JPS62170527A - Production of pitch-based carbon fiber - Google Patents

Production of pitch-based carbon fiber

Info

Publication number
JPS62170527A
JPS62170527A JP1284886A JP1284886A JPS62170527A JP S62170527 A JPS62170527 A JP S62170527A JP 1284886 A JP1284886 A JP 1284886A JP 1284886 A JP1284886 A JP 1284886A JP S62170527 A JPS62170527 A JP S62170527A
Authority
JP
Japan
Prior art keywords
pitch
shear stress
nozzle hole
cross
final nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1284886A
Other languages
Japanese (ja)
Other versions
JPH0413450B2 (en
Inventor
Hiroaki Minami
南 広明
Kazutoshi Haraguchi
和敏 原口
Eiji Tanigawa
谷川 栄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Dainippon Ink and Chemicals Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP1284886A priority Critical patent/JPS62170527A/en
Priority to PCT/JP1987/000041 priority patent/WO1990007594A1/en
Priority to US07/105,428 priority patent/US4859381A/en
Publication of JPS62170527A publication Critical patent/JPS62170527A/en
Publication of JPH0413450B2 publication Critical patent/JPH0413450B2/ja
Granted legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues

Abstract

PURPOSE:To produce the titled fiber causing little fibrillation and cracking, etc., by applying a shear stress of higher than a specific level to a molten pitch material in a capillary part before final nozzle hole and temporarily maintaining the pitch material in a state free from shear stress. CONSTITUTION:A molten pitch material is passed through a circular, modified or slit capillary part placed before the final nozzle hole. A shearing stress of >=1/2 of the stress imparted in the final nozzle hole is applied to the pitch by this process. The pitch material is temporarily maintained in a state essentially free from shear stress and, thereafter, passed through the final nozzle hole to obtain a carbon fiber having stable higher-order cross-sectional structure. At least a part of the fiber cross-section has an onion-like form.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ピッチ系炭素繊維の製造方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for producing pitch-based carbon fiber.

従来技術及びその問題点 ピッチ系材わlを原料とする炭素繊維は1.ポリアクリ
ロニトリル等の有機合成繊維をプリカーサ−とする炭素
繊維に比して、主に製造コストが低い、高弾性率の製品
が得られやすい等の理由により、より安価で高性能の素
材となり得るものと期待されている。しかしながら、市
販されているピッチ系炭素繊維は、引張り強度が200
KFl/s2程度以下であり、又品質安定性に劣り、充
分満足すべきものとは言い難い。
Prior art and its problems Carbon fiber made from pitch-based material has 1. Compared to carbon fibers whose precursors are organic synthetic fibers such as polyacrylonitrile, they can be made into cheaper, higher-performance materials mainly because they have lower manufacturing costs and can easily produce products with high elastic modulus. It is expected that However, commercially available pitch-based carbon fibers have a tensile strength of 200
It is about KFl/s2 or less, and the quality stability is poor, so it is difficult to say that it is completely satisfactory.

一般に、ピッチ系炭素繊維においては、繊維断面の分子
凝集状態(以下断面高次溝道という)が、紡糸条件によ
って種々異なっている。即ち、基本的には、分子が繊維
の同心円方向に結晶を構成したり(いわゆるオニオン型
)、繊維の中心から放射状方向に結晶を構成したり(ラ
ジアル型)、或いは方向性を示すことなく任意の方向に
分布したりする(ランダム型)形態に大別されるが、実
際の繊維においては、これ等が混在したものも存在する
。更に、たて割れ、クラック、ボイド等の欠陥が繊維の
一部又は全体に存在する場合もあり、欠陥の有無を含め
れば、ピッチ系炭素繊維の断面高次構造の形態は、複雑
多岐にわたる。そして、この様な各種の欠陥及び断面高
次構造の存在が、ピッチ系炭素繊維の品質安定性を低下
させる主な原因の一つとなっている。
Generally, in pitch-based carbon fibers, the state of molecular aggregation in the cross section of the fiber (hereinafter referred to as cross-sectional higher-order grooves) varies depending on the spinning conditions. That is, basically, the molecules form crystals in the concentric direction of the fiber (so-called onion type), the crystals form in the radial direction from the center of the fiber (radial type), or the molecules form crystals in the direction of the concentric circles of the fiber (so-called onion type), or the molecules form crystals in the radial direction from the center of the fiber (radial type). It is roughly divided into two types (random type) in which fibers are distributed in the direction of , but in actual fibers, there are also fibers with a mixture of these types. Furthermore, defects such as vertical cracks, cracks, and voids may be present in part or all of the fibers, and if the presence or absence of defects is included, the morphology of the cross-sectional higher-order structure of pitch-based carbon fibers is complex and diverse. The existence of such various defects and cross-sectional higher-order structures is one of the main causes of deteriorating the quality stability of pitch-based carbon fibers.

上記の如き欠陥の発生及び断面高次構造の形成は、紡糸
用ピッチの物性によっても変化するが、紡糸条件によっ
て最も大きく影響を受け、変動する。従って、炭素繊維
の品質安定性を高める為には、紡糸用ピッチの物性が若
干ばらついたとしても、常に欠陥がほとんど無く、一定
の断面高次構造を備えた炭素繊維を製造し得る紡糸技術
を確立する必要がある。即ち、たて割れ、クランク、ボ
イド等の欠陥をほとんど発生させず、且つ高引張強度を
発現するに有効な高次断面構造であるオニオン型及び/
又はランダム型構造を安定して形成させる技術が必要で
ある。
Although the occurrence of defects and the formation of a cross-sectional higher-order structure as described above vary depending on the physical properties of the spinning pitch, they are most greatly influenced and fluctuated by the spinning conditions. Therefore, in order to improve the quality stability of carbon fibers, it is necessary to develop a spinning technology that can always produce carbon fibers with almost no defects and a constant cross-sectional higher-order structure, even if the physical properties of the spinning pitch vary slightly. need to be established. In other words, onion-type and/or high-order cross-sectional structures that hardly cause defects such as vertical cracks, cranks, and voids, and are effective in developing high tensile strength.
Alternatively, a technique for stably forming a random structure is required.

問題点を解決するための手段 本発明者は、上記の如き技術の現状に鑑みて鋭意研究を
重ねた結果、ピッチ系材料の溶融紡糸時に、最終ノズル
孔にいたる前に溶融ピッチ系材料をして特定形状のキャ
ピラリー部を通過させることにより一定値以上の剪断応
力を加え、次いで溶融ピッチを実質的に剪断応力を加え
ない状態に一旦保持した後、ノズル孔を通過させて紡糸
を行なう場合には、従来技術の問題点を実質的に解消若
しくは大巾に軽減し得ることを見出した。即ち、本発明
は、ピッチ系材料を溶融紡糸し、不融化し、炭化するピ
ッチ系炭素繊維の製造方法において、最終ノズル孔にい
たる前に溶融ピッチを円形、異形又はスリット型のキャ
ピラリー部を通過させることにより最終ノズル孔でうけ
る剪断応力の1/2以上の剪断応力を加えた俊、該溶融
ピッチを一旦剪断応力を実質的に加えない状態に保持し
、次いでノズル孔を通過させて紡糸することを特徴とす
るピッチ系炭素繊維の製造方法に係る。
Means for Solving the Problems As a result of intensive research in view of the current state of the technology as described above, the inventor of the present invention has developed a method for spinning a molten pitch-based material before reaching the final nozzle hole during melt-spinning of the pitch-based material. When the molten pitch is passed through a capillary part of a specific shape to apply a shear stress of a certain value or more, and then after holding the molten pitch in a state where no shear stress is applied, the pitch is passed through a nozzle hole for spinning. discovered that the problems of the prior art can be substantially eliminated or greatly reduced. That is, the present invention provides a method for producing pitch-based carbon fiber in which a pitch-based material is melt-spun, infusible, and carbonized, in which the molten pitch is passed through a circular, irregularly shaped, or slit-shaped capillary section before reaching the final nozzle hole. By applying a shear stress of 1/2 or more of the shear stress received at the final nozzle hole, the molten pitch is temporarily held in a state where no shear stress is applied substantially, and then passed through the nozzle hole for spinning. The present invention relates to a method for producing pitch-based carbon fiber characterized by the following.

本発明によると、上記炭化工程で黒鉛化すればピッチ系
黒鉛繊維を製造することもできる。従って、本願明細書
において、炭化は黒鉛化を含み、炭素繊維とは黒鉛繊維
をも含むものとして用いる。
According to the present invention, pitch-based graphite fibers can also be produced by graphitizing in the carbonization step. Therefore, in this specification, carbonization includes graphitization, and carbon fiber is used to include graphite fiber.

本発明においては、溶融ピッチ系材料を最終ノズル孔の
前に設けた円形、異形又はスリット型のキャピラリー部
を通過させることにより最終ノズル孔でうける剪断応力
の1/2以上の剪断応力を加えた侵、これを一旦剪断応
力を実質的に加えない状態に保持し、次いで最終ノズル
孔を通過させて紡糸することを必須とする。キャピラリ
ー部において溶融ピッチ系材料が受ける剪断応力が、最
終ノズル部での剪断応力の1/2未満で必る場合には、
所望の効果が充分に発揮されない。また、キャピラリー
方式以外の方法で、例えば、緻密な充填剤の間隙を通し
て剪断応力を加える場合にも、所望の効果は得られない
。更に、キャピラリー部で溶融ピッチ系材料に剪断応力
を加えた後、剪断応力を実質的に加えない状態に保持す
ることなく、直ちに最終ノズル孔から紡糸を行なう場合
にも、本発明の効果は発揮されない。本発明で使用する
キャピラリー部の断面の形状は、円形、スリット型(或
い長方型)、又はその他の異型(正方形、十字形、7字
形その他)のいずれであっても良い。
In the present invention, a shear stress of 1/2 or more of the shear stress experienced at the final nozzle hole is applied by passing the molten pitch-based material through a circular, irregularly shaped, or slit-shaped capillary section provided in front of the final nozzle hole. It is essential to hold the fiber in a state in which no shear stress is applied to it, and then pass it through the final nozzle hole for spinning. If the shear stress that the molten pitch-based material receives in the capillary part is necessarily less than 1/2 of the shear stress in the final nozzle part,
The desired effect is not fully exerted. Further, the desired effect cannot be obtained even when shear stress is applied through a gap in a dense filler using a method other than the capillary method, for example. Furthermore, the effects of the present invention are exhibited even when spinning is performed immediately from the final nozzle hole without maintaining a state in which no shear stress is applied after shear stress is applied to the molten pitch-based material in the capillary section. Not done. The cross-sectional shape of the capillary part used in the present invention may be circular, slit-shaped (or rectangular), or other irregular shapes (square, cross-shaped, 7-shaped, etc.).

キャピラリーの断面積及び長さも、必要な剪断応力を付
加し得るものであれば良く、特に限定はされないが、通
常断面積5X10 〜5X102#程度、長さ0.1〜
3.0廐程度である。
The cross-sectional area and length of the capillary are not particularly limited as long as they can apply the necessary shear stress, but usually have a cross-sectional area of about 5 x 10 - 5 x 102 #, and a length of about 0.1 -
It is about 3.0 km.

キャピラリー部と最終ノズル孔との間で溶融ピッチに実
質的に剪断応力を加えない状態でこれを保持する時間は
、使用するピッチの種類及び性質、紡糸温度、単位時間
当りのピッチ吐出量、キャピラリー部及びノズル孔の形
状等により異なり、特に制限されるものではないが、通
常溶融ピッチがキャピラリー部を通過する時間の103
〜10”程度の時間か好ましい。キャピラリー部と最終
ノズル孔との間で溶融ピッチに剪断応力を加えない為に
は、当該部分(以下応力緩和部という)をパンク外壁及
び/もしくはノズルの導入孔を除けば何ら剪断応力が働
かない様に空洞化したものとする。
The time required to maintain the molten pitch in a state where no shear stress is applied to it between the capillary section and the final nozzle hole depends on the type and nature of the pitch used, the spinning temperature, the amount of pitch discharged per unit time, and the capillary. Although it is not particularly limited and varies depending on the capillary section and the shape of the nozzle hole, the time taken for the melt pitch to pass through the capillary section is usually 103
~10" is preferable. In order to avoid applying shear stress to the molten pitch between the capillary part and the final nozzle hole, the said part (hereinafter referred to as stress relaxation part) should be connected to the punctured outer wall and/or the nozzle introduction hole. It is assumed that it is hollowed out so that no shear stress is applied except for.

本発明で使用する紡糸用ピッチは、ピッチ状物質を不活
性ガス流通下に熱重縮合させることにより得られる。ピ
ッチ状物質としては、石油系ピッチ、石炭系ピッチ及び
有機化合物からの熱分解残渣ピッチのいずれであっても
良い。特にコールタールやコールタールピッチの様な石
炭系ピッチを原料とする場合には、熱重縮合に先立って
、特開昭57−88016号公報に記載の方法に従って
、予め原料ピッチを芳香族還元性溶剤により350〜5
00’Cで熱処理しておくことにより、紡糸性をより一
層改善することができるが、紡糸用ピッチとしては、紡
糸可能でおれば特に限定されない。
The spinning pitch used in the present invention is obtained by thermally polycondensing a pitch-like substance under an inert gas flow. The pitch-like substance may be any of petroleum-based pitch, coal-based pitch, and pyrolysis residue pitch from organic compounds. In particular, when coal tar or coal-based pitch such as coal tar pitch is used as a raw material, the raw material pitch is subjected to aromatic reducing properties in advance according to the method described in JP-A-57-88016 prior to thermal polycondensation. 350-5 depending on solvent
The spinnability can be further improved by heat treatment at 00'C, but the pitch for spinning is not particularly limited as long as it can be spun.

本発明において使用する最終ノズル孔の断面積について
は特に制限はないが、通常5X10−3〜10−1m!
112程度である。
There is no particular restriction on the cross-sectional area of the final nozzle hole used in the present invention, but it is usually 5 x 10-3 to 10-1 m!
It is about 112.

本発明においては、上記の様にして得られたピンチ繊維
を常法に従って、例えば酸素雰囲気中300〜340’
C程度で不融化した後、不活性ガス雰囲気中1000〜
3000’C程度で加熱することにより炭素繊維化する
In the present invention, the pinch fibers obtained as described above are processed in accordance with a conventional method, for example, in an oxygen atmosphere with a length of 300 to 340'.
After infusibility at about C, 1000 ~
It is turned into carbon fiber by heating at about 3000'C.

本発明により得られる炭素繊維の断面高次構造は、その
一部もしくは全部がオニオン型構造をヱする(第1図及
び第2図参照)。一部がオニオン型構造である場合には
、内層部にオニオン型構造が存在して、外層部にランダ
ム型構造(第1図(a))又はラジアル型構造(第1図
(b))が存在する。
The cross-sectional higher-order structure of the carbon fiber obtained by the present invention has an onion-type structure in part or in whole (see FIGS. 1 and 2). If a portion has an onion-type structure, the onion-type structure exists in the inner layer and the random-type structure (Figure 1 (a)) or radial type structure (Figure 1 (b)) exists in the outer layer. exist.

発明の効果 本発明によれば以下の如き効果が奏される。Effect of the invention According to the present invention, the following effects are achieved.

(i>最終的に得られる炭素繊維は、その内部にたて割
れ、クラック、ボイド等のミクロ的欠陥をほとんど有し
ない。
(i> The carbon fiber finally obtained has almost no microscopic defects such as vertical cracks, cracks, and voids inside it.

(ii)品質安定性に優れているので、原料たるピッチ
系材料の物性が若干変動したとしても、繊維断面の少な
くとも一部がオニオン型である安定した断面高次構造を
有する炭素繊維が得られる。
(ii) It has excellent quality stability, so even if the physical properties of the pitch-based material used as the raw material change slightly, carbon fibers with a stable cross-sectional higher-order structure in which at least a portion of the fiber cross section is onion-shaped can be obtained. .

(iii )上記(i)及び(ii)の結果として、炭
素繊維の引張り強度が大巾に向上する。
(iii) As a result of (i) and (ii) above, the tensile strength of carbon fibers is greatly improved.

(iv)更に、多ホールノズルを使用する紡糸時の糸切
れ頻度が低くなり、安定した連続紡糸が可能となる。
(iv) Furthermore, the frequency of yarn breakage during spinning using a multi-hole nozzle is reduced, making stable continuous spinning possible.

(vi)炭素繊維の内部をオニオン構造としたまま表面
をオニオン、ランダム、ラジアルと変えることかできる
ので、安定した炭素繊維の力学物性を保持したまま、樹
脂複合体及び炭素複合体において樹脂及び炭素と良好な
接着性を待つ各種表面分子配列を選択することが出来る
(vi) Since the surface of the carbon fiber can be changed to onion, random, or radial while keeping the inside of the carbon fiber in an onion structure, the resin and carbon Various surface molecular arrangements can be selected that provide good adhesion.

実施例 以下に参考例及び比較例と共に実施例を示し、本発明の
特徴とするところをより一層明らかにする。
EXAMPLES Below, Examples will be shown together with Reference Examples and Comparative Examples to further clarify the characteristics of the present invention.

参考例1 軟化点110’C、キノリンネ溶分0.18%、ベンゼ
ン不溶分35%のコールタールピッチ1璽量部と水素化
型アンl−ラセン油2重用部との混合溶液をオートクレ
ーブ中で430’Cで60分間撹拌下加熱した後、加圧
式フィルターで熱時ン濾過し、更に減圧下300’Cて
水素化型アンドランセン油を除去して、還元ピッチを得
た。
Reference Example 1 A mixed solution of 1 part of coal tar pitch with a softening point of 110'C, 0.18% of quinoline soluble content, and 35% of benzene insoluble content and 2 parts of hydrogenated anthracene oil was placed in an autoclave. After heating at 430'C for 60 minutes with stirring, the mixture was filtered while hot using a pressure filter, and the hydrogenated andranthene oil was removed at 300'C under reduced pressure to obtain reduced pitch.

ガス導入管、熱電対、撹拌機及び留出分除去管を備えた
反応器に上記で得られた還元ピッチ50Kgを入れ、1
覚拌下窒素ガスを導入しつつ410〜480’Cで低分
子生成分の除去及び熱重縮合を行なった。反応時間及び
温度の選択により得られた2種の熱重縮合ピッチの性状
を第1表にNo、 1〜2として示す。
50 kg of the reduced pitch obtained above was placed in a reactor equipped with a gas introduction tube, a thermocouple, a stirrer, and a distillate removal tube, and 1
Removal of low molecular weight components and thermal polycondensation were carried out at 410 to 480'C while introducing nitrogen gas under careful stirring. The properties of two types of thermally polycondensed pitches obtained by selecting reaction times and temperatures are shown in Table 1 as Nos. 1 and 2.

参考例2 水素化型アントラセン油との混合下における加熱処理を
経ることなく、参考例1と同様のコールタールピッチを
参考例1と同様にして熱重縮合反応に供した。得られた
熱重縮合ピッチの性状をN。
Reference Example 2 The same coal tar pitch as in Reference Example 1 was subjected to a thermal polycondensation reaction in the same manner as in Reference Example 1 without undergoing heat treatment while mixing with hydrogenated anthracene oil. The properties of the obtained thermal polycondensation pitch are N.

3として第1表に示す。3 in Table 1.

第   1   表 注:軟化点は、スイス メトラー社製軟化点測定装置に
より測定した。
Table 1 Note: Softening points were measured using a softening point measuring device manufactured by Swiss Mettler.

実施例1〜3 直径0.15m、長さ0.4Mの細管100本からなる
キャピラリー部、容積的150m3の応力緩和部及び直
径0.2#、長さ0.4Mのノズル(ノズル孔数100
個)を備えた紡糸装置を使用して、参考例1及び2で得
た熱重縮合ピッチNo、 1〜3を紡糸した。この紡糸
過程において、ピッチはキャピラリー部において最終ノ
ズル孔かうける剪断応力の約250%の剪断応力を加え
られ、次いで応力緩和で剪断応力を受けない状態におか
れ、最終ノズル孔で再び剪断応力を加えられた。
Examples 1 to 3 A capillary part consisting of 100 thin tubes with a diameter of 0.15 m and a length of 0.4 M, a stress relaxation part with a volume of 150 m3, and a nozzle with a diameter of 0.2# and a length of 0.4 M (number of nozzle holes: 100).
Thermal polycondensation pitch Nos. 1 to 3 obtained in Reference Examples 1 and 2 were spun using a spinning device equipped with a spinning device. In this spinning process, the pitch is subjected to a shear stress of approximately 250% of the shear stress applied to the final nozzle hole in the capillary section, then left in a state where it is not subjected to shear stress by stress relaxation, and then subjected to shear stress again at the final nozzle hole. Added.

かくして得たピッチ繊維を空気中300’Cで30分間
不融化処理し、次いでN2ガス雰囲気中で1200″C
まで加熱して炭素繊維を得た。
The pitch fiber thus obtained was infusible at 300'C in air for 30 minutes, and then heated at 1200'C in N2 gas atmosphere.
Carbon fibers were obtained by heating to .

第2表に直径10μmのピッチ繊維を糸切れを生ずるこ
となく連続して紡糸し得る平均時間(hr)、上記で得
た炭素繊維の断面高次構造及び欠陥含有率を示す。
Table 2 shows the average time (hr) in which pitch fibers with a diameter of 10 μm can be continuously spun without yarn breakage, the cross-sectional higher-order structure of the carbon fibers obtained above, and the defect content.

第  2  表 ■ 又、実施例1.2及び3で得られた炭素繊維の断面高次
構造を示す走査型電子顕微鏡写真をそれぞれ第3図(約
2600倍)、第4図(約8000倍)及び第5図(約
1700倍)として示す。
Table 2■ Also, scanning electron micrographs showing the cross-sectional higher-order structures of the carbon fibers obtained in Examples 1.2 and 3 are shown in Figure 3 (approximately 2600 times) and Figure 4 (approximately 8000 times), respectively. and FIG. 5 (approximately 1700 times magnification).

実施例4〜6 第3表に示す形状及び本数のキャピラリー部、容積的1
80m3の応力緩和部及び直径0.2mtn、長さ0.
4IIIInのノズル(ノズル孔数100個)を備えた
紡糸装置を使用して、参考例って得た熱重縮合ピンチN
o、 1を紡糸し、得られたピッチ繊維を実施例1〜3
と同様にして不融化及び炭化処理して炭素繊維を得た。
Examples 4 to 6 Capillary parts having the shape and number shown in Table 3, volumetric 1
Stress relief section of 80m3, diameter 0.2mtn, length 0.
Thermal polycondensation pinch N obtained as a reference example using a spinning device equipped with a 4IIIn nozzle (100 nozzle holes)
o, 1 was spun, and the resulting pitch fibers were used in Examples 1 to 3.
Carbon fibers were obtained by infusibility and carbonization treatment in the same manner as above.

得られた炭素繊維の断面高次構造及び欠陥含有率を第3
表に示す。
The cross-sectional higher-order structure and defect content of the obtained carbon fiber were
Shown in the table.

第  3  表 異型断面のキャピラリー部を有する紡糸装置を使用する
場合にも、欠陥がほとんど無く、内層オニオン型の断面
高次構造を有する炭素繊維が得られることが明らかであ
る。
Table 3 It is clear that even when a spinning device having a capillary portion with an irregular cross section is used, carbon fibers with almost no defects and an inner layer having an onion-type cross-sectional higher-order structure can be obtained.

比較例1〜3 直径0.2簡、長ざ0.4#のノズル(ノズル孔数10
0個)を備えた紡糸装置を使用して、参考例1及び2で
得た熱重縮合ピッチNo、 1〜3を紡糸した後、実施
例1〜3と同一条件下に不融化及び炭化処理を行なって
炭素繊維を得た。
Comparative Examples 1 to 3 A nozzle with a diameter of 0.2 and a length of 0.4# (number of nozzle holes: 10)
After spinning the thermal polycondensation pitch Nos. 1 to 3 obtained in Reference Examples 1 and 2 using a spinning device equipped with Carbon fibers were obtained.

得られた炭素繊維の断面高次構造及び欠陥含有率、並び
に直径10μmのピッチ繊維を糸切れを生ずることなく
連続して紡糸し得る平均時間(hr)を第4表に示す。
Table 4 shows the cross-sectional higher-order structure and defect content of the obtained carbon fibers, as well as the average time (hr) in which pitch fibers with a diameter of 10 μm can be continuously spun without yarn breakage.

比較例4 キャピラリー部の大きざが直径0.3#、艮ざ0.6m
m(本数100本)である以外は実施例1と同じ紡糸装
置を用いて、参考例1で得た熱重縮合ピッチNo、 1
を紡糸した。この紡糸過程では、ピッチはキャピラリー
部において最終ノズル孔でうける剪断応力の約30%の
剪断応力を加えられた。
Comparative Example 4 The size of the capillary part is 0.3 # in diameter, and the width is 0.6 m.
Thermal polycondensation pitch No. 1 obtained in Reference Example 1 using the same spinning device as in Example 1 except that m (number of threads: 100)
was spun. During this spinning process, the pitch was subjected to a shear stress in the capillary section that was about 30% of the shear stress experienced at the final nozzle hole.

得られたピッチ繊維を実施例1と同一条件下に不融化及
び炭化処理を行なって炭素繊維を1qた。
The obtained pitch fibers were subjected to infusibility and carbonization treatment under the same conditions as in Example 1 to obtain 1 q of carbon fibers.

炭素繊維の断面高次構造及び欠陥含有率を第4表に示す
Table 4 shows the cross-sectional higher-order structure and defect content of the carbon fibers.

又本比較例で得られた炭素繊維の断面高次構造を示す走
査型電子顕微鏡写真(約2800倍)を第6図として示
す。
FIG. 6 shows a scanning electron micrograph (approximately 2800 times magnification) showing the cross-sectional higher-order structure of the carbon fiber obtained in this comparative example.

比較例5 直径0.15m、長さ0.4%の細管100本からなる
キャピラリー部と直径0.2順、長さ0.48のノズル
部(ノズル孔数100個)とが実質的に直結されている
紡糸装置を使用して、参考例1で得た熱重縮合ピッチN
o、 1を紡糸した。この紡糸過程においては、ピッチ
は、キャピラリー部において最終ノズル孔でうける剪断
応力の約250%の剪断応力を加えられ、次いで直ちに
最終ノズル孔で剪断応力を加えられた。
Comparative Example 5 A capillary section consisting of 100 thin tubes with a diameter of 0.15 m and a length of 0.4% is substantially directly connected to a nozzle section (100 nozzle holes) with a diameter of 0.2 and a length of 0.48. Thermal polycondensation pitch N obtained in Reference Example 1 using the spinning device
o, 1 was spun. In this spinning process, the pitch was subjected to a shear stress of about 250% of the shear stress experienced at the final nozzle hole in the capillary section, and then immediately sheared at the final nozzle hole.

1qられたピンチ繊維を実施例1〜3と同一条件下に不
融化及び炭化処理に供して炭素繊維を得た。
1 q of pinched fibers were subjected to infusibility and carbonization treatment under the same conditions as in Examples 1 to 3 to obtain carbon fibers.

炭素繊維の断面高次構造及び欠陥含有率を第4表に示す
Table 4 shows the cross-sectional higher-order structure and defect content of the carbon fibers.

又、本比較例で得られた炭素繊維の断面高次構造を示す
走査型電子顕微鏡写真(約4000倍)を第7図として
示す。
Further, FIG. 7 shows a scanning electron micrograph (approximately 4000 times magnification) showing the cross-sectional higher-order structure of the carbon fiber obtained in this comparative example.

第  4  表 □□□; 第2表に示す実施例1〜3の結果と第4表に示す比較例
1〜3の結果との対比から明らかな如く、キャピラリー
部と応力緩和部とを有しない紡糸装置を使用する場合に
は、原料ピンチが同一であっても、連続紡糸性に劣り、
断面高次構造はラジアル型で且つ欠陥含有率が高い。
Table 4 □□□; As is clear from the comparison between the results of Examples 1 to 3 shown in Table 2 and the results of Comparative Examples 1 to 3 shown in Table 4, there is no capillary part and stress relaxation part. When using spinning equipment, even if the raw material pinch is the same, continuous spinning performance is inferior,
The cross-sectional higher order structure is radial type and has a high defect content.

第2表に示す実施例1の結果と、第4表に示す比較例4
の結果との対比から明らかな如く、キャピラリー部にて
、最終ノズル孔でうける1/2以下の剪断応力を加えた
場合には、たて割れ、クラック等の欠陥含有率が高い。
Results of Example 1 shown in Table 2 and Comparative Example 4 shown in Table 4
As is clear from the comparison with the results, when a shear stress of 1/2 or less of that at the final nozzle hole is applied to the capillary part, the content of defects such as vertical cracks and cracks is high.

更に、第2表に示す実施例1の結果と第4表に比較例5
の結果との対比から明らかな如く、キャピラリー部と最
終ノズル部との間に応力緩和部を有しない紡糸装置を使
用する場合にも、断面高次構造はラジアル型であり、欠
陥含有率も高い。
Furthermore, the results of Example 1 shown in Table 2 and Comparative Example 5 shown in Table 4
As is clear from the comparison with the results, even when using a spinning device that does not have a stress relaxation section between the capillary section and the final nozzle section, the cross-sectional higher-order structure is radial, and the defect content is high. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明方法により得られる炭素繊
維の断面高次構造を示す模式図、第3図乃至第5図は、
実施例1.2及び3で得られた炭素繊維の断面高次構造
を示す走査型電子顕微鏡写真であり、第6図及び第7図
は、比較例4及び5で得られた炭素繊維の断面高次構造
を示す走査型電子顕微鏡写真である。 (以 上) 第1図 (a)(b) 第2図 第3図 第4図 第5 図 第6図
FIGS. 1 and 2 are schematic diagrams showing the cross-sectional higher-order structure of carbon fibers obtained by the method of the present invention, and FIGS. 3 to 5 are
FIGS. 6 and 7 are scanning electron micrographs showing cross-sectional higher-order structures of carbon fibers obtained in Examples 1.2 and 3, and FIGS. 6 and 7 show cross-sections of carbon fibers obtained in Comparative Examples 4 and 5. This is a scanning electron micrograph showing a higher-order structure. (Above) Figure 1 (a) (b) Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] [1]ピッチ系材料を溶融紡糸し、不融化し、炭化する
ピッチ系炭素繊維の製造方法において、最終ノズル孔に
いたる前に溶融ピッチを円形、異形又はスリット型のキ
ャピラリー部を通過させることにより最終ノズル孔で受
ける剪断応力の1/2以上の剪断応力を加えた後、該溶
融ピッチを一旦剪断応力を実質的に加えない状態に保持
し、次いでノズル孔を通過させて紡糸することを特徴と
するピッチ系炭素繊維の製造方法。
[1] In a method for producing pitch-based carbon fiber in which pitch-based material is melt-spun, infusible, and carbonized, by passing the molten pitch through a circular, irregularly shaped, or slit-shaped capillary part before reaching the final nozzle hole. After applying a shear stress of 1/2 or more of the shear stress received at the final nozzle hole, the molten pitch is temporarily held in a state where no shear stress is applied substantially, and then passed through the nozzle hole to be spun. A method for producing pitch-based carbon fiber.
JP1284886A 1986-01-22 1986-01-22 Production of pitch-based carbon fiber Granted JPS62170527A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1284886A JPS62170527A (en) 1986-01-22 1986-01-22 Production of pitch-based carbon fiber
PCT/JP1987/000041 WO1990007594A1 (en) 1986-01-22 1987-01-22 Process for producing pitch-base carbon fiber
US07/105,428 US4859381A (en) 1986-01-22 1987-01-22 Process for preparing pitch-type carbon fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1284886A JPS62170527A (en) 1986-01-22 1986-01-22 Production of pitch-based carbon fiber

Publications (2)

Publication Number Publication Date
JPS62170527A true JPS62170527A (en) 1987-07-27
JPH0413450B2 JPH0413450B2 (en) 1992-03-09

Family

ID=11816814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1284886A Granted JPS62170527A (en) 1986-01-22 1986-01-22 Production of pitch-based carbon fiber

Country Status (2)

Country Link
JP (1) JPS62170527A (en)
WO (1) WO1990007594A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100194094A1 (en) 2007-09-03 2010-08-05 Susumu Kiuchi Anti-counterfeit printed matter
US8985634B2 (en) 2008-09-16 2015-03-24 National Printing Bureau, Incorporated Administrative Agency Anti-counterfeit printed matter, method of manufacturing the same, and recording medium storing halftone dot data creation software
EP2343194A4 (en) 2008-10-03 2015-11-04 Nat Printing Bureau Incorporated Administrative Ag Forgery preventive printed matter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168127A (en) * 1983-03-15 1984-09-21 Toray Ind Inc Production of carbon fiber
JPS60194120A (en) * 1984-03-08 1985-10-02 Mitsubishi Chem Ind Ltd Production of pitch fiber
JPS60239520A (en) * 1984-05-11 1985-11-28 Mitsubishi Chem Ind Ltd Carbon fiber
JPS60252723A (en) * 1984-05-30 1985-12-13 Mitsubishi Chem Ind Ltd Production of pitch based carbon fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168127A (en) * 1983-03-15 1984-09-21 Toray Ind Inc Production of carbon fiber
JPS60194120A (en) * 1984-03-08 1985-10-02 Mitsubishi Chem Ind Ltd Production of pitch fiber
JPS60239520A (en) * 1984-05-11 1985-11-28 Mitsubishi Chem Ind Ltd Carbon fiber
JPS60252723A (en) * 1984-05-30 1985-12-13 Mitsubishi Chem Ind Ltd Production of pitch based carbon fiber

Also Published As

Publication number Publication date
JPH0413450B2 (en) 1992-03-09
WO1990007594A1 (en) 1990-07-12

Similar Documents

Publication Publication Date Title
US4014725A (en) Method of making carbon cloth from pitch based fiber
US4005183A (en) High modulus, high strength carbon fibers produced from mesophase pitch
EP0840813B1 (en) Spinning carbon fibers from solvated pitches
US5399330A (en) Carbon thread and process for producing it
JPH0637725B2 (en) Carbon fiber manufacturing method
US4356158A (en) Process for producing carbon fibers
EP0402107A2 (en) Method for the preparation of carbon fibers
CA1055664A (en) Rapid thermosetting of carbonaceous fibers produced from mesophase pitch
JPS62170527A (en) Production of pitch-based carbon fiber
US4859381A (en) Process for preparing pitch-type carbon fibers
US4859382A (en) Process for preparing carbon fibers elliptical in section
JP2849156B2 (en) Method for producing hollow carbon fiber
JPH0150275B2 (en)
JPS6278220A (en) Production of ribbon-like carbon fiber
JPS60104528A (en) Preparation of carbon fiber
JP3406696B2 (en) Method for producing high thermal conductivity carbon fiber
Edie The effect of processing on the structure and properties
Wizon et al. Continuous filament ceramic fibers via the viscose process
JP2837299B2 (en) Method for producing pitch-based ultrafine carbon fiber
JPS60259631A (en) Production of pitch carbon fiber
JP4601875B2 (en) Carbon fiber manufacturing method
JPH06146120A (en) Pitch-based carbon fiber having high strength and high elastic modulus and its production
JJ et al. An evaluation of naphthalene-based mesophase as a carbon fiber precursor
JPS5976925A (en) Manufacture of pitch-based carbon fiber
JPS62170526A (en) Production of carbon fiber having elliptic cross-section