JP2719884B2 - Hydrogen storage alloy and hydrogen storage alloy electrode - Google Patents

Hydrogen storage alloy and hydrogen storage alloy electrode

Info

Publication number
JP2719884B2
JP2719884B2 JP6057513A JP5751394A JP2719884B2 JP 2719884 B2 JP2719884 B2 JP 2719884B2 JP 6057513 A JP6057513 A JP 6057513A JP 5751394 A JP5751394 A JP 5751394A JP 2719884 B2 JP2719884 B2 JP 2719884B2
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
storage alloy
phase
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6057513A
Other languages
Japanese (ja)
Other versions
JPH07268513A (en
Inventor
誠 塚原
国男 高橋
貴弘 三島
秋人 磯村
哲男 境
弘 宮村
斎 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IMRA Material R&D Co Ltd
Original Assignee
IMRA Material R&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IMRA Material R&D Co Ltd filed Critical IMRA Material R&D Co Ltd
Priority to JP6057513A priority Critical patent/JP2719884B2/en
Priority to US08/410,798 priority patent/US5690799A/en
Publication of JPH07268513A publication Critical patent/JPH07268513A/en
Priority to US08/822,043 priority patent/US5776626A/en
Application granted granted Critical
Publication of JP2719884B2 publication Critical patent/JP2719884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金及び水素
吸蔵合金電極に関する。
The present invention relates to a hydrogen storage alloy and a hydrogen storage alloy electrode.

【0002】[0002]

【従来技術とその課題】水素吸蔵合金は、大量の水素を
可逆的に吸蔵・放出することができるため、水素ガスの
貯蔵用材料、ヒートポンプ等の熱利用システム用の材
料、ニッケル−水素電池用の負極用材料などとして幅広
い用途への利用が期待されている。
2. Description of the Related Art Hydrogen storage alloys can store and release a large amount of hydrogen reversibly, so they can be used as materials for storing hydrogen gas, materials for heat utilization systems such as heat pumps, and nickel-hydrogen batteries. It is expected to be used for a wide range of applications as a negative electrode material.

【0003】水素吸蔵合金には、LaNi5 等のAB5
型合金、ZrMn2 等のAB2 型ラーベス合金、TiF
e等のAB型合金、Mg2 Ni等のA2 B型合金、Ti
−V等の固溶体合金などが知られている。この中でも、
特に、固溶体合金は、水素吸蔵量が非常に大きく、しか
もコスト面において他の合金に比べて有利であるという
特徴がある。
[0003] The hydrogen-absorbing alloy, AB 5 such as LaNi 5
Type alloy, AB 2 type Laves alloy such as ZrMn 2 , TiF
AB type alloy such as e, A 2 B type alloy such as Mg 2 Ni, Ti
Solid solution alloys such as -V are known. Among them,
In particular, a solid solution alloy has a feature that it has a very large hydrogen storage capacity and is more advantageous in cost than other alloys.

【0004】しかしながら、固溶体合金は、水素の吸蔵
・放出を繰り返す際のサイクル寿命が短く、またニッケ
ル−水素電池用の負極として用いる場合の電気化学的な
反応が比較的遅いため、これらの点において未だ改善の
余地がある。
However, a solid solution alloy has a short cycle life when repeatedly absorbing and releasing hydrogen, and has a relatively slow electrochemical reaction when used as a negative electrode for a nickel-metal hydride battery. There is still room for improvement.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明は、水
素吸蔵特性に優れ、電池の負極用材料としても好適な水
素吸蔵合金を提供することを主な目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a hydrogen storage alloy which has excellent hydrogen storage properties and is suitable as a material for a negative electrode of a battery.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記従来技
術の問題に鑑み、Ti−V系固溶体合金にニッケルを添
加することによってその電気化学的反応を促進させ、水
素吸蔵特性の改善を試みた。しかし、ニッケル単独の添
加では、例えばニッケル−水素電池用の負極として用い
た場合、バナジウムの電解液中への溶解が著しいため、
サイクル寿命が短く、放電容量も小さく、上記特性を十
分改善できないことが判明した。
SUMMARY OF THE INVENTION In view of the above-mentioned problems in the prior art, the present inventor promoted the electrochemical reaction by adding nickel to a Ti-V-based solid solution alloy to improve the hydrogen storage characteristics. Tried. However, addition of nickel alone, for example, when used as a negative electrode for a nickel-hydrogen battery, vanadium is significantly dissolved in the electrolytic solution,
It was found that the cycle life was short, the discharge capacity was small, and the above characteristics could not be sufficiently improved.

【0007】そこで、本発明者は、さらに特定の元素を
ニッケルと併用して添加したところ、従来では見られな
かった特異な構造をもつ水素吸蔵合金が得られ、この合
金はサイクル寿命、放電容量等の水素吸蔵特性が大幅に
改善されることを見出し、本発明を完成するに至った。
[0007] Then, when the present inventors further added a specific element in combination with nickel, a hydrogen storage alloy having a peculiar structure, which had not been seen before, was obtained. This alloy has a cycle life and a discharge capacity. And the like, and found that the hydrogen storage properties were greatly improved, and completed the present invention.

【0008】すなわち、本発明は、Ti−V系固溶体合
金において、Ti−V系固溶体合金からなる母相中に、
Ti及びNiを主成分とする合金相が3次元網目骨格を
形成して存在しており、 (i)合金全体としてTiVαNiβMγ(但し、M
は、Co、Cu及び Nbの少なくとも1種の元素、1≦
α≦10、0.2≦β≦2、 0.02≦γ≦0.5)な
る組成を有し、かつ、 (ii)上記Ti及びNiを主成分とする合金相が、T
iNiδNε(但し、 NはV、Co、Cu及びNbの少
なくとも1種の元素、0.5≦δ≦ 2、0.1≦ε≦
1)なる組成である水素吸蔵合金に係るものである。
[0008] That is , the present invention provides a Ti-V-based solid solution alloy comprising:
An alloy phase mainly composed of Ti and Ni is present in the form of a three-dimensional network skeleton . (I) TiVαNiβMγ (where M
Is at least one element of Co, Cu and Nb, 1 ≦
α ≦ 10, 0.2 ≦ β ≦ 2, 0.02 ≦ γ ≦ 0.5)
And (ii) the alloy phase mainly composed of Ti and Ni is T
iNiδNε (where N is a small amount of V, Co, Cu and Nb)
At least one element, 0.5 ≦ δ ≦ 2, 0.1 ≦ ε ≦
The present invention relates to a hydrogen storage alloy having a composition of 1).

【0009】以下、本発明について詳細に説明する。Hereinafter, the present invention will be described in detail.

【0010】本発明の水素吸蔵合金は、上記のようにT
i−V系固溶体合金からなる母相中に、Ti及びNiを
主成分とする合金相が3次元網目骨格を形成して存在す
るという特異な構造を有するものである。
The hydrogen storage alloy of the present invention has a T
It has a unique structure in which an alloy phase mainly composed of Ti and Ni is present in a matrix composed of an iV-based solid solution alloy by forming a three-dimensional network skeleton.

【0011】上記Ti−V系固溶体合金は、合金全体と
してTiVαNiβMγなる組成を有することが望まし
い。上記Mは、Co、Cu及びNbの少なくとも1種
元素を示す。これら元素(M)が全く含まれていない場
合、即ちTiVαNiβの3成分系となる場合には、3
次元網目骨格を形成すべき合金相が析出しなくなるおそ
れがあるので好ましくない。なお、本発明の効果を低減
させない限りにおいて、上記以外の他の元素が含まれて
いても良い。上記の組成式中αは1〜10、βは0.2
〜2、γは0.02〜0.5の範囲であることが好まし
い。上記α、β及びγのうち1つでも、これらの数値範
囲外となる場合は、水素吸蔵量の低下を引き起こすか、
或いはTi及びNiを主成分とする合金相が三次元網目
骨格として析出しなくなるおそれがあるので好ましくな
い。
The Ti-V based solid solution alloy desirably has a composition of TiVαNiβMγ as a whole. M represents at least one element of Co, Cu and Nb . When these elements (M) are not contained at all, that is, when a three-component system of TiVαNiβ is used, 3
It is not preferable because the alloy phase that should form the three-dimensional network skeleton may not precipitate. Note that other elements other than those described above may be included as long as the effects of the present invention are not reduced. In the above composition formula, α is 1 to 10, and β is 0.2
And γ are preferably in the range of 0.02 to 0.5. If any one of the above α, β, and γ is out of these numerical ranges, it causes a decrease in the hydrogen storage amount,
Alternatively, an alloy phase containing Ti and Ni as main components may not be precipitated as a three-dimensional network skeleton, which is not preferable.

【0012】本発明合金中におけるTi及びNiを主成
分とする合金相(以下「第2相」という。)は、TiN
iδNεなる組成を有する。この組成式中Nは、V、C
o、Cu及びNbの少なくとも1種の元素を示す。これ
らの元素が含まれていない場合は第2相中のTiの溶出
が著しくなるので好ましくない。一方、本発明の効果に
悪影響を及ぼさない範囲であれば、これらの元素以外の
元素が含まれていても差支えない。上記δは0.5〜
2、上記εは0.1〜1の範囲であることが望ましい。
上記δ及びεのいずれかがこれらの数値範囲外となる場
合は、第2相の延性低下による耐久性の低下又は水素吸
蔵反応の阻害を招くこととなるので好ましくない。
The alloy phase containing Ti and Ni as main components (hereinafter referred to as "second phase") in the alloy of the present invention is TiN.
It has a composition of iδNε. In this composition formula, N is V, C
It shows at least one element of o, Cu and Nb . If these elements are not contained, the elution of Ti in the second phase becomes remarkable, which is not preferable. On the other hand, elements other than these elements may be contained as long as the effects of the present invention are not adversely affected. The above δ is 0.5 to
2. It is desirable that ε is in the range of 0.1 to 1.
If any of the above δ and ε is out of these numerical ranges, it is not preferable since the ductility of the second phase is reduced and the hydrogen storage reaction is inhibited.

【0013】上記第2相は、上記のTi−V系固溶体合
金からなる母相中に3次元網目骨格を形成している。T
i−V系固溶体合金における第2相の占める体積割合
は、合金全体の組成、製造条件等によって異なり、合金
の用途等に応じて適宜設定すれば良い。
The second phase forms a three-dimensional network skeleton in the matrix composed of the Ti-V-based solid solution alloy. T
The volume ratio occupied by the second phase in the iV-based solid solution alloy varies depending on the composition of the entire alloy, production conditions, and the like, and may be appropriately set according to the use of the alloy.

【0014】本発明の水素吸蔵合金は、上記のTiVα
NiβMγなる組成に調製した原料粉末を、アーク溶解
法等の公知の方法により加熱溶解させ、これを冷却する
ことによって得ることができる。上記の原料粉末は、市
販の原料粉末をそのまま適用することができる。また、
必要に応じて、CaB6 等のように、溶湯から酸化物を
除去する働きをもつ添加剤を配合することもできる。
The hydrogen storage alloy of the present invention is characterized in that the above TiVα
The raw material powder prepared to have a composition of NiβMγ can be obtained by heating and melting by a known method such as an arc melting method and cooling the same. As the above-mentioned raw material powder, a commercially available raw material powder can be applied as it is. Also,
If necessary, an additive having a function of removing oxides from the molten metal, such as CaB 6 , can be added.

【0015】本発明の水素吸蔵合金電極は、上記の本発
明の水素吸蔵合金を含有するものである。例えば、上記
のTiVαNiβMγなる組成に調製した原料粉末に銅
粉等を配合し、これを所定の形状にプレス成形等により
成形すれば得られる。
The hydrogen storage alloy electrode of the present invention contains the above hydrogen storage alloy of the present invention. For example, it can be obtained by blending copper powder or the like with the raw material powder prepared to have the above composition of TiVαNiβMγ, and molding this into a predetermined shape by press molding or the like.

【0016】[0016]

【発明の効果】このように、本発明の水素吸蔵合金は、
母相に対して第2相が3次元網目骨格を形成して存在し
ているので、当該第2相がTi−V系固溶体合金をマイ
クロカプセル化したような状態となり、これにより水素
の吸蔵・放出に伴う微粉化が大幅に抑制されることとな
る。
As described above, the hydrogen storage alloy of the present invention is
Since the second phase exists with respect to the parent phase forming a three-dimensional network skeleton, the second phase becomes a state in which the Ti-V-based solid solution alloy is microencapsulated. The pulverization accompanying the release is largely suppressed.

【0017】また、第2相が保護膜となって水素吸蔵合
金の主要元素であるバナジウムの溶解を抑制乃至防止す
ることができるので、耐アルカリ性が改善される結果、
サイクル寿命を向上させることができる。さらに、第2
相は、反応触媒相としての役割も果たすため、本発明水
素吸蔵合金を電極として使用する場合には、放電時の反
応速度を増大させることも可能となる。
Further, since the second phase acts as a protective film to suppress or prevent the dissolution of vanadium which is a main element of the hydrogen storage alloy, the alkali resistance is improved.
The cycle life can be improved. Furthermore, the second
Since the phase also serves as a reaction catalyst phase, when the hydrogen storage alloy of the present invention is used as an electrode, it is possible to increase the reaction rate during discharge.

【0018】[0018]

【実施例】以下、実施例を示し、本発明の特徴とすると
ころをより明確にする。
The present invention will be described below in more detail with reference to examples.

【0019】実施例1 市販のTi、V、Ni及びCoを用いて、組成がTiV
3 Ni0.56Co0.05となるように秤量して混合し、アー
ク溶解法により加熱溶解させて合金を作製した。得られ
た合金を樹脂に封入して断面を研磨した後、走査型電子
顕微鏡及びEPMAにより合金断面の元素分析を行っ
た。その断面の状態を図1に示す。
Example 1 Commercially available Ti, V, Ni and Co were used, and the composition was TiV.
3 Ni 0.56 Co 0.05 were weighed and mixed to obtain an alloy by heating and melting by an arc melting method. After enclosing the obtained alloy in a resin and polishing the cross section, element analysis of the alloy cross section was performed by a scanning electron microscope and EPMA. FIG. 1 shows the state of the cross section.

【0020】この結果、Ti−V系固溶体合金相TiV
4.27Ni0.42Co0.05の粒界部分にTi及びNiを主成
分とする合金相TiNiV0.30Co0.06(白い部分)が
析出し、母相に対して3次元網目骨格を形成しているこ
とが確認された。
As a result, the Ti-V based solid solution alloy phase TiV
4.27 It was confirmed that an alloy phase TiNiV 0.30 Co 0.06 (white part) precipitated at the grain boundaries of Ni 0.42 Co 0.05 with Ti and Ni as main components and formed a three-dimensional network skeleton with respect to the parent phase. Was.

【0021】実施例2 市販のTi、V、Ni及びNbを用いて、組成がTiV
3 Ni0.56Nb0.05となるように秤量して混合し、アー
ク溶解法により加熱溶解させて合金を作製した。得られ
た合金を樹脂に封入して断面を研磨した後、走査型電子
顕微鏡及びEPMAにより合金断面の元素分析を行っ
た。
Example 2 Commercially available Ti, V, Ni and Nb were used, and the composition was TiV.
3 Ni 0.56 were weighed so that the Nb 0.05 were mixed to prepare an alloy by heating dissolved by an arc melting method. After enclosing the obtained alloy in a resin and polishing the cross section, element analysis of the alloy cross section was performed by a scanning electron microscope and EPMA.

【0022】その結果、Ti−V系固溶体合金相TiV
4.78Ni0.42Nb0.29の粒界部分にTi及びNiを主成
分とする合金相TiNi1.100.33Nb0.04が析出し、
母相に対して3次元網目骨格を形成していることが確認
された。
As a result, the Ti-V based solid solution alloy phase TiV
4.78 At the grain boundary of Ni 0.42 Nb 0.29 , an alloy phase TiNi 1.10 V 0.33 Nb 0.04 composed mainly of Ti and Ni precipitates,
It was confirmed that a three-dimensional network skeleton was formed with respect to the parent phase.

【0023】実施例3 表1に示す組成の本発明合金(試料No.1〜12)で
電極を作製し、この電極を用いて電池を作製した。
Example 3 An electrode was produced from the alloy of the present invention (sample Nos. 1 to 12 ) having the composition shown in Table 1, and a battery was produced using this electrode.

【0024】試料No.1〜12の組成の合金粉末0.
2gを電解銅粉0.6gと混合して直径13mmのペレ
ット状にプレスした電極を負極とし、水酸化ニッケル電
極を正極とし、6M水酸化カリウム水溶液を電解液とし
てニッケル−水素電池を作製した。この電池を20mA
の電流で5時間充電した後、10mAの電流で放電させ
た際の充放電サイクル試験の結果を表1に示す。
Sample No. Alloy powder of composition 1 to 12
A nickel-hydrogen battery was prepared by mixing 2 g with 0.6 g of electrolytic copper powder and pressing an electrode pressed into a pellet having a diameter of 13 mm as a negative electrode, a nickel hydroxide electrode as a positive electrode, and a 6 M aqueous solution of potassium hydroxide as an electrolyte. This battery is 20mA
Table 1 shows the results of a charge / discharge cycle test when the battery was charged at a current of 5 hours and then discharged at a current of 10 mA.

【0025】なお、比較のため、本発明合金の組成をも
たない合金粉末を用いて上記と同様にして作製した電極
(比較試料No.1〜4)を用いて同様の電池を作製
し、充放電サイクル試験をした。その結果も表1に併記
する。
For comparison, a similar battery was produced using electrodes (comparative samples Nos. 1 to 4) produced in the same manner using an alloy powder having no composition of the alloy of the present invention. A charge / discharge cycle test was performed. The results are also shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の水素吸蔵合金の結晶構造を走査型電
子顕微鏡で観察した状態を示す図である。
FIG. 1 is a view showing a state in which the crystal structure of a hydrogen storage alloy of Example 1 is observed with a scanning electron microscope.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三島 貴弘 愛知県刈谷市八軒町5丁目50番地 株式 会社イムラ材料開発研究所内 (72)発明者 磯村 秋人 愛知県刈谷市八軒町5丁目50番地 株式 会社イムラ材料開発研究所内 (72)発明者 境 哲男 大阪府池田市緑丘1丁目8番31号 工業 技術院大阪工業技術研究所内 (72)発明者 宮村 弘 大阪府池田市緑丘1丁目8番31号 工業 技術院大阪工業技術研究所内 (72)発明者 上原 斎 大阪府池田市緑丘1丁目8番31号 工業 技術院大阪工業技術研究所内 審査官 酒井 美知子 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takahiro Mishima 5-50, Hachikencho, Kariya-shi, Aichi Pref. Inside the Imla Materials Development Laboratory Co., Ltd. (72) Inventor Akito Isomura 5-50, Hachigencho, Kariya-shi, Aichi Address: Within Imla Materials Development Laboratory Co., Ltd. (72) Inventor Tetsuo Sakai 1-81-3 Midorioka, Ikeda-shi, Osaka Prefecture Inside the Industrial Technology Institute Osaka Industrial Research Institute (72) Inventor Hiroshi Miyamura 1--8-3, Midorioka, Ikeda-shi, Osaka Prefecture 31 Osaka Institute of Industrial Technology, Institute of Industrial Science and Technology

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Ti−V系固溶体合金において、Ti−V
系固溶体合金からなる母相中に、Ti及びNiを主成分
とする合金相が3次元網目骨格を形成して存在してお
り、 (i)合金全体としてTiVαNiβMγ(但し、Mは
Co、Cu及びNb の少なくとも1種の元素、1≦α≦
10、0.2≦β≦2、0.02 ≦γ≦0.5)なる組
成を有し、かつ、 (ii)上記Ti及びNiを主成分とする合金相が、T
iNiδNε(但し、 NはV、Co、Cu及びNbの少
なくとも1種の元素、0.5≦δ≦ 2、0.1≦ε≦
1)なる組成である水素吸蔵合金。
In a Ti-V based solid solution alloy, Ti-V
An alloy phase mainly composed of Ti and Ni is present in a matrix composed of a base solid solution alloy by forming a three-dimensional network skeleton .
Ri, (i) TiVαNiβMγ alloy as a whole (however, M is
At least one element of Co, Cu and Nb , 1 ≦ α ≦
10, 0.2 ≦ β ≦ 2, 0.02 ≦ γ ≦ 0.5)
It has formed, and an alloy phase composed mainly of (ii) the Ti and Ni, T
iNiδNε (where N is a small amount of V, Co, Cu and Nb)
At least one element, 0.5 ≦ δ ≦ 2, 0.1 ≦ ε ≦
1) A hydrogen storage alloy having a composition of:
【請求項2】請求項1記載の水素吸蔵合金を含有するこ
とを特徴とする水素吸蔵合金電極。
2. A hydrogen storage alloy electrode comprising the hydrogen storage alloy according to claim 1 .
JP6057513A 1994-03-28 1994-03-28 Hydrogen storage alloy and hydrogen storage alloy electrode Expired - Lifetime JP2719884B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6057513A JP2719884B2 (en) 1994-03-28 1994-03-28 Hydrogen storage alloy and hydrogen storage alloy electrode
US08/410,798 US5690799A (en) 1994-03-28 1995-03-27 Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
US08/822,043 US5776626A (en) 1994-03-28 1997-03-24 Hydrogen-occluding alloy and hydrogen-occluding alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6057513A JP2719884B2 (en) 1994-03-28 1994-03-28 Hydrogen storage alloy and hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPH07268513A JPH07268513A (en) 1995-10-17
JP2719884B2 true JP2719884B2 (en) 1998-02-25

Family

ID=13057825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6057513A Expired - Lifetime JP2719884B2 (en) 1994-03-28 1994-03-28 Hydrogen storage alloy and hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JP2719884B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268514A (en) * 1994-03-28 1995-10-17 Imura Zairyo Kaihatsu Kenkyusho:Kk Hydrogen occluding alloy and hydrogen occluding alloy electrode
US6309779B1 (en) 1999-02-17 2001-10-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy electrode and method for manufacturing the same
JP2001266931A (en) * 2000-03-23 2001-09-28 Sanyo Electric Co Ltd Nickel-hydrogen storage battery
CN102738520B (en) * 2011-04-14 2017-02-15 中国科学院长春应用化学研究所 Nickel-hydrogen storage battery
CN112322934B (en) * 2020-10-15 2022-03-25 哈尔滨工业大学 Titanium alloy for bipolar plate of proton exchange membrane fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639694A (en) * 1979-06-20 1981-04-15 Siemens Ag Method and device for synchrnonizing timing in transmission of digital information signal
JPH01165737A (en) * 1987-11-17 1989-06-29 Kuochih Hong Hydrogen storing method and hydride electrode material
JPH03191040A (en) * 1989-12-20 1991-08-21 Sanyo Electric Co Ltd Hydrogen storage alloy electrode
JPH03207826A (en) * 1989-07-21 1991-09-11 Energy Conversion Devices Inc Manufacture of hydrogen- occluded alloy
JPH07268514A (en) * 1994-03-28 1995-10-17 Imura Zairyo Kaihatsu Kenkyusho:Kk Hydrogen occluding alloy and hydrogen occluding alloy electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639694A (en) * 1979-06-20 1981-04-15 Siemens Ag Method and device for synchrnonizing timing in transmission of digital information signal
JPH01165737A (en) * 1987-11-17 1989-06-29 Kuochih Hong Hydrogen storing method and hydride electrode material
JPH03207826A (en) * 1989-07-21 1991-09-11 Energy Conversion Devices Inc Manufacture of hydrogen- occluded alloy
JPH03191040A (en) * 1989-12-20 1991-08-21 Sanyo Electric Co Ltd Hydrogen storage alloy electrode
JPH07268514A (en) * 1994-03-28 1995-10-17 Imura Zairyo Kaihatsu Kenkyusho:Kk Hydrogen occluding alloy and hydrogen occluding alloy electrode

Also Published As

Publication number Publication date
JPH07268513A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
EP0293660B1 (en) Hydrogen storage electrodes
JPH0514017B2 (en)
JP2719884B2 (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPS6191863A (en) Sealed alkaline storage battery
US5690799A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JPH07268514A (en) Hydrogen occluding alloy and hydrogen occluding alloy electrode
JPS5944748B2 (en) Chikudenchi
JP2666249B2 (en) Hydrogen storage alloy for alkaline storage batteries
JPH06187983A (en) Hydrogen storage alloy electrode
KR19980085375A (en) Micro Metals and Nickel-Based Hydrogen Storage Alloys for Ni / MH Secondary Batteries
JPH0562429B2 (en)
JPS62271348A (en) Hydrogen occlusion electrode
JP2002541646A (en) Active electrode composition containing Raney-based catalyst and material
JP3095101B2 (en) Hydrogen storage alloy and electrode using the same
JPH04187733A (en) Hydrogen storage alloy electrode
JPS61168870A (en) Metal-hydrogen alkaline storage battery
JP3123800B2 (en) Hydrogen storage alloy electrode
JPH0815079B2 (en) Hydrogen storage electrode
JPH06306515A (en) Hydrogen storage alloy and electrode using the same
JPS6220245A (en) Enclosed type alkaline storage battery
JP3188788B2 (en) Hydrogen storage alloy and electrode using the same
KR19990010439A (en) High Capacity and High Performance ZR Hydrogen Storage Alloy for Secondary Battery Electrode
JP3188780B2 (en) Hydrogen storage alloy and electrode using the same
JP3188781B2 (en) Hydrogen storage alloy and electrode using the same
JP3088133B2 (en) Hydrogen storage electrode

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term