JPH07276456A - Manufacture of resin material for machining and resin processed product - Google Patents

Manufacture of resin material for machining and resin processed product

Info

Publication number
JPH07276456A
JPH07276456A JP2912895A JP2912895A JPH07276456A JP H07276456 A JPH07276456 A JP H07276456A JP 2912895 A JP2912895 A JP 2912895A JP 2912895 A JP2912895 A JP 2912895A JP H07276456 A JPH07276456 A JP H07276456A
Authority
JP
Japan
Prior art keywords
resin
mold
machining
thermoplastic resin
resin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2912895A
Other languages
Japanese (ja)
Inventor
Kazuo Kito
和男 鬼頭
Yoshiyuki Yamamoto
善行 山本
Toru Hiratsuka
徹 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2912895A priority Critical patent/JPH07276456A/en
Publication of JPH07276456A publication Critical patent/JPH07276456A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a resin processed product in which sink marks and voids are not generated, deformation is small during the preservation, use and machining and damages are not generated by feeding a molten thermoplastic resin, raising the mold clamping force of a mold and compressing, cooling and solidifying the resin. CONSTITUTION:An example of the molding procedures using a molding device 1 is shown hereby. The mold device 1 is controlled to the temperature proper for solidifying a thermoplastic resin. A given amount of the hot, molten resin 10 is injected into a cavity 9 in the mold through a sprue 8 in a cylinder of an injection molding machine. After that, the mold clamping force is raised and a movable side template 6 is moved, while the molten resin in the cavity 9 is compressed by the given margin for compressing and molded into the shape of the cavity 9, and after the given cooling time is completed, the mold is opened to release a resin material. The material can be manufactured successively by repeating the above-said operation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性の機械加工用
樹脂素材およびその製造方法、およびそれから機械加工
されて得られる樹脂加工品の製造方法に関する。更に詳
しくは、変形の少ない均質な物性を有する機械加工用熱
可塑性樹脂素材の製造方法および樹脂加工品の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoplastic resin material for machining, a method for producing the same, and a method for producing a resin processed product obtained by machining the same. More specifically, the present invention relates to a method for producing a thermoplastic resin material for machining having uniform physical properties with little deformation and a method for producing a resin processed product.

【0002】[0002]

【従来の技術】従来から、樹脂成形品は、産業機械用の
部品に多用されており、たとえば歯車、軸受け、ローラ
ー、摺動板などに使用されている。
2. Description of the Related Art Conventionally, resin molded products have been widely used as parts for industrial machines, for example, gears, bearings, rollers, sliding plates and the like.

【0003】樹脂の中でも、熱可塑性樹脂は熱を加える
と溶融し冷却すると固化する性質を有するため、この特
徴を利用して種々の成形法が開発され工業的に利用され
ている。成形法としては、射出成形法、圧縮成形法およ
び押出成形法が広く採用されている。射出成形法は、金
型の中に溶融した樹脂を供給し、冷却固化後金型から成
形品を取り出す方法である。圧縮成形法は、予め加熱し
た金型内に熱可塑性樹脂原料を投入し、樹脂を溶融して
加圧成形後、金型を冷却して、金型内の樹脂を冷却固化
して成形品を得る方法である。また、押出成形法は、熱
可塑性樹脂原料を押出成形機に投入し、押出機で可塑化
し、押出機に連結されたダイス内で溶融した熱可塑性樹
脂を冷却固化させて成形品を得る方法である。
Among the resins, thermoplastic resins have the property of melting when heated and solidifying when cooled. Therefore, various molding methods have been developed and industrially used by utilizing this characteristic. As a molding method, an injection molding method, a compression molding method and an extrusion molding method are widely adopted. The injection molding method is a method in which molten resin is supplied into a mold, and after cooling and solidification, a molded product is taken out from the mold. In the compression molding method, the thermoplastic resin raw material is put into a preheated mold, the resin is melted and pressure-molded, the mold is cooled, and the resin in the mold is cooled and solidified to obtain a molded product. Is the way to get. In addition, the extrusion molding method is a method in which a thermoplastic resin raw material is put into an extruder, plasticized by the extruder, and the thermoplastic resin melted in a die connected to the extruder is cooled and solidified to obtain a molded product. is there.

【0004】成形法の中でも、射出成形法が、成形の時
間サイクルが短く、量産性に優れるため広く利用されて
いる。しかしながら、射出成形法は一定の形状の成形品
を生産する量産性に優れているが、金型が高価であるた
め、少量の成形品を生産する場合には経済的に不利な成
形法である。
Among the molding methods, the injection molding method is widely used because of its short molding time cycle and excellent mass productivity. However, the injection molding method is excellent in mass productivity for producing a molded product of a certain shape, but since the mold is expensive, it is an economically disadvantageous molding method when a small amount of molded product is produced. .

【0005】このため、比較的少量の成形品を製造する
場合には、種々の成形方法を用いて、平板や丸棒などの
形状の、機械加工用樹脂素材を製造した後、この素材を
切出して切削などの機械加工を施して樹脂加工品とし
て、成形品を得る方法が多く採用されている。
Therefore, when a relatively small amount of a molded product is manufactured, a resin material for machining having a shape such as a flat plate or a round bar is manufactured by using various molding methods, and then this material is cut out. A method of obtaining a molded product as a resin processed product by performing mechanical processing such as cutting is often adopted.

【0006】[0006]

【発明が解決しょうとする課題】しかしながら、従来か
ら知られている成形方法による機械加工用樹脂素材で
は、変形が進行したり、機械加工の際にしばしば破損し
たり、また得られた樹脂加工品でも、変形が進み、しば
らくするとしばしば破損するという問題があった。
However, in the resin material for machining by the conventionally known molding method, the deformation is advanced, the resin material is often broken during machining, and the obtained resin processed product is obtained. However, there was a problem that it was deformed and often damaged after a while.

【0007】また、機械加工用樹脂素材を得るための成
形方法に注目した場合、従来の技術には以下のような問
題がある。
When attention is paid to a molding method for obtaining a resin material for machining, the conventional techniques have the following problems.

【0008】例えば、射出成形法で機械加工用樹脂素材
を得る方法は、目的の素材の肉厚が厚くなると、金型内
での樹脂の冷却固化時に素材の中心部(コア層)が固化
しないうちに金型と接触している素材の表層部(スキン
層)が固化するため、その後の樹脂の収縮により内部に
ボイドが発生したり、射出後の保圧時に樹脂が金型ゲー
ト部で固化して、金型内への圧力伝達が不足するため、
素材表面にヒケを生ずるなどの欠点があった。また、得
られた素材は機械加工する際に破損したり機械加工され
て加工部品となった後も破損に至ることがあった。
For example, in the method of obtaining a resin material for machining by injection molding, when the thickness of the target material becomes thick, the central portion (core layer) of the material does not solidify when the resin is cooled and solidified in the mold. Since the surface layer (skin layer) of the material that is in contact with the mold solidifies inside, voids occur inside due to subsequent shrinkage of the resin, and the resin solidifies at the mold gate when holding pressure after injection. Then, because the pressure transmission into the mold is insufficient,
There were drawbacks such as sink marks on the surface of the material. Further, the obtained material may be damaged during machining, or may be damaged even after being machined into processed parts.

【0009】また、圧縮成形法で機械加工用樹脂素材を
得る方法は、加熱したプレス金型に投入された熱可塑性
樹脂からなる原料の溶融と、金型内の冷却固化とに長時
間を要し、生産性が悪く、またその長時間の影響によっ
て酸化分解や熱分解により樹脂が劣化するため、素材の
物性も著しく低下する。更に、発生した揮発分により、
素材の外観が悪くなり、よって機械加工によって得られ
た樹脂加工品は商品価値が著しく低いものになってい
た。
Further, in the method of obtaining a resin material for machining by the compression molding method, it takes a long time to melt the raw material made of the thermoplastic resin charged in the heated press die and to cool and solidify the die. However, the productivity is poor, and the resin is deteriorated by oxidative decomposition or thermal decomposition due to the effect of the long time, and the physical properties of the raw material are remarkably lowered. Furthermore, depending on the volatile matter generated,
The appearance of the raw material deteriorated, so that the resin processed product obtained by machining had a remarkably low commercial value.

【0010】また、押出成形法で機械加工用樹脂素材を
得る方法は、押出機のスクリューで溶融した熱可塑性樹
脂をダイス内に押出して冷却するため、射出成形法と同
様に、機械加工時または機械加工後も経時的に変形し、
場合によっては破壊に至ることもある。また、成形品内
部のボイドの発生を抑制するために、押出成形の引取り
速度を遅くし、高い押出圧力と長い冷却時間を要し、生
産性が低いことも問題であった。
Further, in the method of obtaining the resin material for machining by the extrusion molding method, since the thermoplastic resin melted by the screw of the extruder is extruded into the die and cooled, the same as in the injection molding method, at the time of machining or Deforms over time after machining,
In some cases, it may lead to destruction. Further, in order to suppress the generation of voids inside the molded product, the take-up speed of extrusion molding is slowed down, a high extrusion pressure and a long cooling time are required, and there is a problem that productivity is low.

【0011】[0011]

【課題を解決するための手段】樹脂加工品を得るための
これらの課題を解決する手段について検討した結果、機
械加工用樹脂素材の機械的物性の異方性に注目し、以下
に示す機械加工用樹脂素材を製造する方法を見出すに至
った。
[Means for Solving the Problems] As a result of studying means for solving these problems for obtaining a resin processed product, as a result of focusing on the anisotropy of mechanical properties of a resin material for machining, We have come to find a method of manufacturing resin materials for automobiles.

【0012】即ち本発明は、(1) 「可動部位を有する金
型の内部に、溶融した熱可塑性樹脂を供給しながら、ま
たは供給した後、金型の型締力を上昇させ、熱可塑性樹
脂を圧縮、冷却固化させることを特徴とする機械加工用
樹脂素材の製造方法。」および(4) 「(1) の製造方法に
よって得られた機械加工用樹脂素材を、機械加工するこ
とを特徴とする樹脂加工品の製造方法。」からなるもの
である。
That is, according to the present invention, (1) "a molten thermoplastic resin is supplied to the inside of a mold having a movable part, or after the molten thermoplastic resin is supplied, the mold clamping force of the mold is increased to increase the thermoplastic resin. A method for producing a resin material for machining, which comprises compressing and cooling and solidifying the resin. "And (4) characterized in that the resin material for machining obtained by the production method of (1) is machined. A method for producing a resin processed product. ”.

【0013】以下に、本発明の構成について詳しく説明
する。
The structure of the present invention will be described in detail below.

【0014】まず本発明の機械加工用樹脂素材は、その
機械的特性の異方性が小さいことが求められる。その異
方性が大きいと、樹脂素材の保管、樹脂素材の機械加
工、加工品の使用の時などにおいて、寸法の変化や、破
損の可能性が高くなることから好ましくない。なかで
も、素材の曲げ強度が重要である。機械的物性の異方性
は、成形時の溶融樹脂の流れの方向とその直交方向とに
おいて、または成形圧力の方向とその直交方向とにおい
て、その異方性の最も差が顕著となる傾向があるので、
それらの方向の機械的特性の差に注目すべきである。
First, the resin material for machining of the present invention is required to have a small anisotropy of mechanical properties. If the anisotropy is large, the possibility of dimensional change and breakage increases during storage of the resin material, machining of the resin material, use of the processed product, etc., which is not preferable. Above all, the bending strength of the material is important. As for the anisotropy of mechanical properties, the difference in the anisotropy tends to be most noticeable in the direction of the flow of the molten resin at the time of molding and the direction orthogonal thereto, or in the direction of the molding pressure and the direction orthogonal thereto. Because there is
Note the difference in mechanical properties in those directions.

【0015】本発明に使用する熱可塑性樹脂としては、
通常公知の熱可塑性樹脂であり、例えば、ポリオレフィ
ン系重合体(ポリエチレン、ポリプロピレン等)および
その共重合体、(メタ)アクリル酸あるいは(メタ)ア
クリル酸エステル系重合体およびそれらの共重合体、ポ
リスチレン樹脂およびゴムで補強されたポリスチレン樹
脂、AS樹脂、ABS樹脂、ポリフェニレンエーテル系
樹脂、ポリオキシメチレン樹脂、ポリヘキサメチレンア
ジパミドやポリカプロアミドなどのポリアミド樹脂、ポ
リエチレンテレフタレートやポリブチレンテレフタレー
トなどの飽和ポリエステル樹脂、ポリカーボネート樹
脂、ポリフェニレンサルファイド樹脂、熱可塑性ポリウ
レタン樹脂などが好ましく用いられる。なかでもこれら
の樹脂の中でポリフェニレンサルファイド、ポリオキシ
メチレン、ポリヘキサメチレンアジパミド、ポリカプロ
アミドおよびポリブチレンテレフタレートがさらに好ま
しく用いられる。共重合、グラフト、架橋、またはポリ
マブレンドもしくはアロイ化等公知の方法で変成したも
のであっても使用することができる。
The thermoplastic resin used in the present invention includes:
It is a generally known thermoplastic resin, for example, a polyolefin polymer (polyethylene, polypropylene, etc.) and its copolymers, (meth) acrylic acid or (meth) acrylic acid ester polymers and their copolymers, polystyrene. Polystyrene resin reinforced with resin and rubber, AS resin, ABS resin, polyphenylene ether resin, polyoxymethylene resin, polyamide resin such as polyhexamethylene adipamide and polycaproamide, saturation of polyethylene terephthalate and polybutylene terephthalate Polyester resin, polycarbonate resin, polyphenylene sulfide resin, thermoplastic polyurethane resin and the like are preferably used. Among these, polyphenylene sulfide, polyoxymethylene, polyhexamethylene adipamide, polycaproamide and polybutylene terephthalate are more preferably used among these resins. Those modified by a known method such as copolymerization, grafting, cross-linking, or polymer blending or alloying can also be used.

【0016】また、本発明の熱可塑性樹脂には、繊維や
充填材などの強化材を含有した熱可塑性樹脂も使用する
ことができ、強化繊維や充填材としては、ガラス繊維、
炭素繊維、アラミド繊維、シリカ繊維、シリカ・アルミ
ナ繊維、硼素繊維、窒化硼素繊維、チタン酸カリ、金属
繊維、ガラスビーズ、ガラスフレーク、ガラス粉、硫酸
バリウム、炭酸カルシウム、マイカ、水酸化アルミニウ
ム、水酸化マグネシウム、タルク、カーボンブラック、
酸化チタンなどが挙げられる。特に本発明の効果が大き
いという面で、ガラス繊維、炭素繊維、アラミド繊維な
どの強化繊維を含有させたものが、好ましく用いられ
る。このような繊維や充填材などの強化剤の含有量は、
補強効果の面から、素材中5〜70重量%が好ましく使
用される。
The thermoplastic resin of the present invention may also be a thermoplastic resin containing a reinforcing material such as fiber or filler, and the reinforcing fiber or filler may be glass fiber,
Carbon fiber, aramid fiber, silica fiber, silica-alumina fiber, boron fiber, boron nitride fiber, potassium titanate, metal fiber, glass beads, glass flakes, glass powder, barium sulfate, calcium carbonate, mica, aluminum hydroxide, water Magnesium oxide, talc, carbon black,
Examples include titanium oxide. In particular, those containing reinforcing fibers such as glass fibers, carbon fibers and aramid fibers are preferably used from the viewpoint that the effect of the present invention is great. The content of reinforcing agents such as fibers and fillers,
From the viewpoint of reinforcing effect, 5 to 70% by weight of the material is preferably used.

【0017】さらに熱可塑性樹脂は、酸化防止剤、耐候
剤、難燃剤、染料や顔料などの着色剤、離型剤、可塑
剤、潤滑剤、滑剤、結晶化促進剤など公知の添加剤を含
有することもできる。
Further, the thermoplastic resin contains known additives such as antioxidants, weathering agents, flame retardants, colorants such as dyes and pigments, release agents, plasticizers, lubricants, lubricants and crystallization accelerators. You can also do it.

【0018】次に、本発明の特徴である機械加工用樹脂
素材を得るための成形方法について説明する。
Next, a molding method for obtaining a resin material for machining which is a feature of the present invention will be described.

【0019】従来、射出成形では、金型内に樹脂が溶融
流動配向するため、素材の機械的物性の異方性が大きく
なり、本発明の機械加工用樹脂素材を得るのは困難であ
る。また、押出し成形でも同様に、素材の機械的物性の
異方性が大きくなるため、本発明の機械加工用樹脂素材
を得るのが困難である。本発明の方法によれば、機械的
物性の異方性の小さいものを得ることができる。
Conventionally, in injection molding, since the resin is melt-flow oriented in the mold, the anisotropy of the mechanical properties of the material becomes large, and it is difficult to obtain the resin material for machining according to the present invention. Similarly, in extrusion molding, it is difficult to obtain the resin material for machining of the present invention because the anisotropy of mechanical properties of the material becomes large. According to the method of the present invention, it is possible to obtain a material having small mechanical anisotropy.

【0020】まず可動性部位を有する金型内に、溶融さ
れた熱可塑性樹脂の供給を開始する。次に、溶融熱可塑
性樹脂の供給中または、供給終了後に、金型の型締力を
上昇させて、金型内の容積を減少させる。その結果、熱
可塑性樹脂は圧縮され、最終的には冷却固化される。冷
却固化の後、金型を開放して機械加工用樹脂素材を取り
出す。
First, the supply of the molten thermoplastic resin is started into the mold having the movable portion. Next, during or after the supply of the molten thermoplastic resin, the mold clamping force of the mold is increased to reduce the volume inside the mold. As a result, the thermoplastic resin is compressed and finally cooled and solidified. After cooling and solidification, the mold is opened and the resin material for machining is taken out.

【0021】ここで、溶融された熱可塑性樹脂の供給方
法としては、押出または射出の供給ユニットを用いて、
熱可塑性樹脂を溶融可塑化した後に供給する方法が好ま
しく用いられる。押出供給ユニットや射出供給ユニット
としては、スクリュー式やプランジャ式など任意のもの
が使用できる。
Here, as a method for supplying the molten thermoplastic resin, an extrusion or injection supply unit is used,
A method in which the thermoplastic resin is melted and plasticized and then supplied is preferably used. As the extrusion supply unit and the injection supply unit, any type such as a screw type or a plunger type can be used.

【0022】供給時の熱可塑性樹脂の温度としては、溶
融できる温度であれば良く、また金型の温度としては、
熱可塑性樹脂が固化する温度とすることが一般的に用い
られる。また熱可塑性樹脂は、最終的に得られる所望の
樹脂素材の容積(すなわち最終的な金型容積)とほぼ同
じ量が供給されるのが一般的である。この場合、熱可塑
性樹脂の冷却にともなう収縮分も考慮にいれて、溶融熱
可塑性樹脂の供給量を決定することが好ましい。
The temperature of the thermoplastic resin at the time of supply may be any temperature as long as it can be melted, and the temperature of the mold is
A temperature at which the thermoplastic resin solidifies is generally used. Further, the thermoplastic resin is generally supplied in an amount substantially the same as the volume of the desired resin material finally obtained (that is, the final mold volume). In this case, it is preferable to determine the supply amount of the molten thermoplastic resin in consideration of the shrinkage amount due to the cooling of the thermoplastic resin.

【0023】また、溶融熱可塑性樹脂の供給は、溶融熱
可塑性樹脂の供給開始時の金型内容積(以下、初期金型
内容積と称する)より多くすることができる。その場
合、金型容積の減少操作に入る時には、供給された溶融
樹脂の体積のため、金型内の容積は初期金型内容積より
も、大きくなることがある。[溶融熱可塑性樹脂の総供
給体積]/[初期金型内容積]の関係としては、0.3
以上30以下、さらに1以上20以下、またさらに1.
5以上20以下が好ましく用いられる。溶融熱可塑性樹
脂の供給は、金型内の型締力上昇の開始前に終了してい
ても良く、また型締力上昇開始後も継続させることもで
きる。また[成形終了時金型内容積]/[初期金型内容
積]の関係として0.25以上25以下、さらに0.8
以上16以下、またさらに1.2以上16以下が好まし
く用いられる。[溶融熱可塑性樹脂の総供給体積]/
[初期金型内容積]および[成形終了時金型内容積]/
[初期金型内容積]が特に小さい場合には、得られる素
材の物性の異方性が高くなり、一方特に大きい場合に
は、素材内部にボイドが発生しやすくなるという問題が
あるからである。
Further, the supply of the molten thermoplastic resin can be made larger than the internal volume of the mold at the start of the supply of the molten thermoplastic resin (hereinafter referred to as the initial internal volume of the mold). In that case, when the operation of reducing the mold volume is started, the volume inside the mold may become larger than the initial volume inside the mold due to the volume of the molten resin supplied. The relationship between [total supply volume of molten thermoplastic resin] / [initial internal mold volume] is 0.3.
30 or more, 1 or more and 20 or less, and further 1.
5 or more and 20 or less are preferably used. The supply of the molten thermoplastic resin may be completed before the start of the mold clamping force increase in the mold, or may be continued after the mold clamping force increase is started. In addition, the relationship between [mold inner volume at the end of molding] / [initial mold inner volume] is 0.25 to 25, and 0.8
It is preferably 16 or more and 16 or less, or 1.2 or more and 16 or less. [Total supply volume of molten thermoplastic resin] /
[Initial mold inner volume] and [Molding inner mold volume] /
This is because when the [initial mold volume] is particularly small, the anisotropy of the physical properties of the obtained material is high, while when it is particularly large, there is a problem that voids are likely to occur inside the material. .

【0024】金型の型締力上昇開始時期は、素材の良好
な外観、低歪みを得るために管理することが好ましい。
その開始時期は、溶融熱可塑性樹脂の供給量が、初期金
型内容積の5%、望ましくは20%に達した時以降であ
ることが好ましい。空間体積の樹脂供給量が少ない時点
で、型締力上昇を開始した場合は、金型内で供給通路が
圧縮され樹脂配向の影響を受け易く、実質的に従来の射
出成形法とかわらない樹脂素材しか得られないので好ま
しくない。
It is preferable to control the start time of increasing the mold clamping force of the mold in order to obtain a good appearance and low distortion of the material.
The start timing is preferably after the supply amount of the molten thermoplastic resin reaches 5%, preferably 20% of the initial inner mold volume. If the mold clamping force starts to rise at a time when the space volume resin supply amount is small, the supply passage is compressed in the mold and is easily affected by the resin orientation, which is virtually the same as the conventional injection molding method. It is not preferable because you can obtain only the raw materials.

【0025】また、前述のように溶融熱可塑性樹脂は初
期金型内容積よりも多く供給することができるが、その
場合、溶融熱熱可塑性樹脂の供給量が初期金型内容積と
同一になった時間の2倍の時間までに、型締力の上昇を
開始させるのが好ましい。ここでいう時間とは、溶融熱
可塑性樹脂供給開始の時を起点としたものである。これ
より遅いと、すでにゲ−ト部の固化が始まりヒケ、ボイ
ド等の防止が困難となるため好ましくない。
Further, as described above, the molten thermoplastic resin can be supplied in a larger amount than the initial internal mold volume, but in that case, the amount of the molten thermoplastic resin supplied becomes the same as the initial internal mold volume. It is preferable to start increasing the mold clamping force by a time twice as long as the above. The time referred to here is from the time when the supply of the molten thermoplastic resin is started. If it is slower than this, solidification of the gate portion already begins, and it becomes difficult to prevent sink marks, voids and the like, which is not preferable.

【0026】ここで与えられる型締力としては、0.5
MPa〜1×100MPa,望ましくは,1MPa〜1
0MPaが好ましく用いられる。比較的低い圧力で成形
を行なうことができるので、配向などの異方性が緩和さ
れ、また歪みの少ない樹脂素材、さらに樹脂加工品が得
られる特徴がある。
The mold clamping force applied here is 0.5
MPa to 1 × 100 MPa, preferably 1 MPa to 1
0 MPa is preferably used. Since molding can be carried out at a relatively low pressure, anisotropy such as orientation is alleviated, and a resin material with less distortion and a resin processed product can be obtained.

【0027】金型については、少なくともひとつが可動
性を有する二部位以上からなるものが用いられる。また
供給された熱可塑性樹脂が漏れないように密閉できる構
造とする必要がある。金型の周囲を密閉する方法として
は、金型の両者をハメアイ構造とすることや、樹脂もれ
防止駒を金型の固定側もしくは可動側に収納できる堀込
みを設けておき、金型が閉じると共に樹脂もれ防止駒が
堀り込みの中に入っていく構造が例示される。なかでも
金型がハメアイ構造にするほうがよい。
As for the mold, one having at least two movable parts is used. Further, it is necessary to have a structure capable of sealing the supplied thermoplastic resin so as not to leak. As a method of sealing the periphery of the mold, both of the molds have a hameai structure, and a resin spill prevention piece is provided with a digging that can be stored on the fixed side or the movable side of the mold, and the mold is An example is a structure in which the resin leakage prevention piece moves into the dugout as the resin is closed. Above all, it is better for the mold to have a hameai structure.

【0028】型締力上昇、熱可塑性樹脂の圧縮の後、熱
可塑性樹脂を冷却固化させて、片締を解放して金型を開
いて樹脂素材を取り出す。冷却固化する場合、樹脂が収
縮するが、その収縮分金型が閉じていくのでヒケやボイ
ドの発生がない良好な樹脂素材品が得られる。
After the mold clamping force is increased and the thermoplastic resin is compressed, the thermoplastic resin is cooled and solidified, the one-side clamping is released, the mold is opened, and the resin material is taken out. When the resin is cooled and solidified, the resin shrinks, but the shrinking mold closes, so that a good resin material product free of sink marks and voids can be obtained.

【0029】以上の方法によって、機械加工用樹脂素材
が製造される。さらにこの樹脂素材は機械加工されて、
樹脂加工品となる。機械加工の方法としては、旋削加
工、研削加工、平削加工、中ぐり加工、スラシス加工、
穴あけ加工、ねじ切加工、歯切加工、型彫加工、やすり
加工などの切削加工法、鋸切断、研削切断、ダイヤモン
ド切断、噴射切断、電熱切断などの切断加工法、砥石加
工、砥粒加工などの研削仕上法などが例示される。これ
らの方法によって、変形が少ない、また内部にボイドの
ない良好な樹脂加工品が製造できる。また得られた樹脂
加工品は、産業用機械の部品として好適である。
The resin material for machining is manufactured by the above method. Furthermore, this resin material is machined,
It will be a resin processed product. Machining methods include turning, grinding, planing, boring, thrusting,
Cutting methods such as drilling, thread cutting, gear cutting, die-cutting, and rasp processing, cutting methods such as saw cutting, grinding cutting, diamond cutting, jet cutting, electrothermal cutting, grinding stone processing, abrasive grain processing, etc. A grinding finishing method and the like are exemplified. By these methods, it is possible to manufacture a good resin processed product with little deformation and voids inside. Moreover, the obtained resin processed product is suitable as a part of an industrial machine.

【0030】以下、図面を参照して機械加工用樹脂素材
の製造法について説明する。
A method of manufacturing a resin material for machining will be described below with reference to the drawings.

【0031】機械加工用樹脂素材が成形される金型装置
の一例を図1に図示した。金型装置1において2は可動
側取付板であり、3は固定側取付板である。可動側取付
板2には、可動側型板4、5、6が取り付けられてい
る。一方固定側取付板3には、固定側型板7が取付けら
れている。固定側型板7を貫通してスプ−ルが形成され
る。なお、可動側型板6と固定側型板7との間にキャビ
ティ9が形成される。この金型装置1は、一般の金型装
置と同様に、通常の型締め手段により可動側を固定側に
対し相対的に型締め方向に往復運動させることができ
る。
An example of a die device for molding a resin material for machining is shown in FIG. In the mold device 1, 2 is a movable side mounting plate, and 3 is a fixed side mounting plate. Movable mold plates 4, 5, 6 are attached to the movable mount plate 2. On the other hand, a fixed-side template 7 is attached to the fixed-side mounting plate 3. A spool is formed through the fixed-side template 7. A cavity 9 is formed between the movable side mold plate 6 and the fixed side mold plate 7. Like the general mold device, this mold device 1 can reciprocate the movable side in the mold clamping direction relative to the fixed side by the normal mold clamping means.

【0032】次に、金型装置1を用いた成形手順を例示
する。金型装置1は、熱可塑性樹脂が固化できるよう適
当な温度に制御する。射出成形機のシリンダ内で加熱溶
融された樹脂10をスプ−ル8を通って金型内のキャビ
ティ9内に所定量射出する。その後、型締力を上昇さ
せ、可動側型板6を移動させ、キャビティ9内の溶融樹
脂を、所定の圧縮しろ分圧縮してキャビティ9の形状に
成形し、所定の冷却時間終了した後に金型を開いて樹脂
素材を取り出す。この操作の繰り返しにより順次製造す
ることができる。上記で圧縮しろ分圧縮を開始するタイ
ミングは、前に説明したように、キャビティ9内に樹脂
10を供給する時から、金型空間内における溶融樹脂の
容積によって決定される。
Next, a molding procedure using the mold apparatus 1 will be illustrated. The mold apparatus 1 controls the temperature so that the thermoplastic resin can be solidified. The resin 10 heated and melted in the cylinder of the injection molding machine is injected through the spool 8 into the cavity 9 in the mold by a predetermined amount. After that, the mold clamping force is increased, the movable mold plate 6 is moved, the molten resin in the cavity 9 is compressed by a predetermined compression amount to be molded into the shape of the cavity 9, and after the predetermined cooling time is finished, the metal is removed. Open the mold and take out the resin material. It is possible to sequentially manufacture by repeating this operation. As described above, the timing to start the compression margin compression is determined by the volume of the molten resin in the mold space from the time when the resin 10 is supplied into the cavity 9.

【0033】[0033]

【実施例】さらに、本発明の効果を明らかにするため、
実施例を用いて説明する。なお、実施例において、曲げ
強度については、溶融樹脂の流れの影響を観測するため
に、成形品から、溶融樹脂の流れが長手方向になる形状
と、流れと直角の方向が長手方向になる形状とに切り出
して2種類の試験片を作成し、その両者についてAST
M D790に従って、測定を行なった。またヒケは、
成形品の両端を結ぶ直線からのへこみの最大値で示し
た。またボイドは試験片の切断面を実体顕微鏡で観察し
て、その個数で示した。
EXAMPLES Further, in order to clarify the effect of the present invention,
An example will be described. Regarding the bending strength in the examples, in order to observe the influence of the flow of the molten resin, the shape of the molten resin in the longitudinal direction and the shape in which the direction perpendicular to the flow is the longitudinal direction from the molded product. Cut out into two pieces to make two kinds of test pieces, and AST for both
The measurement was performed according to MD 790. In addition, the sink
The maximum value of the dent from the straight line connecting both ends of the molded product is shown. The number of voids was shown by observing the cut surface of the test piece with a stereomicroscope.

【0034】実施例1 インジェクションプレス成形機(コマツ株式会社製IP
1050)に図1に示す形状の金型装置1を取り付け
た。熱可塑性樹脂として、東レ製ガラス繊維強化ポリフ
ェニレンサルファイド樹脂“トレリナ”A504を、溶
融し、射出温度300℃で射出、キャビティ内の形状が
300mm×300mm×15mmである金型に供給し、その
供給量が初期金型容積の50%になった時点で、金型の
型締力を上昇させ、圧力を5MPaとして、圧縮を開始
した。溶融熱可塑性樹脂は、さらに所望の角板の容積と
なるように供給を継続した。溶融熱可塑性樹脂を供給を
停止した後、熱可塑性樹脂を冷却固化させ、所望の30
0mm×300mm×20mmの機械加工用樹脂素材の角板を
成形した。この角板から12.7mm×63.5mm×3mm
の機械加工用樹脂素材の試験片を切り出し、さらに試験
片の特性を測定した。
Example 1 Injection press molding machine (IP manufactured by Komatsu Ltd.
The mold device 1 having the shape shown in FIG. As a thermoplastic resin, Toray glass fiber reinforced polyphenylene sulfide resin "Torelina" A504 is melted and injected at an injection temperature of 300 ° C, and the shape of the cavity is supplied to a mold with a size of 300 mm x 300 mm x 15 mm. When 50% of the initial mold volume was reached, the mold clamping force of the mold was increased to 5 MPa to start compression. The molten thermoplastic resin was further supplied so that the desired volume of the rectangular plate was obtained. After stopping the supply of the molten thermoplastic resin, the thermoplastic resin is cooled and solidified to obtain the desired 30
A square plate of 0 mm x 300 mm x 20 mm resin material for machining was molded. 12.7 mm x 63.5 mm x 3 mm from this square plate
A test piece of the resin material for machining was cut out, and the characteristics of the test piece were measured.

【0035】曲げ強度を測定したところ、溶融樹脂の流
れ方向が長手になっている試験片ではでは18MPa,
流れに直角の方向が長手になっている試験片では、13
MPaであった。溶融樹脂の流れに起因する異方性が小
さく、かつ曲げ強度が高いものが得られた。またヒケも
0mmであり小さく、ボイドも見られない良好なもので
あった。
The bending strength was measured and found to be 18 MPa for a test piece in which the flow direction of the molten resin was long.
For a test piece whose longitudinal direction is perpendicular to the flow, 13
It was MPa. A product having a small anisotropy due to the flow of the molten resin and a high bending strength was obtained. The sink mark was 0 mm, which was small, and no void was observed, which was good.

【0036】また、上記機械加工用樹脂素材の角板か
ら、内径80mm、外径100mm、高さ20mmのリング
を、旋盤を用いて機械加工したところ、リング外径の真
円度が10μm以下である、寸法精度の良い樹脂加工品
が作成できた。
Further, when a ring having an inner diameter of 80 mm, an outer diameter of 100 mm and a height of 20 mm was machined from a square plate of the above-mentioned resin material for machining using a lathe, the roundness of the ring outer diameter was 10 μm or less. We were able to create a resin processed product with good dimensional accuracy.

【0037】比較例1 射出成形機を用いて、実施例1と同様の樹脂、温度で成
形を行ない、実施例1と同じ形状の角板を得た後、さら
に切出しを行ない、試験片を得た。得られた試験片のう
ち、角板の内部ではボイドが多発しており、機械加工用
樹脂素材としては使用できないものであった。また角板
の表層部は、ボイドが少なかったため、その部分から得
られる試験片の曲げ強度を測定した。溶融樹脂の流れが
長手方向になっている試験片では、20MPa、流れの
直角方向が長手になっているのものでは、10MPaで
あった。溶融樹脂の流れに起因する異方性が大きいこと
がわかった。またヒケは1.5mmであり、大きいもので
あった。
Comparative Example 1 Using an injection molding machine, molding was carried out at the same resin and temperature as in Example 1 to obtain a square plate having the same shape as in Example 1, and further cut out to obtain a test piece. It was Among the obtained test pieces, many voids were generated inside the square plate, and it could not be used as a resin material for machining. Further, since the surface layer of the square plate had few voids, the bending strength of the test piece obtained from that portion was measured. The test piece in which the flow of the molten resin was in the longitudinal direction was 20 MPa, and that in the test piece in which the direction perpendicular to the flow was longitudinal was 10 MPa. It was found that the anisotropy caused by the flow of the molten resin is large. The sink mark was 1.5 mm, which was large.

【0038】また、得られた機械加工用樹脂素材からな
る角板から、実施例1と同様のリングを加工した。しか
しながら、角板の表層部分のものは、樹脂の流れの直角
方向への機械加工で欠けやすいという問題があり、また
角板の内部のものは、ボイドの影響によって、加工時に
亀裂が入った。
A ring similar to that of Example 1 was processed from the obtained rectangular plate made of the resin material for machining. However, the surface layer of the square plate has a problem that it tends to be chipped by machining in the direction perpendicular to the flow of the resin, and the inside of the square plate is cracked during processing due to the influence of voids.

【0039】比較例2 圧縮成形機を用いて、金型中に実施例1と同じ熱可塑性
樹脂の固体チップを供給し、金型温度を300℃、取り
出し時の金型温度を150℃として、実施例1と同様の
形状の機械加工用樹脂素材の角板を成形した。この角板
を得るための時間は、実施例1の3倍の時間を要するも
のであった。
Comparative Example 2 Using a compression molding machine, solid chips of the same thermoplastic resin as in Example 1 were fed into a mold, the mold temperature was 300 ° C., and the mold temperature at the time of taking out was 150 ° C. A rectangular plate of a resin material for machining having the same shape as that of Example 1 was molded. The time required to obtain this square plate was three times as long as that in Example 1.

【0040】比較例3 押出し成形機を用いて、実施例1と同じ樹脂を用いて、
幅300mm、厚み20mmの断面形状を有する機械加工用
樹脂素材の板を押出し成形した。樹脂の溶融温度、押出
しのダイスの温度、押出し速度の条件を変えたものの、
成形による残留歪みと配向のために、各条件で得られた
素材には、すべてのものにクラックが見られた。
Comparative Example 3 The same resin as in Example 1 was used using an extruder.
A plate of resin material for machining having a cross-sectional shape with a width of 300 mm and a thickness of 20 mm was extruded. Although the resin melting temperature, extrusion die temperature, and extrusion speed conditions were changed,
All of the materials obtained under each condition were cracked due to residual strain and orientation due to molding.

【0041】実施例2 “トレリナ”A504の代わりにポリアセタ−ル(ポリ
オキシメチレン)樹脂(ポリプラスチックス株式会社製
“ジュラコン”M90−44)を使用して、射出温度1
90℃とした他は、実施例1と同様に300mm×30
0mm×20mmの角板からなる機械加工用樹脂素材を
成形した。この角板から実施例1と同様に試験片の特性
を測定した。
Example 2 A polyacetal (polyoxymethylene) resin ("Duracon" M90-44 manufactured by Polyplastics Co., Ltd.) was used in place of "Torelina" A504, and an injection temperature of 1 was used.
300 mm × 30 as in Example 1 except that the temperature was 90 ° C.
A resin material for machining including a 0 mm × 20 mm square plate was molded. The characteristics of the test piece were measured from this square plate in the same manner as in Example 1.

【0042】曲げ強度を測定したところ、溶融樹脂の流
れ方向が長手になっている試験片ではでは9.0MP
a,流れに直角の方向が長手になっている試験片では、
9.0MPaであった。溶融樹脂の流れに起因する異方
性が小さく、かつ曲げ強度が高いものが得られた。また
ヒケも0mmであり小さく、ボイドも見られない良好な
ものであった。
When the bending strength was measured, it was 9.0 MPa for the test piece in which the flow direction of the molten resin was long.
a, For a test piece whose direction is perpendicular to the flow,
It was 9.0 MPa. A product having a small anisotropy due to the flow of the molten resin and a high bending strength was obtained. The sink mark was 0 mm, which was small, and no void was observed, which was good.

【0043】この角板から実施例1と同様にリングを機
械加工により製作した結果、真円度10μm以下である
寸法精度の良い機械加工品ができた。
A ring was machined from this square plate in the same manner as in Example 1. As a result, a machined product having a roundness of 10 μm or less and good dimensional accuracy was obtained.

【0044】実施例3 “トレリナ”A504の代わりにガラス繊維いりポリブ
チレンテレフタレート樹脂(東レ製1101G30)を
使用して、射出温度240℃とした他は、実施例1と同
様に300mm×300mm×20mmの角板からなる
機械加工用樹脂素材を成形した。この角板から実施例1
と同様に試験片の特性を測定した。
Example 3 In the same manner as in Example 1 except that glass fiber polybutylene terephthalate resin (1101G30 manufactured by Toray) was used instead of "Torelina" A504 and the injection temperature was 240 ° C., 300 mm × 300 mm × 20 mm The resin material for machining which consists of the square plate of was molded. From this square plate, Example 1
The characteristics of the test piece were measured in the same manner as in.

【0045】曲げ強度を測定したところ、溶融樹脂の流
れ方向が長手になっている試験片では12.5MPa,
流れに直角の方向が長手になっている試験片では、1
0.8MPaであった。溶融樹脂の流れに起因する異方
性が小さく、かつ曲げ強度が高いものが得られた。また
ヒケも0mmであり小さく、ボイドも見られない良好な
ものであった。
When the bending strength was measured, it was 12.5 MPa for the test piece in which the flow direction of the molten resin was long.
1 for a test piece whose length is in the direction perpendicular to the flow
It was 0.8 MPa. A product having a small anisotropy due to the flow of the molten resin and a high bending strength was obtained. The sink mark was 0 mm, which was small, and no void was observed, which was good.

【0046】この角板から実施例1と同様にリングを機
械加工により製作した結果、真円度10μm以下である
寸法精度の良い機械加工品ができた。
A ring was machined from this square plate in the same manner as in Example 1, and as a result, a machined product having a roundness of 10 μm or less and good dimensional accuracy was obtained.

【0047】実施例4 “トレリナ”A504の代わりにガラス繊維いりナイロ
ン6(ポリカプロアミド)樹脂(東レ製CM1011G
30)を使用して、射出温度240℃とした他は、実施
例1と同様に300mm×300mm×20mmの角板
からなる機械加工用樹脂素材を成形した。この角板から
実施例1と同様に試験片の特性を測定した。
Example 4 Glass fiber nylon 6 (polycaproamide) resin (CM1011G manufactured by Toray) instead of "Torelina" A504
30) was used, except that the injection temperature was 240 ° C., and a resin material for machining including a 300 mm × 300 mm × 20 mm square plate was molded in the same manner as in Example 1. The characteristics of the test piece were measured from this square plate in the same manner as in Example 1.

【0048】曲げ強度を測定したところ、溶融樹脂の流
れ方向が長手になっている試験片では19.0MPa,
流れに直角の方向が長手になっている試験片では、1
7.6MPaであった。溶融樹脂の流れに起因する異方
性が小さく、かつ曲げ強度が高いものが得られた。また
ヒケも0mmであり小さく、ボイドも見られない良好な
ものであった。
When the bending strength was measured, it was 19.0 MPa for the test piece in which the flow direction of the molten resin was long,
1 for a test piece whose length is in the direction perpendicular to the flow
It was 7.6 MPa. A product having a small anisotropy due to the flow of the molten resin and a high bending strength was obtained. The sink mark was 0 mm, which was small, and no void was observed, which was good.

【0049】この角板から実施例1と同様にリングを機
械加工により製作した結果、真円度10μm以下である
寸法精度の良い機械加工品ができた。
A ring was machined from this square plate in the same manner as in Example 1. As a result, a machined product having a good roundness of 10 μm or less and good dimensional accuracy was obtained.

【0050】実施例5 “トレリナ”A504の代わりにガラス繊維いりナイロ
ン66(ポリヘキサメチレンアジパミド)樹脂(東レ製
CM1011G30)を使用して、射出温度280℃と
した他は、実施例1と同様に300mm×300mm×
20mmの角板からなる機械加工用樹脂素材を成形し
た。この角板から実施例1と同様に試験片の特性を測定
した。
Example 5 Example 1 was repeated except that glass fiber nylon 66 (polyhexamethylene adipamide) resin (CM1011G30 manufactured by Toray) was used instead of "Torelina" A504 and the injection temperature was 280 ° C. Similarly, 300 mm x 300 mm x
A resin material for machining, which is a 20 mm square plate, was molded. The characteristics of the test piece were measured from this square plate in the same manner as in Example 1.

【0051】曲げ強度を測定したところ、溶融樹脂の流
れ方向が長手になっている試験片では20.0MPa,
流れに直角の方向が長手になっている試験片では、1
9.1MPaであった。溶融樹脂の流れに起因する異方
性が小さく、かつ曲げ強度が高いものが得られた。また
ヒケも0mmであり小さく、ボイドも見られない良好な
ものであった。
When the bending strength was measured, it was 20.0 MPa for the test piece in which the flow direction of the molten resin was long.
1 for a test piece whose length is in the direction perpendicular to the flow
It was 9.1 MPa. A product having a small anisotropy due to the flow of the molten resin and a high bending strength was obtained. The sink mark was 0 mm, which was small, and no void was observed, which was good.

【0052】この角板から実施例1と同様にリングを機
械加工により製作した結果、真円度10μm以下である
寸法精度の良い機械加工品ができた。
A ring was machined from this square plate in the same manner as in Example 1, and as a result, a machined product having a roundness of 10 μm or less and good dimensional accuracy was obtained.

【0053】[0053]

【発明の効果】本発明の方法によって、ヒケ、ボイドが
なく外観良好であり、また、保存時、使用時、機械加工
時に変形が小さく、また破損のない樹脂加工品がえられ
る。
Industrial Applicability According to the method of the present invention, there can be obtained a resin processed product which is free from sink marks and voids and has a good appearance and which is little deformed during storage, use and machining.

【図面の簡単な説明】[Brief description of drawings]

【図1】 機械加工用樹脂素材を成形する状態を示す説
明図である。
FIG. 1 is an explanatory view showing a state of molding a resin material for machining.

【符号の説明】[Explanation of symbols]

1:符号2〜符号9から構成される金型装置 2,3:取り付け板 4,5,6,7:型板 8:スプ−ル 9:キャビティ 10:熱可塑性樹脂 1: Mold device composed of reference numerals 2 to 9 2, 3: Mounting plate 4, 5, 6, 7: Mold plate 8: Spool 9: Cavity 10: Thermoplastic resin

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29K 67:00 77:00 81:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area B29K 67:00 77:00 81:00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 可動部位を有する金型の内部に、溶融し
た熱可塑性樹脂を供給しながら、または供給した後、金
型の型締力を上昇させ、熱可塑性樹脂を圧縮、冷却固化
させることを特徴とする機械加工用樹脂素材の製造方
法。
1. A method of increasing the mold clamping force of a mold while compressing and cooling and solidifying the thermoplastic resin while or after supplying the molten thermoplastic resin into the mold having a movable part. A method for manufacturing a resin material for machining, characterized by:
【請求項2】 溶融した熱可塑性樹脂の供給が、押出ま
たは射出の供給ユニットからのものであることを特徴と
する請求項1記載の機械加工用樹脂素材の製造方法。
2. The method for producing a resin material for machining according to claim 1, wherein the molten thermoplastic resin is supplied from an extrusion or injection supply unit.
【請求項3】 金型の型締力の上昇が、溶融熱可塑性樹
脂供給開始時における金型の空間体積の5%に溶融熱可
塑性樹脂の供給量が達した時以降に開始されることを特
徴とする請求項1または2記載の機械加工用樹脂素材の
製造方法。
3. The increase of the mold clamping force of the mold is started after the supply amount of the molten thermoplastic resin reaches 5% of the space volume of the mold at the start of the supply of the molten thermoplastic resin. The method for producing a resin material for machining according to claim 1 or 2, which is characterized in that.
【請求項4】 熱可塑性樹脂が、ポリフェニレンサルフ
ァイド、ポリオキシメチレン、ポリヘキサメチレンアジ
パミド、ポリカプロアミドおよびポリブチレンテレフタ
レートの中からから選ばれる少なくとも1種類の熱可塑
性樹脂であることを特徴とする請求項1〜3記載のいず
れかの機械加工用樹脂素材の製造方法。
4. The thermoplastic resin is at least one kind of thermoplastic resin selected from polyphenylene sulfide, polyoxymethylene, polyhexamethylene adipamide, polycaproamide and polybutylene terephthalate. The method for producing a resin material for machining according to any one of claims 1 to 3.
【請求項5】 請求項1〜4のいずれかの製造方法によ
って得られた機械加工用樹脂素材を、機械加工すること
を特徴とする樹脂加工品の製造方法。
5. A method for producing a resin processed product, which comprises machining the resin material for machining obtained by the production method according to any one of claims 1 to 4.
JP2912895A 1994-02-21 1995-02-17 Manufacture of resin material for machining and resin processed product Pending JPH07276456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2912895A JPH07276456A (en) 1994-02-21 1995-02-17 Manufacture of resin material for machining and resin processed product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2289794 1994-02-21
JP6-22897 1994-02-21
JP2912895A JPH07276456A (en) 1994-02-21 1995-02-17 Manufacture of resin material for machining and resin processed product

Publications (1)

Publication Number Publication Date
JPH07276456A true JPH07276456A (en) 1995-10-24

Family

ID=26360193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2912895A Pending JPH07276456A (en) 1994-02-21 1995-02-17 Manufacture of resin material for machining and resin processed product

Country Status (1)

Country Link
JP (1) JPH07276456A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000511351A (en) * 1996-05-20 2000-08-29 ハイ―ゼット・テクノロジー,インコーポレイテッド Thermoelectric module with gapless rectangular grid
JP2007069622A (en) * 2006-12-06 2007-03-22 Teijin Chem Ltd Molding method of injection compression molded article
JP2014065152A (en) * 2012-09-24 2014-04-17 Kurimoto Industry Co Ltd Production method of molded article
JP2016088073A (en) * 2014-11-04 2016-05-23 エフテックス有限会社 Manufacturing method of bolt/nut made of carbon fiber reinforced polyester resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000511351A (en) * 1996-05-20 2000-08-29 ハイ―ゼット・テクノロジー,インコーポレイテッド Thermoelectric module with gapless rectangular grid
JP2007069622A (en) * 2006-12-06 2007-03-22 Teijin Chem Ltd Molding method of injection compression molded article
JP2014065152A (en) * 2012-09-24 2014-04-17 Kurimoto Industry Co Ltd Production method of molded article
JP2016088073A (en) * 2014-11-04 2016-05-23 エフテックス有限会社 Manufacturing method of bolt/nut made of carbon fiber reinforced polyester resin

Similar Documents

Publication Publication Date Title
Goodship ARBURG practical guide to injection moulding
JP3942945B2 (en) Injection compression molding apparatus, injection compression molding method and injection compression molded product by the method
Wilkinson et al. Polymer processing and structure development
JP5162364B2 (en) Multilayer molded article manufacturing method and multilayer molded article
Chanda et al. Plastics fabrication and recycling
CA2060461C (en) Method for manufacturing a plastic hollow product using water soluble resin
JP2004202731A (en) Method for manufacturing large-sized light guide plate
US5851474A (en) Injection molding with periodic forces to the material in the mold
EP1555108A1 (en) Molding method and resin moldings
CN111086153A (en) Automobile thick-wall automobile logo and injection molding process
JPH07276456A (en) Manufacture of resin material for machining and resin processed product
JPH0331124B2 (en)
US20050266254A1 (en) Plastic injection molding with gas assisted metal moldings therein
JPH0957794A (en) Injection compression molding method
JP3377010B2 (en) Manufacturing method of thin molded products
JPS63280612A (en) Method of improving quality of injection molded form
GB2299779A (en) Injection moulding of thermoplastic resin
JP2002187178A (en) Method for manufacturing cylindrical injection-molded article
MILLER B. Molds
JP2002187177A (en) Method for manufacturing injection compression molded article
Miller Injection Molding
US4447386A (en) Process for runnerless injection - compression molding of thermosetting materials
KR810001237B1 (en) Method of preparing thick thermoplastic sheet
JPH0522565B2 (en)
JPS62101410A (en) Compression molding of multi-layer resin part