JPH0522565B2 - - Google Patents

Info

Publication number
JPH0522565B2
JPH0522565B2 JP3333385A JP3333385A JPH0522565B2 JP H0522565 B2 JPH0522565 B2 JP H0522565B2 JP 3333385 A JP3333385 A JP 3333385A JP 3333385 A JP3333385 A JP 3333385A JP H0522565 B2 JPH0522565 B2 JP H0522565B2
Authority
JP
Japan
Prior art keywords
resin material
cavity
rod
shaped body
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3333385A
Other languages
Japanese (ja)
Other versions
JPS61192533A (en
Inventor
Kyoyasu Fujii
Kazuo Shimomura
Taichiro Nagura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP3333385A priority Critical patent/JPS61192533A/en
Publication of JPS61192533A publication Critical patent/JPS61192533A/en
Publication of JPH0522565B2 publication Critical patent/JPH0522565B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/735Heating or cooling of the mould heating a mould part and cooling another mould part during moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7356Heating or cooling of the mould the temperature of the mould being near or higher than the melting temperature or glass transition temperature of the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、熱可塑性合成樹脂製棒状体の製造方
法に関する。 (従来の技術) プラスチツク製ボルトは、例えば、射出成形に
より形成された熱可塑性合成樹脂製の略円柱状素
材を転造加工して得られる。「グラスフアイバー
強化プラスチツク製の高強度ボトル」(日本ねじ
研究協会誌11巻8号1980)によれば、繊維強化プ
ラスチツクを用いて強度に優れたボルト素材を製
造するためには、第一に、例えば、グラスフアイ
バーなどでなる補強繊維をボルト素材軸部の長手
方向に配向させること、第二に、ボルト素材の内
部やその表面にプラスチツク樹脂の固化収縮によ
る巣や引けの発生を防ぐことが重要であることが
記載されている。しかし、従来の射出成形におい
ては、例えば、第4図に示すように、成形用金型
100に充填される溶融プラスチツく樹脂材が微
小なゲート101から金型キヤビテイ102内に
高速充填されるため、樹脂材の流れはキヤビテイ
102内で極端な拡大流となる。そのために、得
られるボルト素材103軸部104の補強繊維は
軸方向に均一に配向しない。その結果、このボル
ト素材103のが転造されて得られる繊維強化プ
ラスチツクボルトはボルトに必要な充分な強度を
有し得ない。 上記成形用金型100においては、また、ボル
ト素材軸部104の成形長さの変更は、キヤビテ
イ102内に挿入された突出ピン106の長さを
変えるか、あるいは突出ピン106の挿入位置を
変えることにより行われるため、ゲート101を
ボルト素材頭部105に設けねばならない。した
がつて、ゲート101からキヤビテイ102内に
注入充填される樹脂材は、ボルト素材頭部105
用キヤビテイ部から流入しボルト素材軸部104
用キヤビテイ部の端部107において上記突出ピ
ン106に突き当たる。それゆえ、補強繊維を含
有する樹脂材を用いて射出成形を行つた場合、得
られるボルト素材103には、第5図に示すよう
に、軸部端部107付近の補強繊維108がボル
ト素材103の軸長手方向に垂直に配向する。そ
れゆえ、ボルト素材103の軸部端部107は極
めて強度が劣つたものとなる。さらに、ボルト素
材軸部104の部位により補強繊維108の配向
状態が異なるため、溶融樹脂材の冷却固化の際の
固化収縮が不均一となる。したがつて、ボルト素
材103の寸法精度が著しく損なわれる。上記の
ようなボルト素材103に転造加工によりねじ部
を形成して得られたボルトはねじの各位置により
ナツトとの嵌合性が異なるため、精度が極めて劣
つたものとなる。 さらに、上記成形用金型100においては、通
常、ゲート101近傍の樹脂材がキヤビテイ部の
樹脂材よりも早く固化する傾向にある。したがつ
て、キヤビテイ部における成形樹脂材内部に固化
収縮に起因する巣や引けが発生する。特に、ボル
ト素材103の頭部105は厚肉であるため、こ
の頭部105に巣や引けが発生し易い。このよう
なボルト素材103から得られる繊維強化プラス
チツクボルトは頭部105が破損しやすい。溶融
樹脂材が固化するときの体積収縮は、樹脂材に充
填材を添加することにより緩和し得るが、ゼロに
はならない。 このような問題を解消するために、特公昭35−
17679号公報には、一定断面を有する棒状体成形
用キヤビテイ内へ溶融材料をピストンで加圧しつ
つ注入し、この溶融材料をその先端から順次冷却
させてゆく方法が開示されている。しかしなが
ら、この方法は一定断面を有する棒状体のみが製
造されるにすぎない。しかも、棒状体成形品を金
型キヤビテイから取り出すには、金型を成形機か
ら取りはずさねばならないため、その作業が繁雑
で生産性に劣る。 (発明が解決しようとする問題点) 本発明は上記従来技術の問題点を解決するもの
であり、その目的とするところは、成形品内部あ
るいは表面に巣や引けの発生を極小にし強度およ
び寸法精度に優れた熱可塑性合成樹脂製棒状体の
製造方法を提供することにある。本発明の他の目
的は、補強繊維が軸長手方向に均一に配向し、強
度および寸法精度に優れた熱可塑性合成樹脂製棒
状体の製造方法を提供することにある。本発明の
さらに他の目的は、成形品の長さを容易に変更し
得る熱可塑性合成樹脂製棒状体の製造方法を提供
することにある。 (問題点を解決するための手段) 本発明の熱可塑性合成樹脂製棒状体の製造方法
は、(1)成形樹脂材を加熱溶融する工程、(2)該溶融
樹脂材を加圧しつつ棒状体用金型のキヤビテイ部
へ注入充填する工程、(3)該キヤビテイ部の所望領
域を樹脂材の融点以上の温度に保持する工程、(4)
該キヤビテイ部の残部領域を樹脂材の融点未満の
温度に冷却保持し該樹脂材を後続の樹脂材の充填
圧で加圧しつつ固化する工程、(5)該樹脂材の冷却
固化終了後該充填圧を除去する工程、(6)該キヤビ
テイ部にて形成される所望の棒状成形品を該キヤ
ビテイ部から系外へ排出する工程を包含し、その
ことにより上記目的が達成される。 本発明は、溶融樹脂材が常時加圧された状態で
溶融領域および冷却領域を有する金型キヤビテイ
部に供給されること特徴とする。それにより、得
られる成形品には巣や引けの発生が極小となる。
補強繊維を混入した樹脂材を用いたときには、補
強繊維が棒状体の長手方向に均一に配向する。棒
状体の長さも任意に設定しうる。 (実施例) 以下に本発明を実施例について述べる。 本発明の製造方法を具体化する成形装置の一例
を第1図および第2図に示す。成形装置は射出成
形機1と射出成形機1の枠体に取り付けられる棒
状体用金型2とでなる。射出成形機1としては、
通常、射出成形に用いられる射出成形機が適宜使
用される。例えば、プランジヤー(ラム)式射出
成形機、スクリユープリプラ式射出成形機、イン
ラインスクリユー式射出成形機あるいはベント式
射出成形機などでなる。 金型2は、固定側取付板21と、固定側取付板
21に気液密状に係合される固定側型板22と、
可動側型板23とで構成される。固定側取付板2
1は射出成形機1の枠体に支持固定される。固定
側取付板21は、その内部にスプルー部211お
よびランナー部212有する。スプルー部211
の一端開口部はノズルタツチ部213を形成し射
出成形機1のノズル部11に液密状に係合され、
そして他端開口部はランナー部212連結され
る。ランナー部212の他端開口部は、例えば、
五つに分枝し、それぞれ樹脂流出口214を構成
し固定側型板22のキヤビテイ部220に連結さ
れる。固定側取付板21の内部もしくは周囲に
は、例えば、ヒーターなどでなる加熱手段215
が設けられ、それにより固定側取付板21は樹脂
材3の融点以上の温度に加熱される。したがつ
て、溶融樹脂材3はスプルー部211およびラン
ナー部212で固化することなく、常に射出成形
機1の充填圧によつて固定側型板22のキヤビテ
イ部220に補充されるため、キヤビテイ部22
0に注入充填された樹脂材3内部や表面には巣や
引けが発生しにくくなる。 固定側型板22のキヤビテイ部220は、それ
ぞれ、例えば、棒状体30の軸部31を形成しう
るよう円柱形状をなす。キヤビテイ部220の他
端開口部221は、それぞれ可動側型板23のキ
ヤビテイ部230に連結されている。固定側型板
22の内部もしくは周囲には、加熱手段222お
よび冷却手段223が設けられている。これらの
加熱手段222および冷却手段223はそれぞれ
が独立した複数対のヒーターおよび冷却水循環管
もしくはオイル循環管などで構成される。 可動側型板23は、金型2の型締め時にそのキ
ヤビテイ部230が上記固定側型板22のキヤビ
テイ部220の開口部221に整合しうるよう射
出成形機1の枠体に移動可能なように取り付けら
れる。可動側型板キヤビテイ部230は棒状体3
0の頭部32を形成しうるよう、例えば、六角柱
状をなす。さらに、キヤビテイ部230にはアン
ダーカツトが施されており、金型2の型開き時に
形成された棒状体30が可動側型板23と共に後
退して固定側型板22から円滑に排出されうる。
キヤビテイ部230の他端開口部231には、突
出ピン232が液密状に摺動可能に設けられてい
る。この突出ピン232前進させることにより棒
状体30は可動側型板23から排出される。この
突出ピン232は、例えば、突出し板233など
を介してエジエクターロツド234に連結されて
いる。可動側型板23には、例えば、冷却水循環
管もしくはオイル循環管などでなる冷却手段23
5が設けられている。この冷却手段235により
キヤビテイ部230は樹脂材3の融点以下の温度
に保持される。 上記金型2にキヤビテイ部のうち固定側型板2
2のキヤビテイ部220の所定領域Aは、射出成
形機1より充填された溶融樹脂材3を加熱手段2
22にて樹脂材3の融点以上の温度に保持する領
域である。キヤビテイ部220の残りの領域B1
と可動側型板23のキヤビテイ部230の領域
B2とで構成される残部領域Bは冷却手段223
および235にて樹脂材3を融点未満の温度に保
持する領域である。それゆえ、溶融樹脂材3は残
部領域Bまでは固化することなく、常に射出成形
機1充填圧によつて残部領域Bに補充される。そ
のため、固定側型板22のキヤビテイ部220お
よび可動側型板23のキヤビテイ部230の内部
や表面には巣や引けが発生しにくくなる。固定側
型板22のキヤビテイ部220の温度調節は、ど
の位置の加熱手段222を作動させるか、そして
どの位置の冷却手段223を作動させるかにより
任意に行われうる。したがつて領域B1の長さは
棒状体30の軸部31の長さに合わせて任意に調
節しうる。また、残部領域Bの温度が射出成形機
1側から先端に向かつて漸次低くなるように温度
勾配を設ければ、溶融樹脂材3の冷却固化効果が
より速やかに達成されうる。 本発明により製造される棒状体30は、その形
状が少なくとも円柱状形状部を有し、固定側型板
22のキヤビテイ部220から前方は脱型可能な
形状であれば任意の形状が採用され得る。 本発明に用いる成形樹脂材3は、熱可塑製合成
樹脂で構成される。熱可塑性合成樹脂としては、
例えば、ポリアミド樹脂、熱可塑性ポリエステル
樹脂、ポリアセタール樹脂、ポリカーボネート樹
脂、ポリプロピレン樹脂、ポリエチレン樹脂、塩
化ビニル樹脂、ポリフエニレン樹脂あるいはポリ
フエニレンスルフイド樹脂などでなる。これらの
合成樹脂は単一あるいは2種以上の混合物の形で
使用される。また、熱可塑性合成樹脂には、充填
材として、例えば、ガラス繊維、炭素繊維、アラ
ミド繊維、チタン酸カリウム繊維、アルミナ繊
維、ボロン繊維、炭化ケイ素繊維あるいは各種の
金属繊維など、通常、熱可塑性樹脂の補強用に使
用される既知の繊維が混入されてもよい。これら
の充填材は単一あるいは2種以上の混合物の形で
使用される。また熱可塑性合成樹脂には、各種の
成形助剤あるいは樹脂改質剤などが適宜添加され
うる。 (作用) 上記成形装置は、次のように機能する。まず、
棒状体用金型2を射出成形機1の枠体に取り付け
る。このとき、固定側取付板21と固定型板22
とは気液密状に係合されている。次いで、射出成
形機1の型締機構により、可動側型板23が固定
側型板22に液密状に係合される。樹脂材3は射
出成形機1のホツパー12からシリンダー部13
内へ供給されシリンダー部13の、例えば、スク
リユーやヒーターなどでなる可塑化機構14によ
り均一に溶融可塑化される。樹脂材3に充填材を
添加する場合は、充填材と熱可塑性合成樹脂とが
別々にホツパー12に供給されシリンダー部13
で溶融可塑化されるか、または、充填材と合成樹
脂とをあらかじめ混練しペレツト状に成形したも
のがホツパー12に供給される。 次いで、射出成形機1のシリンダー部13先端
のノズル11が金型固定側取付板21のノズルタ
ツチ部213に液密状に係合される。シリンダー
部13内で溶融可塑化された樹脂材3は可塑化機
構14のスクリユーによつて固定側型板21のス
プルー部211およびランナー部212を通り、
固定側型板22のキヤビテイ部220に注入充填
される。このときの射出成形機1の射出圧および
射出速度などの射出条件は、使用される樹脂材3
の性質および成形される棒状体30の形状や寸法
などから適宜決定される。 溶融樹脂材3は固定側取付板21のスプルー部
211およびランナー部212、そして固定側型
板22のキヤビテイ部220の領域Aでは加熱手
段215および222にて樹脂材3の融点以上の
温度に保持される。それゆえ、溶融樹脂材3はこ
れらの部分で固化されることなく固定側型板キヤ
ビテイ部220および可動側型板キヤビテイ部2
30で構成される領域Bに供給される。他方、領
域Bでは、溶融樹脂材3は冷却手段223および
235により樹脂材3の融点以下の温度に保持さ
れ、冷却固化される。したがつて、領域Bの溶融
樹脂材3は固化されるまで、常時、射出成形機1
の充填圧により加圧状態にある。それゆえ、溶融
樹脂材3の逆流が防止される、と同時に冷却固化
により生ずる樹脂材3の体積収縮分が後続の溶融
樹脂材3により引き続き領域Bに補充されうる。
それにより、成形された棒状体30の内部や表面
には巣や引けの発生が極小となり、かつ寸法精度
が高い。固定側型板22の加熱手段222および
冷却手段223適宜作動することにより任意の長
さの軸部長を有する棒状体成形品30を得ること
ができる。領域Bの温度が射出成形機1側から先
端に向かつて漸次低くなるように温度勾配を設け
れば、溶融樹脂材3の冷却固化効果がより速やか
に達成される。それにより、巣や引けの発生がよ
り効果的に防止される。また、従来の射出成形用
金型のように溶融樹脂材が微小なゲートを通りキ
ヤビテイ部へ充填されることがないため、領域A
から領域Bへ流入する溶融樹脂材3は定常状態を
保持しつつ流入しうる。したがつて、樹脂材3に
充填材として補強繊維を混入した場合は、補強繊
維がラジアル方向に配向することなくキヤビテイ
軸方向に確実かつ均一に配向する。それゆえ、成
形された棒状体30は強度に優れ、かつ寸法精度
が高い。 領域B内の樹脂材3の冷却固化終了御、射出成
形機1内の、例えば、スクリユーなどの作動を停
止し充填圧を除去する。これは、金型2の型開き
を行い成形された棒状体30をキヤビテイ部22
0から排出させる際に、後続の成形樹脂材3が領
域Aに流入するのを防止するためである。上記ス
クリユーを後退もしくは逆回転させることにより
充填圧の除去がより効果的に行われる。 次いで、可動側型板23を後退させ型開きを行
う。このとき、可動側型板23のキヤビテイ部2
30にはアンダーカツトが施されているので成形
された棒状体30は可動側型板23と共に固定側
型板22のキヤビテイ部220から排出される。
次いで、エジエクターロツド234を前進させる
ことにより、棒状体30は突出ピン232にて可
動側型板キヤビテイ部230から系外へ排出され
る。脱型が終了した後、再び金型2の型閉めを行
い次の溶融樹脂材3の領域B内への注入充填に備
える。 (実施例) 上記棒状体用金型2をインラインスクリユー式
射出成形機(東芝機械社製IS−140BV)に取り
付け、第3図に示すように、C=100mmの棒状体
30を本発明方法により製造した。このとき、使
用した樹脂材3、金型2各部の温度および充填圧
を下表に示す。
(Industrial Application Field) The present invention relates to a method for manufacturing a rod-shaped body made of thermoplastic synthetic resin. (Prior Art) A plastic bolt is obtained, for example, by rolling a substantially cylindrical material made of thermoplastic synthetic resin formed by injection molding. According to "High Strength Bottle Made of Glass Fiber Reinforced Plastic" (Journal of the Japan Screw Research Association Vol. 11, No. 8, 1980), in order to manufacture a bolt material with excellent strength using fiber reinforced plastic, the first step is to For example, it is important to orient reinforcing fibers such as glass fibers in the longitudinal direction of the shaft of the bolt material.Secondly, it is important to prevent the formation of cavities and shrinkage due to solidification and shrinkage of the plastic resin inside and on the bolt material. It is stated that However, in conventional injection molding, for example, as shown in FIG. 4, the molten plastic or resin material filled into the molding die 100 is filled at high speed into the mold cavity 102 through a minute gate 101. , the flow of the resin material becomes an extremely expanded flow within the cavity 102. Therefore, the reinforcing fibers of the shaft portion 104 of the bolt material 103 obtained are not uniformly oriented in the axial direction. As a result, the fiber-reinforced plastic bolt obtained by rolling the bolt material 103 cannot have sufficient strength necessary for the bolt. In the above molding die 100, the length of the bolt material shaft 104 to be molded can be changed by changing the length of the protruding pin 106 inserted into the cavity 102 or by changing the insertion position of the protruding pin 106. Therefore, the gate 101 must be provided on the bolt blank head 105. Therefore, the resin material injected into the cavity 102 from the gate 101 is applied to the bolt material head 105.
Bolt material shank 104 flows from the cavity for
The end portion 107 of the cavity portion abuts against the protruding pin 106. Therefore, when injection molding is performed using a resin material containing reinforcing fibers, the resulting bolt material 103 has reinforcing fibers 108 near the shaft end 107, as shown in FIG. oriented perpendicular to the longitudinal direction of the axis. Therefore, the shaft end 107 of the bolt material 103 has extremely low strength. Further, since the orientation of the reinforcing fibers 108 differs depending on the portion of the bolt material shaft portion 104, the solidification shrinkage when the molten resin material is cooled and solidified becomes non-uniform. Therefore, the dimensional accuracy of the bolt material 103 is significantly impaired. A bolt obtained by forming a threaded portion on the bolt material 103 as described above by rolling processing has extremely low accuracy because the fitability with the nut differs depending on the position of the thread. Furthermore, in the above molding die 100, the resin material near the gate 101 usually tends to solidify faster than the resin material in the cavity portion. Therefore, cavities and shrinkage occur inside the molded resin material in the cavity portion due to solidification and shrinkage. In particular, since the head 105 of the bolt material 103 is thick, cavities and shrinkage are likely to occur in the head 105. The head 105 of a fiber-reinforced plastic bolt obtained from such a bolt material 103 is easily damaged. Volumetric shrinkage when a molten resin material solidifies can be alleviated by adding a filler to the resin material, but it cannot be reduced to zero. In order to solve such problems, the special public
Japanese Patent No. 17679 discloses a method in which a molten material is injected into a cavity for molding a rod-shaped body having a constant cross section while being pressurized by a piston, and the molten material is sequentially cooled from its tip. However, this method only produces rod-shaped bodies with a constant cross section. Moreover, in order to take out the rod-shaped molded product from the mold cavity, the mold must be removed from the molding machine, which is a complicated operation and reduces productivity. (Problems to be Solved by the Invention) The present invention solves the above-mentioned problems of the prior art, and its purpose is to minimize the occurrence of cavities and shrinkage inside or on the surface of molded products, and to improve strength and dimension. An object of the present invention is to provide a method for manufacturing a rod-shaped body made of thermoplastic synthetic resin with excellent precision. Another object of the present invention is to provide a method for producing a rod-shaped body made of thermoplastic synthetic resin, in which reinforcing fibers are uniformly oriented in the longitudinal direction of the axis, and has excellent strength and dimensional accuracy. Still another object of the present invention is to provide a method for manufacturing a rod-shaped body made of thermoplastic synthetic resin, which allows the length of the molded article to be easily changed. (Means for Solving the Problems) The method for producing a rod-shaped body made of thermoplastic synthetic resin of the present invention includes (1) heating and melting a molded resin material, (2) pressurizing the molten resin material while forming a rod-shaped body. a step of injecting and filling the resin material into the cavity of the mold; (3) a step of maintaining a desired region of the cavity at a temperature higher than the melting point of the resin material; (4)
a step of cooling and maintaining the remaining region of the cavity at a temperature below the melting point of the resin material and solidifying the resin material while pressurizing it with the filling pressure of the subsequent resin material; (5) filling the resin material after cooling and solidifying the resin material; The above object is achieved by including the steps of removing the pressure, and (6) discharging the desired rod-shaped molded product formed in the cavity from the cavity to the outside of the system. The present invention is characterized in that the molten resin material is supplied under constant pressure to a mold cavity portion having a melting region and a cooling region. Thereby, the occurrence of cavities and shrinkage in the obtained molded product is minimized.
When a resin material mixed with reinforcing fibers is used, the reinforcing fibers are uniformly oriented in the longitudinal direction of the rod-shaped body. The length of the rod-like body can also be set arbitrarily. (Example) The present invention will be described below with reference to Examples. An example of a molding apparatus embodying the manufacturing method of the present invention is shown in FIGS. 1 and 2. The molding apparatus consists of an injection molding machine 1 and a rod-shaped body mold 2 attached to the frame of the injection molding machine 1. As the injection molding machine 1,
Usually, an injection molding machine used for injection molding is used as appropriate. For example, it may be a plunger (ram) type injection molding machine, a screw pre-plastic type injection molding machine, an in-line screw type injection molding machine, or a vent type injection molding machine. The mold 2 includes a fixed side mounting plate 21, a fixed side mold plate 22 that is engaged with the fixed side mounting plate 21 in an air-liquid tight manner,
It is composed of a movable side mold plate 23. Fixed side mounting plate 2
1 is supported and fixed to the frame of the injection molding machine 1. The fixed side mounting plate 21 has a sprue portion 211 and a runner portion 212 therein. Sprue part 211
One end opening forms a nozzle touch part 213 and is engaged with the nozzle part 11 of the injection molding machine 1 in a liquid-tight manner,
The opening at the other end is connected to the runner section 212. The other end opening of the runner portion 212 is, for example,
It branches into five parts, each forming a resin outlet 214 and connected to the cavity part 220 of the stationary template 22. A heating means 215 such as a heater is provided inside or around the fixed side mounting plate 21.
is provided, whereby the fixed side mounting plate 21 is heated to a temperature equal to or higher than the melting point of the resin material 3. Therefore, the molten resin material 3 is not solidified in the sprue section 211 and the runner section 212, and is always replenished into the cavity section 220 of the fixed side template 22 by the filling pressure of the injection molding machine 1, so that the cavity section 22
It becomes difficult for cavities and shrinkage to occur inside and on the surface of the resin material 3 injected and filled. The cavity portions 220 of the stationary template 22 each have a cylindrical shape so as to form the shaft portion 31 of the rod-shaped body 30, for example. The other end openings 221 of the cavity portions 220 are connected to the cavity portions 230 of the movable mold plate 23, respectively. A heating means 222 and a cooling means 223 are provided inside or around the stationary template 22 . These heating means 222 and cooling means 223 each include a plurality of independent pairs of heaters, a cooling water circulation pipe, an oil circulation pipe, or the like. The movable mold plate 23 is movable to the frame of the injection molding machine 1 so that its cavity part 230 can be aligned with the opening 221 of the cavity part 220 of the fixed mold plate 22 when the mold 2 is clamped. can be attached to. The movable template cavity part 230 is a rod-shaped body 3
For example, it has a hexagonal column shape so that the head 32 of 0 can be formed. Further, the cavity portion 230 is provided with an undercut, so that the rod-shaped body 30 formed when the mold 2 is opened can retreat together with the movable mold plate 23 and be smoothly ejected from the fixed mold plate 22.
A protruding pin 232 is slidably provided in the other end opening 231 of the cavity portion 230 in a liquid-tight manner. By moving this protruding pin 232 forward, the rod-shaped body 30 is ejected from the movable mold plate 23. This protruding pin 232 is connected to an ejector rod 234 via, for example, a protruding plate 233. The movable template 23 is provided with a cooling means 23 such as a cooling water circulation pipe or an oil circulation pipe.
5 is provided. The cooling means 235 maintains the cavity portion 230 at a temperature below the melting point of the resin material 3. Fixed side mold plate 2 of the cavity part in the mold 2 above.
A predetermined area A of the cavity part 220 of No. 2 is heated by the heating means 2. The molten resin material 3 filled from the injection molding machine 1
22, the temperature is maintained at a temperature higher than the melting point of the resin material 3. Remaining area B 1 of cavity part 220
and the area of the cavity part 230 of the movable template 23
The remaining area B consisting of the cooling means 223
and 235 is a region in which the resin material 3 is maintained at a temperature below its melting point. Therefore, the molten resin material 3 is always replenished into the remaining area B by the filling pressure of the injection molding machine 1 without being solidified up to the remaining area B. Therefore, cavities and shrinkage are less likely to occur inside and on the surfaces of the cavity portion 220 of the stationary mold plate 22 and the cavity portion 230 of the movable mold plate 23. The temperature of the cavity portion 220 of the stationary mold plate 22 can be adjusted arbitrarily depending on which position of the heating means 222 is activated and which position of the cooling means 223 is activated. Therefore, the length of the region B 1 can be arbitrarily adjusted according to the length of the shaft portion 31 of the rod-shaped body 30. Moreover, if a temperature gradient is provided so that the temperature of the remaining region B gradually decreases from the side of the injection molding machine 1 toward the tip, the effect of cooling and solidifying the molten resin material 3 can be achieved more quickly. The rod-shaped body 30 manufactured according to the present invention may have any shape as long as it has at least a cylindrical shape and the front part from the cavity part 220 of the stationary template 22 can be removed from the mold. . The molded resin material 3 used in the present invention is made of thermoplastic synthetic resin. As a thermoplastic synthetic resin,
For example, it is made of polyamide resin, thermoplastic polyester resin, polyacetal resin, polycarbonate resin, polypropylene resin, polyethylene resin, vinyl chloride resin, polyphenylene resin, or polyphenylene sulfide resin. These synthetic resins may be used singly or in the form of a mixture of two or more. In addition, thermoplastic synthetic resins are usually filled with fillers such as glass fibers, carbon fibers, aramid fibers, potassium titanate fibers, alumina fibers, boron fibers, silicon carbide fibers, and various metal fibers. Known fibers used for reinforcement may be incorporated. These fillers may be used singly or in the form of a mixture of two or more. Furthermore, various molding aids or resin modifiers may be added to the thermoplastic synthetic resin as appropriate. (Function) The above molding device functions as follows. first,
A rod-shaped body mold 2 is attached to the frame of the injection molding machine 1. At this time, the fixed side mounting plate 21 and the fixed mold plate 22
and are engaged in an air-liquid tight manner. Next, the movable mold plate 23 is liquid-tightly engaged with the stationary mold plate 22 by the mold clamping mechanism of the injection molding machine 1. The resin material 3 is transferred from the hopper 12 to the cylinder part 13 of the injection molding machine 1.
The resin is supplied into the cylinder portion 13 and is uniformly melted and plasticized by a plasticizing mechanism 14 that includes, for example, a screw or a heater. When adding a filler to the resin material 3, the filler and the thermoplastic synthetic resin are separately supplied to the hopper 12 and then transferred to the cylinder section 13.
Either the filler and the synthetic resin are kneaded in advance and formed into a pellet, which is then supplied to the hopper 12. Next, the nozzle 11 at the tip of the cylinder section 13 of the injection molding machine 1 is engaged with the nozzle touch section 213 of the mold fixed side mounting plate 21 in a liquid-tight manner. The resin material 3 melted and plasticized in the cylinder part 13 passes through the sprue part 211 and the runner part 212 of the stationary template 21 by the screw of the plasticizing mechanism 14,
The cavity portion 220 of the stationary template 22 is injected and filled. The injection conditions such as the injection pressure and injection speed of the injection molding machine 1 at this time are as follows:
It is determined as appropriate based on the properties of the rod-shaped body 30 and the shape and dimensions of the rod-shaped body 30 to be molded. The molten resin material 3 is maintained at a temperature equal to or higher than the melting point of the resin material 3 in the sprue portion 211 and runner portion 212 of the fixed side mounting plate 21 and in the area A of the cavity portion 220 of the fixed side mold plate 22 by heating means 215 and 222. be done. Therefore, the molten resin material 3 is not solidified in these parts, and flows into the fixed side mold plate cavity part 220 and the movable side mold plate cavity part 2.
30. On the other hand, in region B, the molten resin material 3 is maintained at a temperature below the melting point of the resin material 3 by the cooling means 223 and 235, and is cooled and solidified. Therefore, the molten resin material 3 in the area B is always kept in the injection molding machine 1 until it is solidified.
It is in a pressurized state due to the filling pressure of . Therefore, the backflow of the molten resin material 3 is prevented, and at the same time, the volumetric shrinkage of the resin material 3 caused by cooling and solidification can be continuously replenished into the region B by the subsequent molten resin material 3.
As a result, the occurrence of cavities and shrinkage inside and on the surface of the molded rod-shaped body 30 is minimized, and dimensional accuracy is high. By appropriately operating the heating means 222 and the cooling means 223 of the stationary template 22, it is possible to obtain a rod-shaped molded product 30 having an arbitrary length of shaft length. If a temperature gradient is provided so that the temperature in region B gradually decreases from the side of the injection molding machine 1 toward the tip, the effect of cooling and solidifying the molten resin material 3 can be achieved more quickly. Thereby, the occurrence of nests and shrinkage can be more effectively prevented. In addition, unlike in conventional injection molds, the molten resin material does not pass through a minute gate and fill into the cavity.
The molten resin material 3 flowing into the region B can flow while maintaining a steady state. Therefore, when reinforcing fibers are mixed into the resin material 3 as a filler, the reinforcing fibers are reliably and uniformly oriented in the cavity axis direction without being oriented in the radial direction. Therefore, the molded rod-shaped body 30 has excellent strength and high dimensional accuracy. After cooling and solidifying the resin material 3 in area B, the operation of, for example, the screw in the injection molding machine 1 is stopped and the filling pressure is removed. This is done by opening the mold 2 and transferring the molded rod-shaped body 30 to the cavity part 22.
This is to prevent the subsequent molded resin material 3 from flowing into the area A when discharging the molded resin material 3 from 0. Filling pressure can be removed more effectively by retracting or rotating the screw in the opposite direction. Next, the movable mold plate 23 is moved back to open the mold. At this time, the cavity part 2 of the movable template 23
30 is provided with an undercut, the molded rod-shaped body 30 is discharged from the cavity portion 220 of the stationary template 22 together with the movable template 23.
Next, by advancing the ejector rod 234, the rod-shaped body 30 is ejected from the movable mold plate cavity portion 230 to the outside of the system by the projecting pin 232. After demolding is completed, the mold 2 is closed again to prepare for the next injection and filling of the molten resin material 3 into the area B. (Example) The above mold 2 for a rod-shaped object was attached to an in-line screw type injection molding machine (IS-140BV manufactured by Toshiba Machine Co., Ltd.), and as shown in FIG. Manufactured by. The temperature and filling pressure of each part of the resin material 3 and mold 2 used at this time are shown in the table below.

【表】 成形された棒状体30の縦断面を顕微鏡観察あ
るいは目視観察したところ、いずれも巣や引けは
全く認められなかつた。また、実験例No.および
No.の樹脂により得られた棒状体30の横断面中
央部から厚さ0.5mmの縦断面試料を作製し、X線
観察にてガラス繊維の配向状態を調べた。いずれ
も、ガラス繊維は軸の長手方向に均一に配向して
いた。 (比較例) 実験例No.〜とそれぞれ同じ温度条件に保た
れた金型2内にそれぞれ同じ樹脂材3を注入充填
した後、射出成形機のスクリユーの作動を止め充
填圧をゼロとして金型2内の樹脂材3を固化させ
て棒状体成形品を製造した。成形された棒状体の
縦断面を同様に顕微鏡観察あるいは目視観察した
ところいずれも巣や引けが認められた。ガラス繊
維の配向状態も不均一であつた。 (発明の効果) 本発明の製造方法によれば、このように、溶融
樹脂材が常時加圧された状態で溶融領域および冷
却領域を有する金型キヤビテイ部に供給されるの
で、成形品内部あるいは表面の巣や引けは極小と
なる。補強繊維を混入し樹脂材を用いたときに
は、補強繊維が棒状体軸部の長手方向に均一に配
向するため、優れた強度および寸法精度を有する
棒状体を得ることができる。また、金型に設けら
れた加熱手段および冷却手段を適宜調節すること
により所望の長さの棒状体を得ることができる。
[Table] When the longitudinal section of the molded rod-shaped body 30 was observed under a microscope or visually, no cavities or shrinkage were observed. Also, experimental example No. and
A longitudinal section sample with a thickness of 0.5 mm was prepared from the center of the cross section of the rod-shaped body 30 obtained using the resin No., and the orientation state of the glass fibers was examined by X-ray observation. In both cases, the glass fibers were uniformly oriented in the longitudinal direction of the shaft. (Comparative example) After injecting and filling the same resin material 3 into the molds 2 maintained at the same temperature conditions as in experimental example No. ~, the operation of the screw of the injection molding machine was stopped, the filling pressure was set to zero, and the molds were The resin material 3 in 2 was solidified to produce a rod-shaped molded product. Similar microscopic or visual observation of the longitudinal section of the molded rod-shaped body revealed cavities and shrinkage in both cases. The orientation of the glass fibers was also non-uniform. (Effects of the Invention) According to the manufacturing method of the present invention, the molten resin material is supplied to the mold cavity portion having the melting region and the cooling region in a constantly pressurized state. Cavities and shrinkage on the surface are minimal. When a resin material mixed with reinforcing fibers is used, the reinforcing fibers are uniformly oriented in the longitudinal direction of the shaft portion of the rod-shaped body, so that a rod-shaped body having excellent strength and dimensional accuracy can be obtained. Further, a rod-shaped body having a desired length can be obtained by appropriately adjusting the heating means and cooling means provided in the mold.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ本発明製造方
法の一実施例を具体化する成形装置の一例を示す
要部断面図、第3図は上記装置を用いて製造した
棒状体の一例を示す正面図、第4図は従来の射出
成形用金型の一例を示す要部断面図、第5図は上
記金型を用いて製造した棒状体の一例を示す部分
断面図である。 1……射出成形機、2……棒状体用金型、3…
…成形樹脂材、21……固定側取付板、22……
固定側型板、23……可動側型板、30……棒状
体、220,230……キヤビテイ部、215,
222……加熱手段、223,235……冷却手
段。
FIGS. 1 and 2 are sectional views of essential parts showing an example of a molding apparatus embodying an embodiment of the manufacturing method of the present invention, respectively, and FIG. 3 shows an example of a rod-shaped body manufactured using the above-mentioned apparatus. FIG. 4 is a front view, FIG. 4 is a sectional view of a main part of an example of a conventional injection mold, and FIG. 5 is a partial sectional view of an example of a rod-shaped body manufactured using the above mold. 1...Injection molding machine, 2...Mold for rod-shaped body, 3...
... Molded resin material, 21 ... Fixed side mounting plate, 22 ...
Fixed side template, 23... Movable side template, 30... Rod-shaped body, 220, 230... Cavity part, 215,
222... heating means, 223, 235... cooling means.

Claims (1)

【特許請求の範囲】 1 (1) 成形樹脂材を加熱溶融する工程、 (2) 該溶融樹脂材を加圧しつつ棒状体用金型のキ
ヤビテイ部へ注入充填する工程、 (3) 該キヤビテイ部の所望領域を樹脂材の融点以
上の温度に保持する工程、 (4) 該キヤビテイ部の残部領域を樹脂材の融点未
満の温度に冷却保持し該樹脂材を後続の樹脂材
の充填圧で加圧しつつ固化する工程、 (5) 該樹脂材の冷却固化終了後該充填圧を除去す
る工程、 (6) 該キヤビテイ部にて形成される所望の棒状体
成形品を該キヤビテイ部から系体へ排出する工
程 を包含する熱可塑性合成樹脂製棒状体の製造方
法。 2 前記樹脂材は補強繊維を含有する熱可塑性樹
脂組成物である特許請求の範囲第1項に記載の製
造方法。 3 前記金型の所定位置各々が独立した複数対の
加熱手段と冷却手段とが配置された特許請求の範
囲第1項に記載の製造方法。 4 前記キヤビテイ部の残部領域が温度勾配を有
する特許請求の範囲第1項に記載の製造方法。
[Scope of Claims] 1 (1) A step of heating and melting the molded resin material, (2) A step of injecting and filling the molten resin material into a cavity portion of a mold for a rod-shaped body while pressurizing it, (3) The cavity portion (4) Cooling and maintaining the remaining region of the cavity at a temperature below the melting point of the resin material, and pressurizing the resin material with the subsequent filling pressure of the resin material; (5) removing the filling pressure after cooling and solidifying the resin material; (6) transferring the desired rod-shaped molded product formed in the cavity from the cavity to the system; A method for producing a rod-shaped body made of thermoplastic synthetic resin, including a step of discharging it. 2. The manufacturing method according to claim 1, wherein the resin material is a thermoplastic resin composition containing reinforcing fibers. 3. The manufacturing method according to claim 1, wherein a plurality of independent pairs of heating means and cooling means are arranged at predetermined positions of the mold. 4. The manufacturing method according to claim 1, wherein the remaining region of the cavity portion has a temperature gradient.
JP3333385A 1985-02-21 1985-02-21 Manufacture of rod body made of thermoplastic synthetic resin Granted JPS61192533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3333385A JPS61192533A (en) 1985-02-21 1985-02-21 Manufacture of rod body made of thermoplastic synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3333385A JPS61192533A (en) 1985-02-21 1985-02-21 Manufacture of rod body made of thermoplastic synthetic resin

Publications (2)

Publication Number Publication Date
JPS61192533A JPS61192533A (en) 1986-08-27
JPH0522565B2 true JPH0522565B2 (en) 1993-03-30

Family

ID=12383625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3333385A Granted JPS61192533A (en) 1985-02-21 1985-02-21 Manufacture of rod body made of thermoplastic synthetic resin

Country Status (1)

Country Link
JP (1) JPS61192533A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007060739B4 (en) * 2007-12-17 2011-11-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and device for producing fiber composite components
WO2013176297A1 (en) * 2012-05-24 2013-11-28 サンスター スイス エスエー Method for manufacturing tool for cleaning between teeth and tool for cleaning between teeth
CN114311531A (en) * 2021-12-24 2022-04-12 太仓市众翔精密五金有限公司 Sprue offset mold with asymmetric cooling system

Also Published As

Publication number Publication date
JPS61192533A (en) 1986-08-27

Similar Documents

Publication Publication Date Title
EP0188120B1 (en) Moulding process
US4925161A (en) Process for molding directionally-orientatable material using shear force
US6120714A (en) Moulding process and article produced by the process
US5851474A (en) Injection molding with periodic forces to the material in the mold
EP0556323A1 (en) Method for the use of gas assistance in the molding of plastic articles to enhance surface quality.
US6562275B1 (en) Mold and method for sequentially injecting plastics material to form an automotive vehicle body part
JP3606936B2 (en) Injection molding method for arc-shaped hollow products
EP1912773B1 (en) Method, control for a machine and computer program product for controlling a machine for producing a molded element, especially injection molding method
KR101006147B1 (en) Moulding Method and Apparatus
JPH0522565B2 (en)
US20050266254A1 (en) Plastic injection molding with gas assisted metal moldings therein
US5156858A (en) Apparatus for controlling the molding of a solid product in a mold cavity from molten material which is repeatedly moved within the mold cavity
JPH0318824B2 (en)
JP2013523497A (en) Mold tool assembly including a resin retaining mechanism positioned against a stem tip
JPS61268410A (en) Manufacture of thermoplastic synthetic resin bar
JPS60264210A (en) Manufacture of cylindrical material made of thermoplastic synthetic resin
JPH0722947B2 (en) Manufacturing method of fiber reinforced plastic bolt
JPS6143529A (en) Molding method
JPS6283122A (en) Injection molding machine
GB2299779A (en) Injection moulding of thermoplastic resin
JPH031123B2 (en)
JPS61179715A (en) Molding method
US20130017288A1 (en) Mold-Tool Assembly having Nozzle Assemblies to Provide Resins Molded Adjacently
MILLER B. Molds
Miller Injection Molding