result of measurement by the same method as described above, the relative density was 92%, the Vickers hardness was 2450, and the bending strength was 109 MPa, and the mechanical properties were low.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 立方晶窒化硼素30〜70容量%、酸化
アルミニウム20〜50容積%、Li、Na、Kの何れ
か1種以上の酸素を含む化合物を酸化物換算で0.1〜
5容量%、Si及び周期律表4A、5A、6A族元素の
炭化物、窒化物、硼化物より選択された1種以上を10
〜30容量%を含むものであって、圧力100MPa以
上、温度1000〜1500℃で焼結してなることを特
徴とする硬質複合材料。
1. A compound containing 30 to 70% by volume of cubic boron nitride, 20 to 50% by volume of aluminum oxide, and at least one oxygen selected from Li, Na, and K in terms of oxide.
5% by volume, Si and 10 or more selected from the group consisting of carbides, nitrides and borides of 4A, 5A and 6A group elements of the periodic table.
A hard composite material containing ˜30% by volume and sintered at a pressure of 100 MPa or more and a temperature of 1000 to 1500 ° C.
【請求項2】 圧力500〜2000MPa、温度11
00〜1250℃で焼結してなることを特徴とする請求
項1記載の硬質複合材料。
2. A pressure of 500 to 2000 MPa and a temperature of 11
The hard composite material according to claim 1, which is obtained by sintering at 00 to 1250 ° C.
【請求項3】 立方晶窒化硼素30〜70容量%、酸化
アルミニウム20〜50容積%、Li、Na、Kの何れ
か1種以上の酸素を含む化合物を酸化物換算で0.1〜
5容量%、Si及び周期律表4A、5A、6A族元素の
炭化物、窒化物、硼化物より選択された1種以上を10
〜30容量%を含むものであって、圧力100MPa以
上、温度1000〜1500℃で焼結してなることを特
徴とする硬質複合材料の製造方法。
3. A compound containing 30 to 70% by volume of cubic boron nitride, 20 to 50% by volume of aluminum oxide, and at least one oxygen selected from Li, Na, and K in terms of oxide.
5% by volume, Si and 10 or more selected from the group consisting of carbides, nitrides and borides of 4A, 5A and 6A group elements of the periodic table.
A method of manufacturing a hard composite material, which comprises ˜30% by volume and is obtained by sintering at a pressure of 100 MPa or more and a temperature of 1000 to 1500 ° C.
【請求項4】 圧力500〜2000MPa、温度11
00〜1250℃で焼結してなることを特徴とする請求
項3記載の硬質複合材料の製造方法。
4. A pressure of 500 to 2000 MPa and a temperature of 11
The method for producing a hard composite material according to claim 3, wherein the hard composite material is sintered at 00 to 1250 ° C.
JP7276368A 1995-09-29 1995-09-29 Hard composite material and its production Pending JPH0987035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7276368A JPH0987035A (en) 1995-09-29 1995-09-29 Hard composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7276368A JPH0987035A (en) 1995-09-29 1995-09-29 Hard composite material and its production

Publications (1)

Publication Number Publication Date
JPH0987035A true JPH0987035A (en) 1997-03-31

Family

ID=17568464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7276368A Pending JPH0987035A (en) 1995-09-29 1995-09-29 Hard composite material and its production

Country Status (1)

Country Link
JP (1) JPH0987035A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3269683A4 (en) * 2015-03-09 2018-09-12 Sumitomo Electric Industries, Ltd. Ceramic powder and boron nitride sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3269683A4 (en) * 2015-03-09 2018-09-12 Sumitomo Electric Industries, Ltd. Ceramic powder and boron nitride sintered body

Similar Documents

Publication Publication Date Title
US7459105B2 (en) Nanostructured titanium monoboride monolithic material and associated methods
JP2523452B2 (en) High strength cubic boron nitride sintered body
JPH0627036B2 (en) High strength and high toughness TiB ▲ Bottom 2 ▼ Ceramics
JP3145470B2 (en) Tungsten carbide-alumina sintered body and method for producing the same
JPH0987035A (en) Hard composite material and its production
JPH11217258A (en) Sintered compact of alumina-base ceramic and its production
JPH05186844A (en) Sintered compact based on boron nitride having high density phase
JP2849055B2 (en) Sialon-based sintered body and coated sintered body
JPH06340481A (en) Surface-coated tungsten carbide-alumina sintered compact
JPH09184030A (en) Production of high strength hard composite material excellent in thermal shock resistance
JPH08176696A (en) Production of diamond dispersed ceramic composite sintered compact
US5023211A (en) Super-hard ceramics
JP2604155B2 (en) Ceramic tool with coating layer
JPH09125174A (en) Production of hard composite material containing cubic boron nitride
JP3152783B2 (en) Titanium compound whisker, its production method and composite material
JPH09157771A (en) Production of hard composite material containing cubic boron nitride
JPH06298568A (en) Whisker-reinforced sialon-based sintered compact and sintered and coated material
JPH08239277A (en) Cubic boron nitride composite ceramic tool and production thereof
JPH0372031B2 (en)
JPH07172919A (en) Titanium-compound sintered material
EP4219427A1 (en) Process for producing ceramic composite materials for ballistic purposes based on b4c, tib2 and b4c/tib2
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JPH07172906A (en) Ceramic sintered compact
JP2997334B2 (en) Fiber reinforced ceramics
JP2004114163A (en) Alumina group ceramic tool and production method for the same