JPH0729595A - Retainer type sealed lead-acid battery - Google Patents

Retainer type sealed lead-acid battery

Info

Publication number
JPH0729595A
JPH0729595A JP5194170A JP19417093A JPH0729595A JP H0729595 A JPH0729595 A JP H0729595A JP 5194170 A JP5194170 A JP 5194170A JP 19417093 A JP19417093 A JP 19417093A JP H0729595 A JPH0729595 A JP H0729595A
Authority
JP
Japan
Prior art keywords
battery
separator
glass beads
electrolyte
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5194170A
Other languages
Japanese (ja)
Inventor
Kenji Nakamura
中村  憲治
Masahiko Onari
雅彦 小齊
Takashi Yazaki
貴史 矢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP5194170A priority Critical patent/JPH0729595A/en
Publication of JPH0729595A publication Critical patent/JPH0729595A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To increase trickle cycle life and to reduce production cost by arranging a particle filled layer whose parctcles have mean pore sizes larger than the mean particle size of a separator in the surroundings of an electrode group. CONSTITUTION:Glass fibers having a specified mean diameter and a specified porosity is used in a separator. A positive plate and a negative plate combined with the separator are put into a container 1. Glass beads with a specified particle size are filled densely in a space surrounding an electrode group 2 from an electrolyte pouring hole 5 to form a particle filled layer 3. Foamed phenol resin with continuous pores is packed in the electrolyte pouring hole 5 to press the glass beads. Dilute sulfuric acid is poured into the container 1. The pouring electrolyte amount is limited to such a level that even if a battery is turned upside down, the electrolyte is not spilled out from the battery. The glass beads are made of soda-lime glass and have almost truly globular shapes, and have almost no pores. Particles of acrylic resin or polypropylene resin are used in addition to glass beads.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリテーナ式密閉型鉛蓄電
池の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a retainer type sealed lead acid battery.

【0002】[0002]

【従来の技術】電池の充電中に発生する酸素ガスを負極
板で吸収するいわゆる酸素サイクルを利用した密閉型鉛
蓄電池には、リテーナ式とゲル式の二種類があり、現在
主にリテーナ式が用いられている。
2. Description of the Related Art There are two types of sealed lead-acid batteries, a retainer type and a gel type, which utilize a so-called oxygen cycle in which oxygen gas generated during battery charging is absorbed by a negative electrode plate. Currently, the retainer type is mainly used. It is used.

【0003】リテーナ式は正極板と負極板との間に挿入
した微細なガラス繊維を素材とするマット状セパレータ
(ガラスセパレータ)で電池の充放電に必要な硫酸電解
液の保持と両極の隔離を行う方式である。リテーナ式は
無保守、無漏液、ポジションフリーなどの特徴を活かし
て、近年ポータブル機器、コードレス機器、コンピュー
ターのバックアップ電源をはじめ、大型の据置用電池や
自動車のエンジン始動用にも使用されるようになってき
た。
The retainer type is a mat-like separator (glass separator) made of fine glass fibers inserted between a positive electrode plate and a negative electrode plate for holding a sulfuric acid electrolyte necessary for charging and discharging a battery and separating both electrodes. This is the method to do. Retainer type is used for portable equipment, cordless equipment, backup power source of computer, large stationary battery and engine start of automobile by taking advantage of features such as no maintenance, no leakage and position free. Has become.

【0004】密閉型鉛蓄電池の場合、過充電のため、ま
た使用雰囲気が40℃以上の場合には、電槽から水蒸気
となって透過するため、電解液が除々に減少する。この
時、毛管張力のためセパレータ中の電解液が減少するこ
とになり、IR損失が大きくなり、特にUPS用途等の
高率放電時には、性能が大きく低下してしまうこととな
る。これを防ぐには、初めに電解液を過剰に存在させて
おけば良いが、リテーナ式密閉型鉛蓄電池の特徴である
ポジションフリーという特徴がなくなってしまう。
In the case of a sealed lead-acid battery, the electrolytic solution gradually decreases due to overcharging, and when the operating atmosphere is 40 ° C. or higher, water vapor permeates from the battery case and permeates. At this time, the electrolytic solution in the separator is decreased due to the capillary tension, and the IR loss is increased, and the performance is significantly deteriorated especially at the time of high rate discharge such as UPS application. In order to prevent this, it is sufficient to make the electrolytic solution excessively exist at first, but the characteristic of position-free, which is the characteristic of the retainer type sealed lead acid battery, disappears.

【0005】さらに、リテーナ式密閉型鉛蓄電池では、
正極格子に鉛カルシウム合金を使用しているため、使用
雰囲気が60℃以上の場合には、格子が伸びて電槽を破
壊してしまい、気密不良がおこり寿命となってしまうこ
とがある。
Further, in the retainer type sealed lead acid battery,
Since a lead-calcium alloy is used for the positive electrode grid, when the use atmosphere is 60 ° C. or higher, the grid expands and destroys the battery case, resulting in poor airtightness and a long life.

【0006】[0006]

【発明が解決しようとする課題】上述したように、従来
のリテーナ式密閉型鉛蓄電池は、過充電や水蒸気透過に
よる減液によって、IR損失を生じたり、また高温使用
時に、電槽破壊が起ってしまうという問題点を有してい
た。
As described above, the conventional retainer-type sealed lead-acid battery causes IR loss due to overcharge and liquid reduction due to water vapor permeation, and the battery case is destroyed during high temperature use. There was a problem that it ended up.

【0007】[0007]

【課題を解決するための手段】本発明は、極板群の周囲
に、セパレータの平均孔径より大きい平均孔径を有する
粒体充填層を配し、この充填層に電解液を保持させたこ
とで上記リテーナ式密閉型鉛蓄電池の欠点を解決したも
のである。
According to the present invention, a particle packing layer having an average pore size larger than the average pore size of a separator is arranged around an electrode plate group, and the electrolyte solution is retained in this packing layer. This is a solution to the drawbacks of the retainer-type sealed lead-acid battery.

【0008】[0008]

【実施例】以下、本発明を詳細に説明する。セパレータ
には、ガラス繊維の平均直径約1μm、多孔度約94%
の通常使用されているものを用い、20kg/dm2
荷重下で、厚さが1.5mmのものを使用した。正極板
と負極板それにセパレータを組み合わせ2V定格容量8
Ah(20hR)の電池を製作した。極板間は1.5m
mとした。
The present invention will be described in detail below. The separator has a glass fiber average diameter of about 1 μm and a porosity of about 94%.
The thickness of 1.5 mm under the load of 20 kg / dm 2 was used. Combined positive electrode plate, negative electrode plate and separator 2V rated capacity 8
An Ah (20hR) battery was manufactured. 1.5m between pole plates
m.

【0009】そして、粒子径の異なる3種類のガラスビ
ーズを用い、極板群周囲の空間に密に充填することによ
り、水銀圧入法で測定して、平均孔径が約3μm、10
μm、30μmの、それぞれ異なる粒体充填層を形成し
た電池とした。ガラスビーズの充填は電池上部の注液口
から行った。なお、この充填は非常に容易であった。注
液口には充填後連続気泡を持つ発泡フェノールを詰め、
ガラスビーズの押さえとした。電池断面模式図を図1に
示す。図において1は電槽、2は極板群、3はガラスビ
ーズの充填層、4は電槽の蓋、5は注液口、6は発泡フ
ェノールである。
Then, by using three types of glass beads having different particle diameters and densely filling the space around the electrode plate group, the average pore diameter was about 3 μm, as measured by mercury porosimetry.
The batteries were formed with different particle filling layers of μm and 30 μm. The glass beads were filled from the liquid injection port on the top of the battery. This filling was very easy. After filling, fill the injection port with foamed phenol with open cells,
It was used to hold down glass beads. A schematic cross-sectional view of the battery is shown in FIG. In the figure, 1 is a battery case, 2 is an electrode plate group, 3 is a filled layer of glass beads, 4 is a battery container lid, 5 is a liquid injection port, and 6 is foamed phenol.

【0010】その後、比重1.32(20℃)の希硫酸
を電池に注液した。希硫酸注液量は、2.45V/セル
で充電した時に、倒置しても電解液が電池外へ溢液しな
い量とし、実際には従来品の電解液量に比べガラスビー
ズを充填した電池の電解液量は約20%増しとした。
Then, dilute sulfuric acid having a specific gravity of 1.32 (20 ° C.) was poured into the battery. The amount of dilute sulfuric acid injection is such that the electrolyte does not overflow outside the battery when it is charged up at 2.45 V / cell, and actually it is a battery filled with glass beads compared to the conventional electrolyte. The amount of the electrolytic solution was increased by about 20%.

【0011】なお、ガラスビーズはソーダ石灰ガラスか
らなる真球に近い物で、自身は孔をほとんど持たないも
のを使用した。また、使用したガラスビーズは電池毎に
ほぼ同じ粒径を有するものを使用した。本発明における
粒体充填層の孔は、本実施例においてはガラスビーズ間
の隙間によって形成されている。電池内容を表1に示
す。
The glass beads used were soda-lime glass-like ones that were close to a true sphere and had almost no holes themselves. The glass beads used had the same particle size for each battery. The pores of the granular material filling layer in the present invention are formed by the gaps between the glass beads in this embodiment. Table 1 shows the battery contents.

【0012】[0012]

【表1】 (実験1)上述した電池をトリクル寿命試験に供した。
トリクル電圧2.3V/セルで温度40℃に保った恒温
槽(気相)に電池を入れ、3ヶ月毎に50W定電力放電
で終止電圧1.65V/セルになるまで放電を行ない、
放電持続時間を測定した。結果を図2に示す。本発明に
より、極板群の周囲に、セパレータの平均孔径より大き
い平均孔径を有するガラスビーズ充填層を配したリテー
ナ式密閉型鉛蓄電池は、従来品に比べトリクル寿命性能
に優れていた。
[Table 1] (Experiment 1) The battery described above was subjected to a trickle life test.
Put the battery in a thermostatic chamber (gas phase) kept at a trickle voltage of 2.3 V / cell at a temperature of 40 ° C., and discharge at a constant power discharge of 50 W every 3 months until the final voltage of 1.65 V / cell,
The discharge duration was measured. The results are shown in Figure 2. According to the present invention, the retainer-type sealed lead-acid battery in which the glass bead-filled layer having the average pore diameter larger than the average pore diameter of the separator is arranged around the electrode plate group is superior in trickle life performance to the conventional product.

【0013】この理由として以下のことが考えられる。
トリクル寿命試験1年目の放電時の端子電圧をみると、
電池No.1〜3では、放電開始直後の電圧降下が大き
く、本発明による電池No.4のそれは小さかった。す
なわち、前者は本発明品に比べて電池の内部抵抗の増加
が大きく、それにともなって容量低下が大きかったもの
と考えられる。
The following can be considered as the reason for this.
Trickle life test Looking at the terminal voltage during discharge in the first year,
Battery No. In Nos. 1 to 3, the voltage drop immediately after the start of discharge was large, and the battery Nos. That of 4 was small. That is, it is considered that the former had a larger increase in the internal resistance of the battery than that of the product of the present invention, and the capacity decrease accordingly.

【0014】トリクル寿命試験が進行するにつれ、水蒸
気透過により、液が電槽壁を透過して外部へ出てしまう
ので、電池内部の電解液が減少する。この時セパレータ
の孔径が活物質内部やガラスビーズ充填層が持つ孔径よ
り大きいと、毛管張力が小さいため、セパレータの電解
液が優先的に減少して抵抗が大きくなり、性能低下を引
き起こしたものと考えられる。
As the trickle life test progresses, the permeation of water vapor causes the liquid to pass through the wall of the battery case and exit to the outside, so that the amount of electrolytic solution inside the battery decreases. At this time, if the pore size of the separator is larger than the pore size of the inside of the active material or the glass bead-filled layer, the capillary tension is small, so that the electrolytic solution of the separator is preferentially decreased to increase the resistance and cause the performance deterioration. Conceivable.

【0015】極板群周囲に配したガラスビーズは、電解
液を含浸している。本発明による電池No.4では、ガ
ラスビーズ充填層の平均孔径がセパレータの平均孔径よ
り大きいため、電解液の減少がガラスビーズ充填層から
起り、セパレータ中でIR損失が起らず、寿命性能が優
れていたと思われる。また、ガラスビーズ充填層の孔径
がセパレータの孔径より大きいことが望ましいが、セパ
レータの平均孔径よりガラスビーズ充填層の平均孔径が
大きければ、十分にその効果のあることがわかった。
The glass beads arranged around the electrode plate group are impregnated with the electrolytic solution. Battery No. 1 according to the present invention. In No. 4, since the average pore size of the glass bead-filled layer is larger than the average pore size of the separator, it is considered that the electrolyte solution is reduced from the glass-bead-filled layer, IR loss does not occur in the separator, and the life performance is excellent. Further, it is desirable that the pore size of the glass bead-filled layer is larger than the pore size of the separator, but it has been found that the effect is sufficiently obtained if the average pore size of the glass bead-filled layer is larger than the average pore size of the separator.

【0016】水銀圧入法による測定では、正極活物質の
平均孔径が0.5μm、負極活物質の平均孔径が5μ
m、セパレータの平均孔径が10μmである。さらにセ
パレータの全細孔体積は、径30μm未満の孔で90%
を占められていた。 (実験2)トリクル電圧2.3V/セルで温度60℃に
保った恒温槽(気相)に電池を入れ、1ヶ月毎に1.6
A定電流放電で終止電圧1.70V/セルになるまで放
電を行ない、放電持続時間を測定した。その結果を図3
に示す。
When measured by the mercury penetration method, the positive electrode active material has an average pore diameter of 0.5 μm, and the negative electrode active material has an average pore diameter of 5 μm.
m, and the average pore diameter of the separator is 10 μm. Furthermore, the total pore volume of the separator is 90% for pores with a diameter of less than 30 μm.
Was occupied. (Experiment 2) The battery was placed in a thermostatic chamber (gas phase) kept at a temperature of 60 ° C. with a trickle voltage of 2.3 V / cell, and 1.6 times per month.
A constant-current discharge was performed until the final voltage reached 1.70 V / cell, and the discharge duration was measured. The result is shown in Figure 3.
Shown in.

【0017】電池No.1は、正極格子が著しく伸びた
ため、4ヶ月目に電槽にひび割れが生じ、気密不良のた
め容量が低下した。電池No.2〜4は容量推移が良
く、寿命末期に電槽に膨らみが観察されたものの、電槽
破壊は観測されなかった。
Battery No. In No. 1, since the positive electrode grid was remarkably expanded, cracks occurred in the battery case after 4 months, and the capacity decreased due to poor airtightness. Battery No. In Nos. 2 to 4, the capacity transition was good, and swelling was observed in the battery case at the end of its life, but no battery damage was observed.

【0018】後者の容量推移が良かったのは、格子の伸
びが周囲のガラスビーズにより制限され、その応力が極
板にかかり、極板群の圧迫度が増加したためと考えられ
る。従来より、極板群の圧迫度を高めて電池を組立れ
ば、寿命性能は良くなると言われている。しかし実際に
は組立が困難になるため、あまり圧迫度は上げることが
できない。
It is considered that the reason why the latter capacity transition was good is that the elongation of the lattice was limited by the surrounding glass beads, the stress was applied to the electrode plate, and the degree of compression of the electrode plate group increased. Conventionally, it is said that the life performance is improved by assembling the battery by increasing the degree of compression of the electrode plate group. However, since the assembly is actually difficult, the degree of pressure cannot be increased so much.

【0019】ガラスビーズを極板群周囲に配すと、上述
したように結果的に極板群に圧迫がかるようになるた
め、容量推移が良かったものと思われる。また、格子が
伸びても、本発明のように極板群周囲にガラスビーズを
配せば、力が分散し電槽壁全体に応力がかかるため、電
槽破壊もおこり難くなるものと思われる。
When the glass beads are arranged around the electrode plate group, the electrode plate group is eventually compressed as described above, and it is considered that the capacity transition was good. Further, even if the lattice stretches, if glass beads are arranged around the electrode plate group as in the present invention, the force is dispersed and stress is applied to the entire wall of the battery case, so that it is considered that the battery case is less likely to break. .

【0020】以上の実施例においては充填層を形成する
粒体としてガラスビーズを用いた例を示したが、アクリ
ル,ポリプロピレン樹脂等、耐酸、耐酸化性があり、電
池に害を及ぼさないものであればガラス以外の粒体を用
いることができる。
In the above examples, glass beads were used as the granules forming the filling layer. However, acrylic, polypropylene resin, etc., which have acid resistance and oxidation resistance, do not harm the battery. If so, particles other than glass can be used.

【0021】[0021]

【発明の効果】以上詳述したように本発明によれば、極
板群の周囲にセパレータの平均孔径より大きい平均孔径
を有する粒体充填層を配したことで、トリクル寿命性能
に優れたリテーナ式密閉型鉛蓄電池を安価に製造するこ
とが可能になり、工業的価値は大きい。
As described in detail above, according to the present invention, a retainer having excellent trickle life performance is provided by arranging a particle packing layer having an average pore size larger than the average pore size of the separator around the electrode plate group. Type sealed lead-acid battery can be manufactured at low cost, and has great industrial value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明密閉型鉛蓄電池の要部断面模式図FIG. 1 is a schematic cross-sectional view of a main part of a sealed lead acid battery of the present invention.

【図2】40℃トリクル寿命性能図[Figure 2] 40 ° C trickle life performance diagram

【図3】60℃トリクル寿命性能図[Figure 3] 60 ° C trickle life performance diagram

【符号の説明】[Explanation of symbols]

1 電槽 2 極板群 3 ガラスビーズの充填層 4 電槽蓋 5 注液口 6 発泡フェノール 1 Battery Case 2 Electrode Plate Group 3 Filling Layer of Glass Beads 4 Battery Case Cover 5 Injection Port 6 Foamed Phenol

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 極板群の周囲に、セパレータの平均孔径
より大きい平均孔径を有する粒体充填層を配したことを
特徴とするリテーナ式密閉型鉛蓄電池。
1. A retainer-type sealed lead-acid battery, wherein a particle packing layer having an average pore size larger than the average pore size of a separator is arranged around the electrode plate group.
JP5194170A 1993-07-09 1993-07-09 Retainer type sealed lead-acid battery Pending JPH0729595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5194170A JPH0729595A (en) 1993-07-09 1993-07-09 Retainer type sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5194170A JPH0729595A (en) 1993-07-09 1993-07-09 Retainer type sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH0729595A true JPH0729595A (en) 1995-01-31

Family

ID=16320097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5194170A Pending JPH0729595A (en) 1993-07-09 1993-07-09 Retainer type sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH0729595A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303224A (en) * 2005-04-21 2006-11-02 Mitsubishi Electric Corp Electric double layer capacitor
KR100715091B1 (en) * 2005-08-08 2007-05-04 한국타이어 주식회사 An electrode structure for lead storage battery
JP2007220696A (en) * 2006-02-14 2007-08-30 Mitsubishi Electric Corp Electric double layer capacitor
JP2007220841A (en) * 2006-02-16 2007-08-30 Mitsubishi Electric Corp Electric double layer capacitor
JP2011044746A (en) * 2010-11-29 2011-03-03 Mitsubishi Electric Corp Electric double-layer capacitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303224A (en) * 2005-04-21 2006-11-02 Mitsubishi Electric Corp Electric double layer capacitor
KR100715091B1 (en) * 2005-08-08 2007-05-04 한국타이어 주식회사 An electrode structure for lead storage battery
JP2007220696A (en) * 2006-02-14 2007-08-30 Mitsubishi Electric Corp Electric double layer capacitor
JP4593491B2 (en) * 2006-02-14 2010-12-08 三菱電機株式会社 Electric double layer capacitor
JP2007220841A (en) * 2006-02-16 2007-08-30 Mitsubishi Electric Corp Electric double layer capacitor
JP4593493B2 (en) * 2006-02-16 2010-12-08 三菱電機株式会社 Electric double layer capacitor
JP2011044746A (en) * 2010-11-29 2011-03-03 Mitsubishi Electric Corp Electric double-layer capacitor

Similar Documents

Publication Publication Date Title
EP0443451B1 (en) Sealed lead-acid battery
JPH0729595A (en) Retainer type sealed lead-acid battery
JP2004055323A (en) Control valve type lead-acid battery
JP3555177B2 (en) Sealed lead-acid battery
GB2084790A (en) Lead-acid batteries
JP3146438B2 (en) Sealed lead-acid battery
JP3261417B2 (en) Sealed lead-acid battery
JP2586249B2 (en) Sealed lead-acid battery
JP3163510B2 (en) Sealed lead-acid battery
JPH07211342A (en) Retainer type sealed lead-acid battery
JPH07142082A (en) Retainer type sealed lead-acid battery
JPH07142081A (en) Retainer type sealed lead-acid battery
JP3094396B2 (en) Manufacturing method of sealed lead-acid battery
JPH0636793A (en) Sealed lead-acid battery
JPH10125331A (en) Cylindrical sealed lead-acid battery
JPH0432165A (en) Enclosed lead battery
JPH07142083A (en) Retainer type sealed lead-acid battery
JPH0652882A (en) Sealed lead-acid battery
JPH06150961A (en) Sealed lead-acid battery
JPH04160762A (en) Sealed type lead storage battery
JPH06119936A (en) Sealed type lead-acid battery
JPH05326011A (en) Sealed lead-acid battery
JPH05174864A (en) Hermetic type lead-acid battery
JPH04141961A (en) Gastight lead storage battery
JPH05151988A (en) Sealed type lead acid battery