JPH07268514A - Hydrogen occluding alloy and hydrogen occluding alloy electrode - Google Patents

Hydrogen occluding alloy and hydrogen occluding alloy electrode

Info

Publication number
JPH07268514A
JPH07268514A JP6057514A JP5751494A JPH07268514A JP H07268514 A JPH07268514 A JP H07268514A JP 6057514 A JP6057514 A JP 6057514A JP 5751494 A JP5751494 A JP 5751494A JP H07268514 A JPH07268514 A JP H07268514A
Authority
JP
Japan
Prior art keywords
alloy
phase
hydrogen storage
solid solution
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6057514A
Other languages
Japanese (ja)
Inventor
Makoto Tsukahara
誠 塚原
Kunio Takahashi
国男 高橋
Takahiro Mishima
貴弘 三島
Akito Isomura
秋人 磯村
Tetsuo Sakai
哲男 境
Hiroshi Miyamura
弘 宮村
Hitoshi Uehara
斎 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMURA ZAIRYO KAIHATSU KENKYUSH
IMRA Material R&D Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
IMURA ZAIRYO KAIHATSU KENKYUSH
Agency of Industrial Science and Technology
IMRA Material R&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMURA ZAIRYO KAIHATSU KENKYUSH, Agency of Industrial Science and Technology, IMRA Material R&D Co Ltd filed Critical IMURA ZAIRYO KAIHATSU KENKYUSH
Priority to JP6057514A priority Critical patent/JPH07268514A/en
Priority to US08/410,798 priority patent/US5690799A/en
Publication of JPH07268514A publication Critical patent/JPH07268514A/en
Priority to US08/822,043 priority patent/US5776626A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a hydrogen occluding alloy having excellent hydrogen occlud ing characteristics by forming three-dimensional network skeleton of a phase consisting essentially of an AB2 type Laves alloy phase into a base phase consisting of a Ti-V solid soln. alloy. CONSTITUTION:The Ti-V solid soln. alloy is formed that the alloy phase consisting essentially of the AB2 type Laves alloy phase forms the three- dimensional network skeleton and exists in the base phase consisting of the Ti-V solid soln. alloy. This alloy is preferably composed of TiValphaNibetaMgamma (A is Zr, Hf, Ta, M is Cr, Mn, Fe, Co, Cu, Nb, 1<=alpha<=10, 0.2<=beta<=2.0, 0.05etagamma<=1, 0<=delta<=2). The AB2 alloy phase described above is preferably composed of TiepsilonAxsiNietaVthetaMiota (A is Zr, Hf, Ta, M is Cr, Mn, Fe, Co, Cu, Nb, 0.1<=epsilon<=0.4, 0.1<=xsi<=0.4, 0.1<=eta<=0.6, 0.1<=theta<=0.5, 0<=l<=0.2, epsilon+xsi+eta+theta+iota=1). A hydrogen occluding alloy electrode having excellent characteristics and long life is obtd. by using this alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金及び水素
吸蔵合金電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy and a hydrogen storage alloy electrode.

【0002】[0002]

【従来技術とその課題】水素吸蔵合金は、大量の水素を
可逆的に吸蔵・放出することができるため、水素ガスの
貯蔵用材料、ヒートポンプ等の熱利用システム用の材
料、ニッケル−水素電池用の負極用材料などとして幅広
い用途への利用が期待されている。
BACKGROUND OF THE INVENTION Hydrogen storage alloys are capable of reversibly storing and releasing a large amount of hydrogen. Therefore, hydrogen storage materials, materials for heat utilization systems such as heat pumps, nickel-hydrogen batteries, etc. It is expected to be used in a wide range of applications as a negative electrode material.

【0003】水素吸蔵合金には、LaNi5 等のAB5
型合金、ZrMn2 等のAB2 型ラーベス合金、TiF
e等のAB型合金、Mg2 Ni等のA2 B型合金、Ti
−V等の固溶体合金などが知られている。この中でも、
特に、固溶体合金は、水素吸蔵量が非常に大きく、しか
もコスト面において他の合金に比べて有利であるという
特徴がある。
For hydrogen storage alloys, AB 5 such as LaNi 5 is used.
Type alloy, AB 2 type Laves alloy such as ZrMn 2 , TiF
AB type alloys such as e, A 2 B type alloys such as Mg 2 Ni, Ti
Solid solution alloys such as -V are known. Among these,
In particular, the solid solution alloy is characterized in that it has a very large hydrogen storage capacity and is more advantageous in cost than other alloys.

【0004】しかしながら、固溶体合金は、水素の吸蔵
・放出を繰り返す際のサイクル寿命が短く、またニッケ
ル−水素電池用の負極として用いる場合の電気化学的な
反応が比較的遅いため、これらの点において未だ改善の
余地がある。
However, the solid solution alloy has a short cycle life when hydrogen is repeatedly occluded and released, and the electrochemical reaction when it is used as a negative electrode for a nickel-hydrogen battery is relatively slow. There is still room for improvement.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明は、水
素吸蔵特性に優れ、電池の負極用材料としても好適な水
素吸蔵合金を提供することを主な目的とする。
SUMMARY OF THE INVENTION Therefore, the main object of the present invention is to provide a hydrogen storage alloy which has excellent hydrogen storage characteristics and is suitable as a material for a negative electrode of a battery.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記従来技
術の問題に鑑み、Ti−V系固溶体合金にニッケルを添
加することによってその電気化学的反応を促進させ、水
素吸蔵特性の改善を試みた。しかし、ニッケル単独の添
加では、例えばニッケル−水素電池用の負極として用い
た場合、バナジウムの電解液中への溶解が著しいため、
サイクル寿命が短く、放電容量も小さく、上記特性を十
分改善できないことが判明した。
In view of the above problems of the prior art, the inventor of the present invention improves the hydrogen storage characteristics by adding nickel to a Ti-V solid solution alloy to accelerate its electrochemical reaction. I tried. However, with the addition of nickel alone, when used as a negative electrode for a nickel-hydrogen battery, for example, because the dissolution of vanadium in the electrolytic solution is remarkable,
It was found that the cycle life was short, the discharge capacity was small, and the above characteristics could not be sufficiently improved.

【0007】そこで、本発明者は、さらに特定の元素を
ニッケルと併用して添加したところ、従来では見られな
かった特異な構造をもつ水素吸蔵合金が得られ、この合
金はサイクル寿命、放電容量等の水素吸蔵特性が大幅に
改善されることを見出し、本発明を完成するに至った。
Therefore, the present inventor further added a specific element together with nickel to obtain a hydrogen storage alloy having a peculiar structure which was not seen in the past, and this alloy has a cycle life and a discharge capacity. The inventors have found that the hydrogen storage characteristics such as the above are significantly improved, and have completed the present invention.

【0008】即ち、本発明は、Ti−V系固溶体合金に
おいて、Ti−V系固溶体合金からなる母相中に、AB
2 型ラーベス合金相を主相とする相が3次元網目骨格を
形成して存在することを特徴とする水素吸蔵合金に係る
ものである。
That is, according to the present invention, in a Ti-V type solid solution alloy, AB is added in a mother phase composed of the Ti-V type solid solution alloy.
The present invention relates to a hydrogen storage alloy characterized in that a phase having a type 2 Laves alloy phase as a main phase forms and exists in a three-dimensional network skeleton.

【0009】以下、本発明について詳細に説明する。The present invention will be described in detail below.

【0010】本発明の水素吸蔵合金は、上記のようにT
i−V系固溶体合金からなる母相中に、AB2 型ラーベ
ス合金相を主相とする相が3次元網目骨格を形成して存
在するという特異な構造を有するものである。
The hydrogen storage alloy of the present invention has the above-mentioned T content.
It has a peculiar structure in which a phase having an AB 2 type Laves alloy phase as a main phase exists in a matrix consisting of an i-V type solid solution alloy to form a three-dimensional network skeleton.

【0011】上記Ti−V系固溶体合金は、合金全体と
してTiVαNiβAγMδなる組成を有することが望
ましい。上記組成式中Aは、Zr、Hf及びTaの少な
くとも1種の元素を示す。これら元素(A)が全く含ま
れていない場合には、3次元網目骨格を形成すべき相が
析出しなくなるおそれがあるので好ましくない。上記M
は、Cr、Mn、Fe、Co、Cu及びNbの少なくと
も1種の元素を示す。なお、本発明の効果を低減させな
い限り、上記以外の他の元素が含まれていても良い。上
記組成式中αは1〜10、βは0.2〜2、γは0.0
5〜1、δは0〜2の範囲であることが好ましい。上記
α、β、γ及びδのうち1つでも、これらの数値範囲外
となる場合は、水素吸蔵量が低下するか、或いはAB2
型ラーベス相を主相とする相が三次元網目骨格として析
出しなくなるおそれがあるので好ましくない。
The above Ti-V type solid solution alloy preferably has a composition of TiVαNiβAγMδ as the whole alloy. In the above composition formula, A represents at least one element of Zr, Hf, and Ta. When these elements (A) are not contained at all, the phase for forming the three-dimensional network skeleton may not be precipitated, which is not preferable. M above
Indicates at least one element of Cr, Mn, Fe, Co, Cu and Nb. In addition, as long as the effect of the present invention is not reduced, elements other than the above may be contained. In the above composition formula, α is 1 to 10, β is 0.2 to 2, and γ is 0.0.
It is preferable that 5-1 and δ are in the range of 0-2. If even one of α, β, γ, and δ is out of these numerical ranges, the hydrogen storage amount is reduced or AB 2
This is not preferable because the phase having the Laves phase as the main phase may not precipitate as a three-dimensional network skeleton.

【0012】本発明合金中のAB2 型ラーベス合金相を
主相とする相(以下「第2相」という。)は、TiεA
ζNiηVθMιなる組成を有する。上記組成式中Aは
Zr、Hf及びTaの少なくとも1種の元素を示す。こ
れらの元素が含まれていない場合は、ラーベス合金相そ
のものが析出しなくなるので好ましくない。また、同式
中Mは、V、Cr、Mn、Fe、Co、Cu及びNbの
少なくとも1種の元素を示す。なお、本発明の効果に悪
影響を及ぼさない範囲であれば、これらの元素以外の元
素が含まれていても差支えない。また、上記組成式中ε
は0.1〜0.4、ζは0.1〜0.4、ηは0.1〜
0.6、θは0.1〜0.5、ιは0〜0.2、かつε
+ζ+η+θ+ι=1であることが望ましい。これらの
いずれかが上記の数値範囲外となる場合は、耐久性の低
下又は水素吸蔵反応の阻害を招くおそれがあるので好ま
しくない。
The phase having the AB 2 type Laves alloy phase as the main phase (hereinafter referred to as “second phase”) in the alloy of the present invention is TiεA.
It has a composition of ζNiηVθMι. In the above composition formula, A represents at least one element of Zr, Hf, and Ta. When these elements are not contained, the Laves alloy phase itself does not precipitate, which is not preferable. In the formula, M represents at least one element selected from V, Cr, Mn, Fe, Co, Cu, and Nb. In addition, as long as the effect of the present invention is not adversely affected, elements other than these elements may be contained. In the composition formula above, ε
Is 0.1 to 0.4, ζ is 0.1 to 0.4, and η is 0.1 to
0.6, θ is 0.1 to 0.5, ι is 0 to 0.2, and ε
It is desirable that + ζ + η + θ + ι = 1. If any of these is out of the above numerical range, durability may be deteriorated or hydrogen storage reaction may be hindered, which is not preferable.

【0013】第2相中、AB2 型ラーベス合金相の含有
率は通常5体積%以上であり、残部は他の相を含んでい
ても良い。
The content of the AB 2 type Laves alloy phase in the second phase is usually 5% by volume or more, and the balance may contain other phases.

【0014】上記第2相は、上記のTiVαNiβAγ
Mδ系固溶体合金からなる母相中に3次元網目骨格を形
成している。Ti−V系固溶体合金における第2相の占
める体積割合は、合金全体の組成、製造条件等によって
異なり、合金の用途等に応じて適宜設定すれば良い。
The second phase is TiVαNiβAγ.
A three-dimensional network skeleton is formed in the mother phase composed of the Mδ-based solid solution alloy. The volume ratio of the second phase in the Ti-V solid solution alloy varies depending on the composition of the entire alloy, manufacturing conditions, etc., and may be appropriately set according to the application of the alloy and the like.

【0015】本発明の水素吸蔵合金は、上記TiVαN
iβAγMδなる組成に調製した原料粉末を、アーク溶
解法等の公知の方法により加熱溶解させ、これを冷却す
ることによって得ることができる。上記の原料粉末は、
市販の原料粉末をそのまま適用することができる。ま
た、必要に応じて、CaB6 等のように、溶湯から酸化
物を除去する働きをもつ添加剤を配合することもでき
る。
The hydrogen storage alloy of the present invention is the above TiVαN.
It can be obtained by heating and melting a raw material powder prepared to have a composition of iβAγMδ by a known method such as an arc melting method, and then cooling this. The above raw material powder is
A commercially available raw material powder can be applied as it is. Further, if necessary, an additive having a function of removing oxides from the molten metal, such as CaB 6 , can be added.

【0016】本発明の水素吸蔵合金電極は、上記の本発
明の水素吸蔵合金を含有するものである。例えば、上記
のTiVαNiβAγMδなる組成に調製した原料粉末
に銅粉等を配合し、これを所定の形状にプレス成形等に
より成形すれば得られる。
The hydrogen storage alloy electrode of the present invention contains the above hydrogen storage alloy of the present invention. For example, it can be obtained by mixing raw material powder prepared to have the composition of TiVαNiβAγMδ with copper powder or the like, and press-molding the powder into a predetermined shape.

【0017】[0017]

【発明の効果】このように、本発明の水素吸蔵合金は、
母相に対して第2相が3次元網目骨格を形成して存在し
ているので、当該第2相がTi−V系固溶体合金をマイ
クロカプセル化したような状態となり、これにより水素
の吸蔵・放出に伴う微粉化が大幅に抑制されることとな
る。
As described above, the hydrogen storage alloy of the present invention is
Since the second phase exists with respect to the mother phase in the form of a three-dimensional network skeleton, the second phase becomes a state in which the Ti-V based solid solution alloy is microencapsulated. The pulverization associated with the release will be greatly suppressed.

【0018】また、第2相が保護膜となって水素吸蔵合
金の主要元素であるバナジウムの溶解を抑制乃至防止す
ることができるので、耐アルカリ性が改善される結果、
サイクル寿命を向上させることができる。さらに、第2
相は、反応触媒相としての役割も果たすため、本発明水
素吸蔵合金を電極として使用する場合には、放電時の反
応速度を増大させることも可能となる。
Further, since the second phase serves as a protective film and can suppress or prevent the dissolution of vanadium which is the main element of the hydrogen storage alloy, the alkali resistance is improved.
The cycle life can be improved. Furthermore, the second
Since the phase also serves as a reaction catalyst phase, when the hydrogen storage alloy of the present invention is used as an electrode, it becomes possible to increase the reaction rate during discharge.

【0019】[0019]

【実施例】以下、実施例を示し、本発明の特徴とすると
ころをより明確にする。
EXAMPLES Examples will be shown below to clarify the characteristics of the present invention.

【0020】実施例1 市販のTi、V、Ni及びZrを用いて、組成がTiV
3 Ni0.56Zr0.05となるように秤量して混合し、アー
ク溶解法により加熱溶解させて合金を作製した。得られ
た合金を樹脂に封入して断面を研磨した後、走査型電子
顕微鏡及びEPMAにより合金断面の元素分析を行っ
た。その断面の状態を図1に示す。
Example 1 Commercially available Ti, V, Ni and Zr were used, and the composition was TiV.
3 Ni 0.56 Zr 0.05 was weighed and mixed so as to be melted by heating by an arc melting method to prepare an alloy. After sealing the obtained alloy in a resin and polishing the cross section, elemental analysis of the cross section of the alloy was performed by a scanning electron microscope and EPMA. The state of the cross section is shown in FIG.

【0021】上記の結果、Ti−V系固溶体合金相Ti
5.76Ni0.32Zr0.02の粒界部分にAB2 型ラーベス
合金相を主相とする相Ti0.25Zr0.16Ni0.320.27
(白い部分)が析出し、母相に対して3次元網目骨格を
形成していることが確認された。
As a result of the above, Ti--V type solid solution alloy phase Ti
V 5.76 Ni 0.32 Zr 0.02 A phase having an AB 2 type Laves alloy phase as a main phase at the grain boundary portion Ti 0.25 Zr 0.16 Ni 0.32 V 0.27
It was confirmed that (white portion) was precipitated and formed a three-dimensional network skeleton with respect to the matrix.

【0022】実施例2 市販のTi、V、Ni及びHfを用いて、組成がTiV
3 Ni0.56Hf0.24となるように秤量して混合し、アー
ク溶解法により加熱溶解させて合金を作製した。得られ
た合金を樹脂に封入して断面を研磨した後、走査型電子
顕微鏡及びEPMAにより合金断面の元素分析を行っ
た。
Example 2 Commercially available Ti, V, Ni and Hf were used, and the composition was TiV.
3 Ni 0.56 Hf 0.24 was weighed and mixed so as to be melted by heating by an arc melting method to prepare an alloy. After sealing the obtained alloy in a resin and polishing the cross section, elemental analysis of the cross section of the alloy was performed by a scanning electron microscope and EPMA.

【0023】その結果、Ti−V系固溶体合金相TiV
5.34Ni0.30Hf0.09の粒界部分にAB2 型ラーベス合
金相を主相とする相Ti0.25Hf0.18Ni0.290.28
析出し、母相に対して3次元網目骨格を形成しているこ
とが確認された。
As a result, Ti--V type solid solution alloy phase TiV
5.34 Ni 0.30 Hf 0.09 At the grain boundary part, the phase Ti 0.25 Hf 0.18 Ni 0.29 V 0.28 having the AB 2 type Laves alloy phase as the main phase is precipitated and forms a three-dimensional network skeleton with respect to the parent phase. confirmed.

【0024】実施例3 表1に示す組成の本発明合金(試料No.1〜12)で
電極を作製し、この電極を用いて電池を作製した。
Example 3 An electrode was prepared from the alloy of the present invention (Sample Nos. 1 to 12) having the composition shown in Table 1, and a battery was prepared using this electrode.

【0025】試料No.1〜15の組成の合金粉末0.
2gを電解銅粉0.6gと混合して直径13mmのペレ
ット状にプレスした電極を負極とし、水酸化ニッケル電
極を正極とし、6M水酸化カリウム水溶液を電解液とし
てニッケル−水素電池を作製した。この電池を20mA
の電流で5時間充電した後、10mAの電流で放電させ
た際の充放電サイクル試験の結果を表1に示す。
Sample No. Alloy powder having a composition of 1 to 15
A nickel-hydrogen battery was prepared by mixing 2 g with 0.6 g of electrolytic copper powder and pressing it into a pellet having a diameter of 13 mm as a negative electrode, a nickel hydroxide electrode as a positive electrode, and a 6 M potassium hydroxide aqueous solution as an electrolytic solution. This battery is 20mA
Table 1 shows the results of the charge / discharge cycle test when the battery was charged with the current of 5 hours for 5 hours and then discharged with the current of 10 mA.

【0026】なお、比較のため、本発明合金の組成をも
たない合金粉末を用いて上記と同様にして作製した電極
(比較試料No.1〜4)を用いて同様の電池を作製
し、充放電サイクル試験をした。その結果も表1に併記
する。
For comparison, a similar battery was prepared using the electrodes (Comparative Sample Nos. 1 to 4) prepared in the same manner as described above by using the alloy powder having no composition of the alloy of the present invention, A charge / discharge cycle test was conducted. The results are also shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の水素吸蔵合金の結晶構造を走査型電
子顕微鏡で観察した状態を示す図である。
FIG. 1 is a diagram showing a state in which a crystal structure of a hydrogen storage alloy of Example 1 is observed with a scanning electron microscope.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 国男 愛知県刈谷市八軒町5丁目50番地 株式会 社イムラ材料開発研究所内 (72)発明者 三島 貴弘 愛知県刈谷市八軒町5丁目50番地 株式会 社イムラ材料開発研究所内 (72)発明者 磯村 秋人 愛知県刈谷市八軒町5丁目50番地 株式会 社イムラ材料開発研究所内 (72)発明者 境 哲男 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 宮村 弘 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 上原 斎 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunio Takahashi 5-50 Hachiken-cho, Kariya city, Aichi Prefectural Institute for Imla Materials Development (72) Inventor Takahiro Mishima 5-chome Hachiken-cho, Kariya city, Aichi prefecture Address: Imla Material Development Laboratory (72) Inventor Akito Isomura 5-50, Hachiken-cho, Kariya City, Aichi Prefecture Imla Material Development Laboratory (72) Inventor Tetsuo Sakai 1-chome, Midorigaoka, Ikeda, Osaka 8-31 Industrial Technology Institute Osaka Industrial Technology Research Institute (72) Inventor Hiroshi Miyamura 1-831 Midorigaoka, Ikeda City, Osaka Prefecture Industrial Technology Institute Osaka Industrial Technology Research Institute (72) Inventor Sai Uehara Ikeda, Osaka Prefecture 1-8-31 Midorigaoka, Yokohama-shi Industrial Technology Institute Osaka Industrial Technology Research Institute

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】Ti−V系固溶体合金において、Ti−V
系固溶体合金からなる母相中に、AB2 型ラーベス合金
相を主相とする相が3次元網目骨格を形成して存在する
ことを特徴とする水素吸蔵合金。
1. A Ti-V solid solution alloy comprising Ti-V
A hydrogen storage alloy, characterized in that a matrix having an AB 2 type Laves alloy phase as a main phase is present in a matrix consisting of a solid solution alloy forming a three-dimensional network skeleton.
【請求項2】Ti−V系固溶体合金が、合金全体として
TiVαNiβAγMδ(但し、AはZr、Hf及びT
aの少なくとも1種の元素、MはCr、Mn、Fe、C
o、Cu及びNbの少なくとも1種の元素、1≦α≦1
0、0.2≦β≦2、0.05≦γ≦1、0<δ≦2)
なる組成を有する請求項1記載の水素吸蔵合金。
2. A Ti-V based solid solution alloy comprising TiVαNiβAγMδ (where A is Zr, Hf and T) as a whole alloy.
at least one element of a, M is Cr, Mn, Fe, C
o, at least one element of Cu and Nb, 1 ≦ α ≦ 1
0, 0.2 ≦ β ≦ 2, 0.05 ≦ γ ≦ 1, 0 <δ ≦ 2)
The hydrogen storage alloy according to claim 1, having the following composition.
【請求項3】AB2 型ラーベス合金相を主相とする相
が、TiεAζNiηVθMι(但し、AはZr、Hf
及びTaの少なくとも1種の元素、MはCr、Mn、F
e、Co、Cu及びNbの少なくとも1種の元素、0.
1≦ε≦0.4、0.1≦ζ≦0.4、0.1≦η≦
0.6、0.1≦θ≦0.5、0<ι≦0.2、かつε
+ζ+η+θ+ι=1)なる組成である請求項1又は2
に記載の水素吸蔵合金。
3. A phase having an AB 2 type Laves alloy phase as a main phase is TiεAζNiηVθMι (where A is Zr, Hf
And at least one element of Ta, M is Cr, Mn, F
e, Co, Cu and Nb, at least one element, 0.
1 ≦ ε ≦ 0.4, 0.1 ≦ ζ ≦ 0.4, 0.1 ≦ η ≦
0.6, 0.1 ≦ θ ≦ 0.5, 0 <ι ≦ 0.2, and ε
The composition is + ζ + η + θ + ι = 1).
Hydrogen storage alloy according to.
【請求項4】Ti−V系固溶体合金が合金全体としてT
iVαNiβAγ(但し、AはZr、Hf及びTaの少
なくとも1種の元素、1≦α≦10、0.2≦β≦2、
0.05≦γ≦1)なる組成を有する請求項1記載の水
素吸蔵合金。
4. A Ti-V solid solution alloy containing T as a whole alloy.
iVαNiβAγ (where A is at least one element of Zr, Hf, and Ta, 1 ≦ α ≦ 10, 0.2 ≦ β ≦ 2,
The hydrogen storage alloy according to claim 1, having a composition of 0.05 ≦ γ ≦ 1).
【請求項5】AB2 型ラーベス合金相を主相とする相
が、TiεAζNiηVθ(但し、AはZr、Hf及び
Taの少なくとも1種の元素、0.1≦ε≦0.4、
0.1≦ζ≦0.4、0.1≦η≦0.6、0.1≦θ
≦0.5、かつε+ζ+η+θ=1)なる組成である請
求項1、2及び4のいずれかに記載の水素吸蔵合金。
5. A phase having an AB 2 type Laves alloy phase as a main phase is TiεAζNiηVθ (where A is at least one element of Zr, Hf and Ta, 0.1 ≦ ε ≦ 0.4,
0.1 ≦ ζ ≦ 0.4, 0.1 ≦ η ≦ 0.6, 0.1 ≦ θ
The hydrogen storage alloy according to claim 1, having a composition of ≦ 0.5 and ε + ζ + η + θ = 1).
【請求項6】Ti−V系固溶体合金において、Ti−V
系固溶体合金からなる母相中に、AB2 型ラーベス合金
相を主相とする相が3次元網目骨格を形成して存在する
水素吸蔵合金を含有することを特徴とする水素吸蔵合金
電極。
6. A Ti-V-based solid solution alloy containing Ti-V
A hydrogen storage alloy electrode, comprising a hydrogen storage alloy in which a phase having an AB 2 type Laves alloy phase as a main phase forms a three-dimensional network skeleton in a mother phase composed of a solid solution alloy.
JP6057514A 1994-03-28 1994-03-28 Hydrogen occluding alloy and hydrogen occluding alloy electrode Pending JPH07268514A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6057514A JPH07268514A (en) 1994-03-28 1994-03-28 Hydrogen occluding alloy and hydrogen occluding alloy electrode
US08/410,798 US5690799A (en) 1994-03-28 1995-03-27 Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
US08/822,043 US5776626A (en) 1994-03-28 1997-03-24 Hydrogen-occluding alloy and hydrogen-occluding alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6057514A JPH07268514A (en) 1994-03-28 1994-03-28 Hydrogen occluding alloy and hydrogen occluding alloy electrode

Publications (1)

Publication Number Publication Date
JPH07268514A true JPH07268514A (en) 1995-10-17

Family

ID=13057853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6057514A Pending JPH07268514A (en) 1994-03-28 1994-03-28 Hydrogen occluding alloy and hydrogen occluding alloy electrode

Country Status (1)

Country Link
JP (1) JPH07268514A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268513A (en) * 1994-03-28 1995-10-17 Imura Zairyo Kaihatsu Kenkyusho:Kk Hydrogen occluding alloy and hydrogen occluding alloy electrode
EP1026763A1 (en) * 1997-09-30 2000-08-09 Sanyo Electric Co., Ltd. Hydrogen absorbing allow electrode and method of producing the same
US6309779B1 (en) 1999-02-17 2001-10-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode and method for manufacturing the same
US6338764B1 (en) 1998-04-30 2002-01-15 Toyota Jidosha Kabushiki Kaisha Hydrogen-absorbing alloy and hydrogen-absorbing alloy electrode
US6632567B2 (en) * 2000-03-23 2003-10-14 Sanyo Electric Co., Ltd. Nickel-metal hydride storage battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119636A (en) * 1986-12-29 1989-05-11 Energy Conversion Devices Inc Charge holding and strengthening electrochemical hydrogen occlusion alloy and cell
JPH01165737A (en) * 1987-11-17 1989-06-29 Kuochih Hong Hydrogen storing method and hydride electrode material
JPH03294405A (en) * 1990-04-11 1991-12-25 Energy Conversion Devices Inc Continuous production of negative electrode consisting of finely pulverized hydrogen occluded alloy material
JPH05247568A (en) * 1990-10-11 1993-09-24 Hitachi Maxell Ltd Hydrogen storage alloy electrode and battery using them
JPH07268513A (en) * 1994-03-28 1995-10-17 Imura Zairyo Kaihatsu Kenkyusho:Kk Hydrogen occluding alloy and hydrogen occluding alloy electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119636A (en) * 1986-12-29 1989-05-11 Energy Conversion Devices Inc Charge holding and strengthening electrochemical hydrogen occlusion alloy and cell
JPH01165737A (en) * 1987-11-17 1989-06-29 Kuochih Hong Hydrogen storing method and hydride electrode material
JPH03294405A (en) * 1990-04-11 1991-12-25 Energy Conversion Devices Inc Continuous production of negative electrode consisting of finely pulverized hydrogen occluded alloy material
JPH05247568A (en) * 1990-10-11 1993-09-24 Hitachi Maxell Ltd Hydrogen storage alloy electrode and battery using them
JPH07268513A (en) * 1994-03-28 1995-10-17 Imura Zairyo Kaihatsu Kenkyusho:Kk Hydrogen occluding alloy and hydrogen occluding alloy electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268513A (en) * 1994-03-28 1995-10-17 Imura Zairyo Kaihatsu Kenkyusho:Kk Hydrogen occluding alloy and hydrogen occluding alloy electrode
JP2719884B2 (en) * 1994-03-28 1998-02-25 株式会社イムラ材料開発研究所 Hydrogen storage alloy and hydrogen storage alloy electrode
EP1026763A1 (en) * 1997-09-30 2000-08-09 Sanyo Electric Co., Ltd. Hydrogen absorbing allow electrode and method of producing the same
EP1026763A4 (en) * 1997-09-30 2004-12-22 Sanyo Electric Co Hydrogen absorbing allow electrode and method of producing the same
US6338764B1 (en) 1998-04-30 2002-01-15 Toyota Jidosha Kabushiki Kaisha Hydrogen-absorbing alloy and hydrogen-absorbing alloy electrode
DE19918329B4 (en) * 1998-04-30 2008-02-14 Toyota Jidosha Kabushiki Kaisha, Toyota A hydrogen absorbing alloy and electrode comprising the hydrogen absorbing alloy
US6309779B1 (en) 1999-02-17 2001-10-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode and method for manufacturing the same
US6632567B2 (en) * 2000-03-23 2003-10-14 Sanyo Electric Co., Ltd. Nickel-metal hydride storage battery

Similar Documents

Publication Publication Date Title
JPS60241652A (en) Electrochemical electrode employing metal hydride
JPS6191863A (en) Sealed alkaline storage battery
JP2719884B2 (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH07268514A (en) Hydrogen occluding alloy and hydrogen occluding alloy electrode
KR100218835B1 (en) Mish metal for ni/mh secondary cell and nickel-series alloy storing hydrogen
JP2666249B2 (en) Hydrogen storage alloy for alkaline storage batteries
JPH06187983A (en) Hydrogen storage alloy electrode
JPS63284758A (en) Hydrogen-storing electrode
JPS62271348A (en) Hydrogen occlusion electrode
JPH04187733A (en) Hydrogen storage alloy electrode
JP3123800B2 (en) Hydrogen storage alloy electrode
JP3095101B2 (en) Hydrogen storage alloy and electrode using the same
JPH01162741A (en) Hydrogen occluding alloy electrode
JPS61168870A (en) Metal-hydrogen alkaline storage battery
JP3410308B2 (en) Hydrogen storage alloy and nickel-hydrogen battery electrode using the same
JP3188788B2 (en) Hydrogen storage alloy and electrode using the same
JP3188780B2 (en) Hydrogen storage alloy and electrode using the same
JP3188781B2 (en) Hydrogen storage alloy and electrode using the same
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JP3088133B2 (en) Hydrogen storage electrode
JPH0797497B2 (en) Hydrogen storage electrode
JPH0393158A (en) Hydrogen storage alloy electrode
JPH0815079B2 (en) Hydrogen storage electrode
JPH04187735A (en) Hydrogen storage alloy electrode
JPH09259876A (en) Hydrogen absorbing alloy, and hydrogen absorbing alloy electrode