JPH0718057B2 - Pitch-based fiber manufacturing method - Google Patents

Pitch-based fiber manufacturing method

Info

Publication number
JPH0718057B2
JPH0718057B2 JP59044579A JP4457984A JPH0718057B2 JP H0718057 B2 JPH0718057 B2 JP H0718057B2 JP 59044579 A JP59044579 A JP 59044579A JP 4457984 A JP4457984 A JP 4457984A JP H0718057 B2 JPH0718057 B2 JP H0718057B2
Authority
JP
Japan
Prior art keywords
pitch
diameter
fiber
orientation
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59044579A
Other languages
Japanese (ja)
Other versions
JPS60194120A (en
Inventor
隆一 原
明男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP59044579A priority Critical patent/JPH0718057B2/en
Publication of JPS60194120A publication Critical patent/JPS60194120A/en
Publication of JPH0718057B2 publication Critical patent/JPH0718057B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はピッチ系繊維の製造方法に関するものであり、
より詳しくは、改善された強度を発現する繊維断面を有
するピッチ系繊維を安定して製造する方法に関するもの
である。
The present invention relates to a method for producing pitch-based fibers,
More specifically, it relates to a method for stably producing pitch-based fibers having a fiber cross section that exhibits improved strength.

(従来の技術) 周知のように、重質油、タール、ピッチ等の炭素質原料
を350〜500℃に加熱すると、それら物質中に粒径が数ミ
クロンから数百ミクロンの、偏光下に光学的異方性を示
す小球体が生成する。そして、さらに加熱するとこれら
の小球体は成長、合体し、ついに全体が光学的異方性を
示す状態となる。この異方性組織は炭素質原料の熱重縮
合反応により生成した平面状高分子芳香族炭化水素が層
状に積み重なり、配向したもので、黒鉛結晶構造の前駆
体とみなされている。
(Prior Art) As is well known, when carbonaceous raw materials such as heavy oil, tar, pitch, etc. are heated to 350 to 500 ° C, they are optically polarized under the polarized light of several microns to several hundreds of microns. Globules that exhibit asymmetric anisotropy are generated. Then, upon further heating, these small spheres grow and coalesce, and finally the whole becomes a state exhibiting optical anisotropy. This anisotropic structure is formed by stacking and orienting planar polymeric aromatic hydrocarbons produced by a thermal polycondensation reaction of a carbonaceous raw material in layers, and is regarded as a precursor of a graphite crystal structure.

この様な異方性組織を含み熱処理物は、一般的にはメソ
フェーズピッチと呼称されており、これをノズルを通し
て溶融紡糸することによりピッチ繊維を得る事ができ
る。
A heat-treated product containing such an anisotropic structure is generally called a mesophase pitch, and a pitch fiber can be obtained by melt spinning the mesophase pitch through a nozzle.

炭素繊維は、比強度、比弾性率が高い材料で、高性能複
合材料のフィラー繊維として最も注目されており、中で
もピッチ系炭素繊維は原料が潤沢である、炭化工程の歩
留が大きい、繊維の弾性率が高い、等ポリアクリロニト
リル系炭素繊維に比べて様々な利点を持っている。
Carbon fiber is a material with a high specific strength and a high specific elastic modulus, and has received the most attention as a filler fiber for high-performance composite materials. Among them, pitch-based carbon fibers are abundant in raw materials, and the yield in the carbonization process is large. It has various advantages over polyacrylonitrile-based carbon fiber, which has a high elastic modulus.

(発明が解決すべき問題点) 以上の様な特徴を持つピッチ系炭素繊維であるが、従
来、メソフェーズピッチを原料として紡糸した場合、得
られるピッチ繊維中の平面状高分子炭化水素の積層構造
が繊維断面内でラジアル配向になりやすく、その結果、
その後の不融化、炭化の際に炭化収縮に起因する引張応
力が繊維断面の周方向に作用するため、得られる炭素繊
維の断面には繊維軸方向に伸びるくさび状のクラックが
発生し、炭素繊維の商品的価値を損なう事にある。
(Problems to be Solved by the Invention) Although the pitch-based carbon fiber has the above-mentioned characteristics, conventionally, when the mesophase pitch is spun as the raw material, the laminated structure of the planar polymer hydrocarbon in the obtained pitch fiber is obtained. Tend to be radially oriented within the fiber cross section, resulting in
Subsequent infusibilization, because tensile stress due to carbonization shrinkage during carbonization acts in the circumferential direction of the fiber cross section, a wedge-shaped crack extending in the fiber axis direction occurs in the cross section of the obtained carbon fiber, and the carbon fiber It is to impair the commercial value of.

(問題点を解決するための手段) 本発明者等はかかる点に留意し、鋭意検討した結果、特
定構造の紡糸ノズルを使用して紡糸する事により、上記
欠点が克服されることを見出し本発明を完成するに至っ
た。すなわち本発明の目的は、繊維断面構造が実質的に
ラジアル配向ではないピッチ系繊維を安定して製造する
ことにある。
(Means for Solving Problems) The present inventors have paid attention to such points, and as a result of diligent studies, they found that the above drawbacks can be overcome by spinning using a spinning nozzle having a specific structure. The invention was completed. That is, an object of the present invention is to stably produce pitch-based fibers whose fiber cross-sectional structure is not substantially radial-oriented.

しかしてかかる目的は、メソフェーズを含有するピッチ
をノズル孔が拡大された中間部を有する紡糸ノズルから
紡糸することによりピッチ系繊維を製造する方法におい
て、当該ノズルの中間部の径が、直上の細孔部の径と、
中間部の直下の細孔部の径(D3)より拡大されており、
中間部の直上の細孔部の径(D1)と中間部の径(D2)と
の比(D2/D1)が1.5〜10の範囲にあり、中間部の径と
中間部の長さ(L2)との比(L2/D2)が0.5〜3の範囲
にあるような形状であり、かつD1の径が0.1〜1mm、D2
径が1〜3mm、D3の径が0.1〜0.5mm、L2の長さが1〜5mm
であることにより、又炭素繊維として取得する場合に
は、このような紡糸された繊維を不融化、炭化、必要に
応じて黒鉛化処理を行うことによって容易に達成され
る。尚本発明においてピッチ系繊維とは、紡糸後のピッ
チ繊維およびそれから得られた炭素繊維を上位概念的に
包含するものとする。
However, such an object is, in a method for producing a pitch-based fiber by spinning a pitch containing mesophase from a spinning nozzle having an intermediate portion in which a nozzle hole is enlarged, in a case where the diameter of the intermediate portion of the nozzle is small. The diameter of the hole,
It is enlarged from the diameter (D 3 ) of the pore part directly below the middle part,
There ratio of the diameter of the pores of the immediately above the middle portion and (D 1) and the diameter of the intermediate portion (D 2) (D 2 / D 1) is in the range of 1.5 to 10, the middle portion diameter and the intermediate portion the length (L 2) the ratio of (L 2 / D 2) is shaped as in the range of 0.5 to 3, and the diameter of D 1 is 0.1 to 1 mm, the diameter of D 2 is 1 to 3 mm, D The diameter of 3 is 0.1 to 0.5 mm, the length of L 2 is 1 to 5 mm
Therefore, when obtained as carbon fibers, such spun fibers can be easily achieved by infusibilizing, carbonizing, and, if necessary, graphitizing. In the present invention, the pitch-based fiber includes the pitch fiber after spinning and the carbon fiber obtained therefrom in a superordinate conception.

以下本発明をより詳細に説明する。The present invention will be described in more detail below.

本発明のメソフェーズを含有するピッチを得るための炭
素質原料としては、例えば石炭系のコールタール、コー
ルタールピッチ、石炭液化物、石油系の重質油、ター
ル、ピッチ等が挙げられる。これらの炭素質原料には、
通常フリーカーボン、未溶解石炭、灰分等の不純物が含
まれているが、これらの不純物はろ過、遠心分離、ある
いは溶剤を使用する静置沈降分離などの周知の方法で予
め除去しておく事が好ましい。
Examples of the carbonaceous raw material for obtaining the pitch containing the mesophase of the present invention include coal-based coal tar, coal tar pitch, coal liquefaction, petroleum-based heavy oil, tar and pitch. These carbonaceous raw materials include:
Usually, impurities such as free carbon, undissolved coal, and ash are contained, but these impurities can be removed in advance by a known method such as filtration, centrifugation, or static sedimentation using a solvent. preferable.

また、前記炭素質原料を、例えば、加熱処理した後、特
定溶剤で可溶分を抽出するといった方法、あるいは水素
供与性溶剤、水素ガスの存在下に水添処理するといった
方法で予備処理を行っておいても良い。
In addition, the carbonaceous raw material is pretreated by, for example, a method of extracting the soluble matter with a specific solvent after heat treatment, or a method of hydrogenating in the presence of a hydrogen donating solvent or hydrogen gas. You can keep it.

前記炭素質原料あるいは予備処理を行った炭素質原料
を、次いで、通常350〜500℃、好ましくは380〜450℃
で、2分〜50時間、好ましくは5分〜5時間、窒素、ア
ルゴン等の不活性ガス雰囲気下、或いは、吹き込みに加
熱処理することによって、通常、70%以上の光学的異方
性組織を含むメソフェーズピッチを得ることができる。
The carbonaceous raw material or the pretreated carbonaceous raw material is then generally 350 to 500 ° C, preferably 380 to 450 ° C.
By heating for 2 minutes to 50 hours, preferably 5 minutes to 5 hours in an atmosphere of an inert gas such as nitrogen or argon, or by heat treatment for blowing, usually 70% or more of the optically anisotropic structure is obtained. A mesophase pitch containing can be obtained.

本発明でいうメソフェーズピッチの光学的異方性組織割
合は、常温下偏光顕微鏡でのメソフェーズピッチ試料中
の光学的異方性を示す部分の面積割合として求めた値で
ある。
The ratio of the optically anisotropic structure of mesophase pitch in the present invention is a value obtained as a ratio of the area of a portion showing optical anisotropy in a mesophase pitch sample under a polarization microscope at room temperature.

具体的には、例えばメソフェーズピッチ試料を数mm角に
粉砕したものを常法に従って約2cm直径の樹脂の表面の
ほぼ全面に試料片を埋め込み、表面を研磨後、表面全体
をくまなく偏光顕微鏡(100倍率)下で観察し、試料の
全表面積に占める光学的異方性部分の面積の割合を測定
する事によって求める。
Specifically, for example, a mesophase pitch sample crushed into a few mm square is embedded with a sample piece on almost the entire surface of a resin having a diameter of about 2 cm according to a conventional method, and after polishing the surface, the entire surface is covered with a polarizing microscope ( It is obtained by observing under 100 magnification) and measuring the ratio of the area of the optically anisotropic portion to the total surface area of the sample.

本発明においては、上記メソフェーズピッチをノズル孔
の拡大された中間部を有する紡糸ノズルから紡糸する。
ここでノズル孔とは、溶融ピッチが紡糸される直前に流
通する、糸条径を規制するべき細孔径を意味し、例え
ば、第1図に示すように紡糸ノズル5の中間部3が細孔
部2(以下「第1の細孔部」という。)と細孔部4(以
下「第2の細孔部」という。)より拡大されていること
を特徴とする紡糸ノズルである。尚、第1及び第2の細
孔部の径は同等であってもよく、又拡大された中間部を
形成し得る限り多少の差異を有していても良い。
In the present invention, the above mesophase pitch is spun from a spinning nozzle having an intermediate portion in which nozzle holes are enlarged.
Here, the nozzle hole means a pore diameter that is circulated immediately before the melt pitch is spun and should regulate the yarn diameter. For example, as shown in FIG. 1, the intermediate portion 3 of the spinning nozzle 5 is a pore. The spinning nozzle is characterized in that it is expanded from a portion 2 (hereinafter referred to as "first pore portion") and a pore portion 4 (hereinafter referred to as "second pore portion"). The diameters of the first and second fine pores may be the same, or may have some differences as long as the enlarged intermediate portion can be formed.

拡大された中間部の形状は、第1の細孔部から軸方向に
流出するピッチ中のメソフェーズ分子に、紡糸軸方向に
対して半径方向に拡大する流れを与え、且つ、望ましく
は中間部内にピッチが滞留する部分が少ないような形で
あれば特に限定されるものではなく、例えば、円柱状、
球状、回転楕円体状、その他、第1の細孔部から中間部
への流入部分、中間部から第2の細孔部への流出部分に
90度以下の角度を持たせた形状、即ち、流入部分および
流出部分が円錐状となっているもの等が挙げられる。
The expanded shape of the intermediate portion gives the mesophase molecules in the pitch flowing out from the first fine pore portion in the axial direction, a flow that expands in the radial direction with respect to the spinning axis direction, and desirably within the intermediate portion. The shape is not particularly limited as long as the portion where the pitch stays is small, for example, a columnar shape,
Spherical shape, spheroidal shape, etc., in the inflow part from the first pore part to the middle part, and in the outflow part from the middle part to the second pore part
A shape having an angle of 90 degrees or less, that is, a shape in which the inflow portion and the outflow portion are conical, and the like can be mentioned.

中間部内でのメソフェーズピッチの拡大流れの効果は、
主として、第1の細孔部の径:D1と中間部の径:D2、お
よびその比D2/D1、中間部の長さ:L2および径:D2との
比L2/D2、そして第2の細孔部の径:D3と長さ:L3、お
よびその比L3/D3によって影響を受ける(第2図参
照)。
The effect of the expanding flow of mesophase pitch in the middle part is
Mainly, the diameter of the first pore portion: D 1 and the diameter of the middle portion: D 2 , and the ratio D 2 / D 1 , the length of the middle portion: L 2, and the ratio of the diameter: D 2 L 2 / It is affected by D 2 , and the diameter of the second pore part: D 3 and the length: L 3 , and the ratio L 3 / D 3 (see FIG. 2).

そしてD1は0.1〜1mm、D2は1〜3mm、その比D2/D1は1.5
〜10の範囲が好ましい。
And D 1 is 0.1 to 1 mm, D 2 is 1 to 3 mm, and the ratio D 2 / D 1 is 1.5.
The range of -10 is preferred.

またL2は1〜5mm、L2/D2は0.5〜3、D3としては0.1〜1
mmの範囲が好ましい。
L 2 is 1 to 5 mm, L 2 / D 2 is 0.5 to 3, and D 3 is 0.1 to 1
The mm range is preferred.

そしてL3については、L3/D3の値が10以下になることが
より好ましく、3以下であることが最も好ましい。
Regarding L 3 , the value of L 3 / D 3 is more preferably 10 or less, and most preferably 3 or less.

本発明の紡糸ノズルを用いて紡糸した場合、紡糸安全性
はなんら低下することなく、通常の紡糸ノズルと同様に
溶融紡糸でき、改善された強度を有するピッチ系繊維を
安定して供給できる。
When spinning is performed using the spinning nozzle of the present invention, the spinning safety does not decrease, melt spinning can be performed in the same manner as in a normal spinning nozzle, and pitch-based fibers having improved strength can be stably supplied.

溶融紡糸して得られたピッチ系繊維は繊維断面構造の改
良された、すなわちランダム配向あるいはオニオンライ
ク配向あるいはそれらの中間的な配向を有しており、か
かる配向は後続の不融化、炭化、更には黒鉛化処理を行
っても変化しない。
The pitch-based fibers obtained by melt-spinning have an improved fiber cross-sectional structure, that is, random orientation, onion-like orientation, or an intermediate orientation thereof, and such orientation is the subsequent infusibilization, carbonization, and further Does not change even after graphitization.

ここでオニオンライク配向とは、繊維断面積の主たる部
分が同心円状の分子配向性を有するものであり、一部、
特に外周部が後続の炭化あるいは黒鉛化処理のよりクラ
ックを生じない程度のラジアル配向しているものを含
む。またこれらの繊維断面構造は偏光顕微鏡で測定した
ものである。
Here, the onion-like orientation means that the main portion of the fiber cross-sectional area has concentric molecular orientation, and
In particular, the outer peripheral portion includes those which are radially oriented to such an extent that cracking is less likely to occur in the subsequent carbonization or graphitization treatment. Moreover, these fiber cross-sectional structures were measured by a polarization microscope.

かくして得られたピッチ系繊維を不融化、炭化必要に応
じて黒鉛化することにより、ランダム配向あるいはオニ
オンライク配向の繊維断面構造を有し、繊維軸方向に伸
びるくさび状のクラックのない、高特性のピッチ系炭素
繊維のえることができる。
The pitch-based fibers thus obtained are infusibilized, carbonized by graphitizing as necessary, and have a fiber cross-sectional structure of random orientation or onion-like orientation, without wedge-shaped cracks extending in the fiber axis direction, high characteristics The pitch-based carbon fiber can be obtained.

以下本発明を実施例を用いて具体的に説明するが、本発
明はその要旨を越えない限り、実施例に限定されるもの
ではない。
The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples as long as the gist thereof is not exceeded.

(実施例) (実施例1) 5lオートクレーブにコールタールピッチ2Kgと、水添し
た芳香族油2Kgを加え、425℃で1時間加熱処理した。こ
の処理物を減圧蒸留してその残渣ピッチを得た。次い
で、この残渣ピッチ700gに窒素ガスをバブリングしなが
ら450℃で40分間加熱処理した。
(Example) (Example 1) 2 kg of coal tar pitch and 2 kg of hydrogenated aromatic oil were added to a 5 l autoclave, and heat-treated at 425 ° C for 1 hour. This treated product was distilled under reduced pressure to obtain the residual pitch. Next, 700 g of this residual pitch was heated at 450 ° C. for 40 minutes while bubbling nitrogen gas.

得られたメソフェーズピッチの異方性割合は約99%であ
った。
The anisotropy ratio of the obtained mesophase pitch was about 99%.

このメソフェーズピッチを第2図に示すような第1の細
孔部と、その下に続く、第1、第2の細孔部より径の大
きな中間部と、さらに実際にメソフェーズピッチの吐出
される第2の細孔部とからなる形状のノズルを用いて33
6℃で溶融紡糸した。
The mesophase pitch is first discharged as shown in FIG. 2, an intermediate portion having a larger diameter than the first and second fine pores, which is continuous thereunder, and the mesophase pitch is actually discharged. Using a nozzle with a shape consisting of the second pores 33
Melt-spun at 6 ° C.

このノズルは第1の細孔部の径D1が0.3mm、長さL1が0.6
mm、中間部の径D2が2mm、長さL2が2.1mm、第2の細孔部
の径D3が0.3mm、長さL3が0.1mmである。このときD2/D1
≒6.6、L2/D2≒1となる。
This nozzle has a diameter D 1 of the first fine hole portion of 0.3 mm and a length L 1 of 0.6
mm, the diameter D 2 of the intermediate portion is 2 mm, the length L 2 is 2.1 mm, the diameter D 3 of the second pore portion is 0.3 mm, and the length L 3 is 0.1 mm. At this time, D 2 / D 1
≈6.6, L 2 / D 2 ≈1.

得られたピッチ系繊維は、一部外周がラジアル配向のオ
ニオンライク配向の断面構造を有していた。次いで、得
られたピッチ系繊維を空気中310℃で不融化し、さらに
アルゴン雰囲気下1400℃で炭化して炭素繊維を得た。こ
の炭素繊維も前述のピッチ系繊維と同様の一部外周がラ
ジアル配向のオニオンライク配向の断面構造を有してい
た。この得られた繊維の形状を7500倍の走査型電子顕微
鏡写真として図3に示す。
The obtained pitch-based fiber had a cross-sectional structure with an onion-like orientation in which a part of the outer circumference was radial orientation. Next, the obtained pitch-based fiber was made infusible in air at 310 ° C., and further carbonized at 1400 ° C. in an argon atmosphere to obtain a carbon fiber. This carbon fiber also had a cross-sectional structure of onion-like orientation in which a part of the outer circumference was radial orientation similar to the pitch-based fiber described above. The shape of the obtained fiber is shown in FIG. 3 as a scanning electron micrograph at 7500 times.

(比較例1) 実施例1で得たメソフェーズピッチを、径が0.3mm、長
さが0.1mmの細孔の紡糸ノズルを用いて336℃で溶融紡糸
した。
Comparative Example 1 The mesophase pitch obtained in Example 1 was melt-spun at 336 ° C. using a spinning nozzle having pores with a diameter of 0.3 mm and a length of 0.1 mm.

得られたピッチ繊維を実施例1と同様の条件で不融化、
炭化して炭素繊維を得たが、この炭素繊維はラジアル配
向の断面構造をしており、かつ繊維軸方向に伸びるくさ
び状のクラツクを有していた。この得られた繊維の形状
を5500倍の走査型電子顕微鏡写真として図7に示す。
Infusibilizing the obtained pitch fiber under the same conditions as in Example 1,
Carbon fiber was obtained by carbonization, and this carbon fiber had a radial-oriented cross-sectional structure and had a wedge-shaped crack extending in the fiber axis direction. The shape of the obtained fiber is shown in FIG. 7 as a scanning electron micrograph at 5500 times.

(実施例2) 実施例1と同様にして得られた残渣ピッチ63gに窒素ガ
スを吹き込みながら加熱処理をして21gのメソフェーズ
ピッチを得た。得られたメソフェーズピッチの光学的異
方性割合は約75%であった。
(Example 2) 63 g of residue pitch obtained in the same manner as in Example 1 was subjected to heat treatment while blowing nitrogen gas to obtain 21 g of mesophase pitch. The optical anisotropy ratio of the obtained mesophase pitch was about 75%.

このメソフェーズピッチを実施例1と同じノズルを用い
て327℃で溶融紡糸した。得られたピッチ繊維を実施例
1と同じ条件で不融化、炭化して炭素繊維を得た。この
炭素繊維はオニオンライク配向とランダム配向の中間的
な配向の断面構造をしていた。
This mesophase pitch was melt-spun at 327 ° C. using the same nozzle as in Example 1. The obtained pitch fiber was infusibilized and carbonized under the same conditions as in Example 1 to obtain a carbon fiber. This carbon fiber had a cross-sectional structure with an intermediate orientation between onion-like orientation and random orientation.

(実施例3) ノズルとして第1の細孔部の径D1を0.1mm、中間部の径D
2が1mm、長さL2が1mm、第2の細孔部の径D3が0.1mmにし
た以外あ実施例1と同様の条件で紡糸、不融化、炭化を
行い、炭素繊維を得た。このときD2/D1=10、L2/D2
1である。
(Example 3) As the nozzle, the diameter D 1 of the first fine hole portion was 0.1 mm, and the diameter D of the intermediate portion was
Carbon fiber was obtained by spinning, infusibilizing and carbonizing under the same conditions as in Example 1 except that 2 was 1 mm, length L 2 was 1 mm, and the diameter D 3 of the second pores was 0.1 mm. . At this time, D 2 / D 1 = 10, L 2 / D 2 =
It is 1.

得られた炭素繊維は、一部外周がラジアル配向のオニオ
ンライク配向の断面構造を有していた。この得られた繊
維の形状を5000倍の走査型電子顕微鏡写真として図4に
示す。
The obtained carbon fiber had a cross-sectional structure of onion-like orientation in which a part of the outer circumference was radial orientation. The shape of the obtained fiber is shown in FIG. 4 as a scanning electron micrograph of 5000 times.

(実施例4) ノズルとして第1の細孔部の径D1を1mm、長さL1が2mm,
中間部の径D2が2mm、長さL2が5mm、第2の細孔部の径D3
が0.5mmにした以外は実施例1と同様の条件で紡糸、不
融化、炭化を行い、炭素繊維を得た。このときD2/D1
2、L2/D2=2.5である。
(Example 4) As a nozzle, the diameter D 1 of the first fine hole portion was 1 mm, and the length L 1 was 2 mm.
Diameter D 2 of the middle portion is 2 mm, length L 2 is 5 mm, diameter D 3 of the second fine pore portion
Was spun, infusibilized and carbonized under the same conditions as in Example 1 except that the carbon fiber was 0.5 mm to obtain a carbon fiber. At this time, D 2 / D 1 =
2, L 2 / D 2 = 2.5.

得られた炭素繊維は、一部外周がラジアル配向のオニオ
ンライク配向の断面構造を有していた。
The obtained carbon fiber had a cross-sectional structure of onion-like orientation in which a part of the outer circumference was radial orientation.

(実施例5) ノズルとして第1の細孔部の径D1を1mm、長さL1が2mm,
中間部の径D2が1.5mm、長さL2が4.5mm、第2の細孔部の
径D3が0.5mmにした以外は実施例1と同様の条件で紡
糸、不融化、炭化を行い、炭素繊維を得た。このときD2
/D1=1.5、L2/D2=3である。
(Example 5) As a nozzle, the diameter D 1 of the first fine hole portion was 1 mm, and the length L 1 was 2 mm.
Spinning, infusibilization, and carbonization were carried out under the same conditions as in Example 1 except that the diameter D 2 of the intermediate portion was 1.5 mm, the length L 2 was 4.5 mm, and the diameter D 3 of the second pore portion was 0.5 mm. Then, a carbon fiber was obtained. At this time D 2
/ D 1 = 1.5 and L 2 / D 2 = 3.

得られた炭素繊維は、一部外周がラジアル配向のオニオ
ンライク配向の断面構造を有していた。
The obtained carbon fiber had a cross-sectional structure of onion-like orientation in which a part of the outer circumference was radial orientation.

(実施例6) ノズルとして第1の細孔部の径D1を1mm、長さL1が2mm,
中間部の径D2が2mm、長さL2が1mm、第2の細孔部の径D3
が0.5mmにした以外は実施例1と同様の条件で紡糸、不
融化、炭化を行い、炭素繊維を得た。このときD2/D1
2、L2/D2=0.5である。
(Example 6) As a nozzle, the diameter D 1 of the first fine hole portion was 1 mm, and the length L 1 was 2 mm.
Diameter D 2 of the middle portion is 2 mm, length L 2 is 1 mm, diameter D 3 of the second pore portion
Was spun, infusibilized and carbonized under the same conditions as in Example 1 except that the carbon fiber was 0.5 mm to obtain a carbon fiber. At this time, D 2 / D 1 =
2, L 2 / D 2 = 0.5.

得られた炭素繊維は、一部外周がラジアル配向のオニオ
ンライク配向の断面構造を有していた。この得られた繊
維の形状を3000倍の走査型電子顕微鏡写真として図5に
示す。
The obtained carbon fiber had a cross-sectional structure of onion-like orientation in which a part of the outer circumference was radial orientation. The shape of the obtained fiber is shown in FIG. 5 as a scanning electron microscope photograph of 3000 times.

(実施例7) ノズルとして第1の細孔部の径D1を1mm、長さL1が3mm,
中間部の径D2が3mm、長さL2が5mm、第2の細孔部の径D3
が0.5mmにした以外は実施例1と同様の条件で紡糸、不
融化、炭化を行い、炭素繊維を得た。このときD2/D1
3、L2/D2=1.67である。
(Example 7) As a nozzle, the diameter D 1 of the first fine hole portion was 1 mm, and the length L 1 was 3 mm.
Diameter D 2 of the middle portion is 3 mm, length L 2 is 5 mm, diameter D 3 of the second fine pore portion
Was spun, infusibilized and carbonized under the same conditions as in Example 1 except that the carbon fiber was 0.5 mm to obtain a carbon fiber. At this time, D 2 / D 1 =
3 is L 2 / D 2 = 1.67.

得られた炭素繊維は、一部外周がラジアル配向のオニオ
ンライク配向の断面構造を有していた。この得られた繊
維の形状を5500倍の走査型電子顕微鏡写真として図6に
示す。
The obtained carbon fiber had a cross-sectional structure of onion-like orientation in which a part of the outer circumference was radial orientation. The shape of the obtained fiber is shown in FIG. 6 as a scanning electron micrograph at 5500 times.

以上の実施例に用いたノズルの形状を表1にまとめて示
す。
Table 1 shows the shapes of the nozzles used in the above examples.

(発明の効果) 本発明の製造方法により、一部外周がラジアル配向のオ
ニオンライク配向の断面構造を有しているピッチ系繊維
を確実に得ることができるため、クラック等が入りにく
く、クラック等に起因する強度の低下が生じにくいた
め、高強度の炭素繊維を容易に得ることができる。
(Effect of the invention) By the production method of the present invention, since it is possible to reliably obtain a pitch-based fiber having a cross-sectional structure of an onion-like orientation in which a part of the outer circumference is radial orientation, it is difficult for cracks and the like to occur, cracks, etc. Since it is difficult for the strength to decrease due to the above, high-strength carbon fibers can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の紡糸口金の一部断面概略図を示す。 第2図は、第1図の紡糸ノズル部の拡大図を示す。 第3図は、実施例1で得られた繊維の形状を示す電子顕
微鏡写真である。 第4図は、実施例3で得られた繊維の形状を示す電子顕
微鏡写真である。 第5図は、実施例6で得られた繊維の形状を示す電子顕
微鏡写真である。 第6図は、実施例7で得られた繊維の形状を示す電子顕
微鏡写真である。 第7図は、比較例1で得られた繊維の形状を示す電子顕
微鏡写真である。 1:導入孔、2:第1の細孔部、3:中間部、4:第2の細孔部 5:紡糸ノズル部、D1:第1の細孔部の径、D2:中間部の
径 D3:第2の細孔部の径、L1:第1の細孔部の長さ L2:中間部の長さ、L3:第2の細孔部の長さ
FIG. 1 shows a partial cross-sectional schematic view of the spinneret of the present invention. FIG. 2 shows an enlarged view of the spinning nozzle section of FIG. FIG. 3 is an electron micrograph showing the shape of the fiber obtained in Example 1. FIG. 4 is an electron micrograph showing the shape of the fiber obtained in Example 3. FIG. 5 is an electron micrograph showing the shape of the fiber obtained in Example 6. FIG. 6 is an electron micrograph showing the shape of the fiber obtained in Example 7. FIG. 7 is an electron micrograph showing the shape of the fiber obtained in Comparative Example 1. 1: introduction hole, 2: first pore portion, 3: intermediate portion, 4: second pore portion 5: spinning nozzle portion, D 1 : diameter of first pore portion, D 2 : intermediate portion Diameter D 3 : diameter of the second pore portion, L 1 : length of the first pore portion L 2 : length of the intermediate portion, L 3 : length of the second pore portion

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】メソフェーズを含有するピッチをノズル孔
が拡大された中間部を有する紡糸ノズルから紡糸するこ
とによりピッチ系繊維を製造する方法において、当該ノ
ズルの中間部の径が、直上の細孔部の径と、中間部の直
下の細孔部の径(D3)より拡大されており、中間部の直
上の細孔部の径(D1)と中間部の径(D2)との比(D2
D1)が1.5〜10の範囲にあり、中間部の径と中間部の長
さ(L2)との比(L2/D2)が0.5〜3の範囲にあるよう
な形状であり、かつD1の径が0.1〜1mm、D2の径が1〜3m
m、D3の径が0.1〜0.5mm、L2の長さが1〜5mmであること
を特徴とするピッチ系繊維の製造方法。
1. A method for producing a pitch-based fiber by spinning a pitch containing mesophase from a spinning nozzle having an intermediate portion in which nozzle holes are enlarged, wherein the diameter of the intermediate portion of the nozzle is directly above the fine pores. The diameter of the pores is larger than the diameter of the pores just below the middle part (D 3 ) and the diameter of the pores just above the middle part (D 1 ) and the diameter of the middle part (D 2 ) Ratio (D 2 /
D 1 ) is in the range of 1.5 to 10, and the ratio (L 2 / D 2 ) of the diameter of the intermediate part to the length of the intermediate part (L 2 ) is in the range of 0.5 to 3, And the diameter of D 1 is 0.1-1mm, the diameter of D 2 is 1-3m
A method for producing a pitch-based fiber, wherein m and D 3 have a diameter of 0.1 to 0.5 mm and L 2 have a length of 1 to 5 mm.
【請求項2】前記ピッチ系繊維の繊維断面が実質的にラ
ンダムないしオニオンライク配向であることを特徴とす
る特許請求の範囲第1項記載のピッチ系繊維の製造方
法。
2. The method for producing a pitch-based fiber according to claim 1, wherein the fiber cross section of the pitch-based fiber is substantially random or onion-like orientation.
JP59044579A 1984-03-08 1984-03-08 Pitch-based fiber manufacturing method Expired - Lifetime JPH0718057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59044579A JPH0718057B2 (en) 1984-03-08 1984-03-08 Pitch-based fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59044579A JPH0718057B2 (en) 1984-03-08 1984-03-08 Pitch-based fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPS60194120A JPS60194120A (en) 1985-10-02
JPH0718057B2 true JPH0718057B2 (en) 1995-03-01

Family

ID=12695407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59044579A Expired - Lifetime JPH0718057B2 (en) 1984-03-08 1984-03-08 Pitch-based fiber manufacturing method

Country Status (1)

Country Link
JP (1) JPH0718057B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252723A (en) * 1984-05-30 1985-12-13 Mitsubishi Chem Ind Ltd Production of pitch based carbon fiber
JPS62170527A (en) * 1986-01-22 1987-07-27 Osaka Gas Co Ltd Production of pitch-based carbon fiber
US4859381A (en) * 1986-01-22 1989-08-22 Osaka Gas Company Limited Process for preparing pitch-type carbon fibers
JP2510185B2 (en) * 1987-02-25 1996-06-26 出光興産株式会社 Pitch melt spinning nozzle for carbon fiber
US4816202A (en) * 1986-10-09 1989-03-28 Idemitsu Kosan Co., Ltd. Method of melt spinning pitch
JP2817112B2 (en) * 1989-12-12 1998-10-27 株式会社タジマ Flooring set

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168127A (en) * 1983-03-15 1984-09-21 Toray Ind Inc Production of carbon fiber

Also Published As

Publication number Publication date
JPS60194120A (en) 1985-10-02

Similar Documents

Publication Publication Date Title
GB2095222A (en) Production of pitch fiber having a random mosaic structure in cross section
JPH0718057B2 (en) Pitch-based fiber manufacturing method
JPH0791372B2 (en) Method for manufacturing raw material pitch for carbon material
JPH0545685B2 (en)
JPS60239520A (en) Carbon fiber
JPS60104524A (en) Preparation of carbon fiber
JPS61186520A (en) Production of pitch carbon yarn
JPS62170528A (en) Carbon fiber and production thereof
JPS60104528A (en) Preparation of carbon fiber
JPH0532494B2 (en)
JPS6175821A (en) Production of pitch carbon fiber
JPH0788604B2 (en) Method for manufacturing pitch-based carbon fiber
JPH0518922B2 (en)
JP3055295B2 (en) Pitch-based carbon fiber and method for producing the same
JPH0811844B2 (en) Method for producing pitch-based carbon fiber
JPS60259631A (en) Production of pitch carbon fiber
JPH05272017A (en) Carbon fiber and its production
JPH0316403B2 (en)
JP4601875B2 (en) Carbon fiber manufacturing method
JPH042687B2 (en)
JP2953445B2 (en) Carbon fiber production method
JPS6183319A (en) Carbon fiber and its production
JPS62268820A (en) Production of pitch based carbon fiber
JPS6262916A (en) Production of pitch carbon yarn
JP2766521B2 (en) Method for producing pitch-based carbon fiber