JPH042687B2 - - Google Patents

Info

Publication number
JPH042687B2
JPH042687B2 JP59230073A JP23007384A JPH042687B2 JP H042687 B2 JPH042687 B2 JP H042687B2 JP 59230073 A JP59230073 A JP 59230073A JP 23007384 A JP23007384 A JP 23007384A JP H042687 B2 JPH042687 B2 JP H042687B2
Authority
JP
Japan
Prior art keywords
fiber
pitch
spinning
cross
leaf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59230073A
Other languages
Japanese (ja)
Other versions
JPS616316A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP23007384A priority Critical patent/JPS616316A/en
Publication of JPS616316A publication Critical patent/JPS616316A/en
Publication of JPH042687B2 publication Critical patent/JPH042687B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ピツチを原料とし新規でかつ特異な
内部構造を有する高強度、高モジユラスの黒鉛繊
維に関するものである。 従来技術 黒鉛繊維は、当初レーヨンを原料として製造さ
れたが、その特性、経済性の点で、現在ではポリ
アクリロニトリル(PAN)繊維を原料とする
PAN系黒鉛繊維と、石炭又は石油系のピツチ類
を原料とするピツチ系黒鉛繊維によつて占められ
ている。なかでも、光学異方性ピツチを原料とし
て高性能グレードの黒鉛繊維を製造する技術は、
経済性にすぐれているだけでなく高モジユラスの
繊維となし得るため注目を集めており、光学異方
性ピツチを溶融紡糸して得たピツチ繊維を不融
化、焼成、黒鉛化した黒鉛繊維は、それまでのピ
ツチ系黒鉛繊維に比して高強度、高モジユラスの
ものが得られるとされている(特開昭49−19127
号公報参照)。 また、ピツチ系黒鉛繊維の内部断面構造を制御
することにより、繊維物性が変化することも見出
されている。 すなわち、ピツチ系黒鉛繊維の断面構造として
は、ランダム、ラジアル、オニオン構造又はその
複合構造が存在し、ラジアル構造はモジユラスが
高くなる反面クラツクを生じやすくマクロ欠陥に
よる強度低下が生じる。またピツチ系黒鉛繊維に
おけるランダム構造は、実際はラメラのサイズが
小さいラジアル構造であり、強度的には好ましい
構造であるが、ピツチ調製及び紡糸の高ドラフト
又は急冷化が十分でないとクラツクが生じやすく
製造条件が限定される。またモジユラス面におい
ては、ラジアル構造より劣るものとなる。 オニオン構造は、現象的には紡糸ピツチの粘性
変化温度よりも高い温度まで昇温させた後、紡糸
することによつて得られるが、(特開昭59−53717
号公報参照)、通常の光学異方性ピツチにおいて
は、この粘性変化温度が350℃以上の高温である
ため、紡糸の安定性が悪く、得られる繊維もボイ
ドを含んだものになりやすいため、ボイドレスの
オニオン構造の繊維を安定に得ることはむつかし
い。 発明の目的 本発明の目的は、従来のピツチ系黒鉛繊維とは
全く異なつた断面構造を有し、従来のピツチ系黒
鉛繊維に比べて飛躍的に改善された引張り強度と
モジユラスとを有しており、しかも製造上の困難
が少ない新規なピツチ系黒鉛繊維を提供すること
にある。 発明の構成 本発明者らは、ピツチ系黒鉛繊維の持つモジユ
ラス面での利点を保ちつつ優れた強度を有する、
従来にない性能のピツチ系黒鉛繊維を開発するた
めに鋭意研究を行つた結果、光学異方性ピツチを
溶融紡糸する際、特定の工夫を加えることにより
ピツチ分子の配列を特殊な状態に制御できること
を究明し、従来のラジアル、ランダム、又はオニ
オン構造とは全く異なつた特異な微細構造を有
し、かつ従来達成されていない優れた引張り強度
とモジユラスとを併せ持つ、新規なピツチ系黒鉛
繊維が得られることを見出し、この知見に基づい
て本発明を完成するに至つた。 すなわち、本発明の新規なピツチ系黒鉛繊維
は、その繊維断面形状が楕円形であり、かつ該繊
維の断面において実質的に1本の直線状中心軸か
ら両側に伸びた多数のラメラを有するリーフ状ラ
メラ配列を呈する部分が繊維断面積の50%以上を
占め、該繊維の引張強度が少なくとも350Kg/mm2
モジユラスが少なくとも40T/mm2を示すことを特
徴とする黒鉛繊維である。 ここでいうリーフ状ラメラ配列とは、黒鉛繊維
の長さ方向とほぼ垂直な方向に切断した断面を走
査型電子顕微鏡によつて観察することによつて識
別ができるもので、基本的には中心軸から対称に
15〜90°の角度で多数のラメラが両側に伸びた木
の葉状のラメラ配列を指し、従来全く知られてい
なかつた新規な断面構造である。このリーフ状ラ
メラ配列の中には、中心軸が不明瞭となつたり消
失したものも含まれる。かかる場合は、中心軸を
仮想することにより、上記定義に従つたリーフ状
ラメラ配列と判別することができる。 第1図は、かかる本発明の黒鉛繊維の断面構造
を模式的に示す繊維断面図である。本発明の繊維
では、リーフ状ラメラ配列は、一つの断面中に1
個又は2個存在することができる。すなわち、第
1図の如く通常1個のリーフ状ラメラ構造を含む
と見えるものも2つのリーフ状ラメラ構造が組合
わさつて、1つのリーフ状ラメラ構造の如く見え
るとも解釈することができ、本発明はかかる黒鉛
繊維を包含するものである。 リーフ状ラメラ構造の中心軸は、第1図に示す
如く実質的に1本の直線からなつている。中心軸
を仮想する必要がある場合も同様である。そし
て、本発明の黒鉛繊維では、上述のリーフ状ラメ
ラ構造の部分(面積)が繊維断面積の50%以上を
占めることを特徴とする。 すなわち、本発明の黒鉛繊維には、多くの場
合、リーフ状ラメラ配列を有するリーフ状ラメラ
構造の部分(A)とその周りの構造が不明確な部分(B)
とが存在するが、Aの面積/(A+B)の面積の
割合が50%以上有することが好ましい。 本発明に係る黒鉛繊維の断面形状(外形)は、
第1図の如き楕円形を有する。この断面形状のも
のはリーフ状ラメラ構造が大きくなり、特に物性
のすぐれた黒鉛繊維となる。 繊維の直径は円形断面に換算して5〜50μmの
範囲にするのが好ましく、繊維長は任意に選択で
きる。 前記のような特殊なリーフ状ラメラ配列を有す
る本発明の黒鉛繊維は、350Kg/mm2以上の引張り
強度と40T/mm2以上のモジユラスとを有する従来
に見られない優れた物性を示す。特に後述の実施
例に示す如く、製造条件によつては、400Kg/mm2
を超える引張り強度と45T/mm2を超えるモジユラ
スを示す場合もあり、従来のピツチ系黒鉛繊維か
らは全く予想できないようなすぐれた物性を有す
る。 本発明の黒鉛繊維のもつ、このようなすぐれた
物性は、該繊維の断面構造が前述のようなリーフ
状ラメラ配列をとつているため、不融化・焼成・
黒鉛化の段階でのクラツクの発生が防止され、構
造の緻密化が可能となり高強度・高モジユラスが
発現したものと考えられる。 このような優れた諸性能を有する本発明の黒鉛
繊維は光学異方性領域を50%以上有する紡糸用ピ
ツチを溶融した後、特定の寸法を有する単一スリ
ツト状紡糸孔から溶融紡糸し、これを不融化、焼
成、黒鉛化することによつて容易にかつ安定に製
造することができる。 次に、この製造方法について詳細に説明する。 本発明の黒鉛繊維を製造するための原料として
は、光学異方性領域を少くとも50%以上、好まし
くは80%以上有するピツチを用いる。光学異方性
領域の割合が50%未満の光学異方性ピツチは、可
紡性が悪く、均質かつ安定な物性のものが得られ
ないばかりでなく、得られる黒鉛繊維の断面構造
が上述の如きリーフ状ラメラ構造とならず、物性
も低いものとなる。 紡糸用ピツチの融点は260〜320℃が好ましく、
270〜310℃がさらに好ましい。また紡糸用ピツチ
のキノリン可溶部の割合は30重量%以上が好まし
く、特に40〜80重量%が好適である。これらのパ
ラメーターは原料ピツチによつて異なるが通常は
相関があり、光学異方性量が多い程融点が高く、
キノリン可溶部の割合は低くなる。本発明におい
て好適に用いられる紡糸用ピツチの光学異方性領
域の割合(以下、光学異方性量という)は多い程
よい。このようなピツチは系が均質であり、可紡
性にすぐれている。 このような紡糸用ピツチの原料としては、例え
ばコールタール、コールタールピツチ、石炭液化
物のような石炭系重質油や、石油の常圧残留、減
圧蒸留残油及びこれらの残油の熱処理によつて副
生するタールやピツチ、オイルサンド、ビチユー
メンのような石油系重質油を精製したものを用
い、これを熱処理、溶剤抽出、水素化処理等を組
合せて処理することによつて得られる。 本発明の黒鉛繊維を製造するには、前述の如き
紡糸用ピツチを溶融紡糸する際の紡糸口金のスリ
ツト状紡糸孔(ノズル)形状が特に重要である。
すなわち、前述の如き紡糸用ピツチの溶融物を次
式()()を同時に満足する直線状単一スリ
ツト形開孔部を有する特殊な紡糸孔を通じて溶融
紡糸する。 かかる紡糸孔としては、該スリツトにおける中
心線距離(スリツト長)をLnとし、それに対応
するぬれぶち幅(スリツト幅)をWnとしたと
き、 Ln<5.0(mm) ……() 1.5Ln/Wn20 ……() を同時に満足するものを使用する。 本発明の黒鉛繊維を形成するには、前記Ln及
びWnが前記式()()を同時に満足する必
要がある。特に上記単一スリツト紡糸孔でも、さ
らに3Ln/Wn15を満足するものが好まし
い。 これに対し、従来のピツチ繊維の溶融紡糸に使
用されている円形紡糸孔を有する紡糸口金を用い
た場合や、Ln/Wnが前記範囲外の異形紡糸孔を
有する紡糸口金を用いた場合には黒鉛繊維の断面
がラジアル構造又は構造が不明確なランダム構造
となるか、リーフ状ラメラ配列含有率が極めて小
さくなる。この様な場合、クラツクを発生しない
繊維を部分的に含むこともあるが、完全にクラツ
クを防止することは不可能となり、その結果得ら
れる黒鉛繊維の物性は低下する。 溶融紡糸における紡糸温度は、融点より40〜
100℃高い温度を採用するが、本発明で目的とす
る優れた物性を得るためには380℃を越える温度
はさけるべきであり、さらに好ましくは370℃を
越える温度はさけるべきである。かような温度以
上では炭化反応が開始され、これに伴うガスの発
生が物性にとつて無視できない悪影響を及ぼすか
らである。 前述のごとき紡糸孔から光学異方性ピツチを紡
糸すると、何故リーフ状ラメラ配列を生ずるか
は、未だ充分解明されておらず、今後の詳細な検
討を待たねばならないが、およそ次の様に考えら
れる。 光学異方性を有するピツチは板状分子と推定さ
れ、このような板状分子は紡糸口金のノズル(紡
糸孔)内の等速度線に対し直角に配列し易い。円
形ノズル内の等速度線は円状であり、これに分子
が直角に配列するため、得られるピツチ繊維の断
面内でピツチ分子はラジアル状に配列する。この
ため不融化、焼成、黒鉛化の段階で分子面間隔の
収縮時に応力歪みが生じ易く、繊維にクラツクを
生じる。 これに対し前述の中心線を有するノズル内の等
速度線はU字状となり、これに分子が直角に配列
するとピツチ分子は繊維断面内でリーフ状に配列
する。この配列は、不融化、焼成、黒鉛化の段階
での分子面間隔の収縮時に応力歪みを吸収し易い
配列であるため、分子は緻密に充填される等の理
由によりクラツク発生がなくなり、著しくすぐれ
た物性が発現すると考えられる。 また必要に応じ、口金細孔上部(上流側)に整
流板を設置する方法も有効に使用しうる。かよう
な整流板としては、流線に対し垂直な断面の形状
が平行スリツト、格子状、微小円の集合形状等任
のものを使用できるが、かような整流板により形
成された個々の流線が、互いに流線方向に交絡し
ない必要がある。流線が交絡する場合、それによ
り流れに乱れが生じ、軸方向配向が阻害され好ま
しくない。 このようなスリツト状の紡糸孔から紡出された
繊維は、ドラフト率30以上、好ましくは50以上で
引き取ることが好適である。ここでドラフト率と
は次式で定義される値であり、この値が大きいこ
とは紡糸時の変形速度が大きく、他の条件が同一
の場合はドラフト率が大きい程、急冷効果が大と
なる。 ドラフト率=紡糸引取り速度/紡糸口金からの
吐出線速度 ドラフト率30以上、特に50以上で引き取ると、
引続く不融化、焼成、黒鉛化処理により、好適な
物性を発現しやすいので好ましい。 紡糸引取り速度は、前述の紡糸条件では、1000
m/分以上の高速でもきわめて円滑に紡糸するこ
とができるが、通常300〜2000m/分の範囲が好
ましく用いられる。 前記のような特殊な紡糸口金を採用して得られ
たピツチ繊維は、次いで、酸素の存在下に不融化
処理される。 この不融化処理工程は生産性および繊維物性を
左右する重要な工程で、できるだけ短時間で実施
することが好ましい。このため、不融化温度、昇
温速度、雰囲気ガス等を紡糸ピツチ繊維に対し適
宜選択する必要があるが、本発明におけるピツチ
繊維は、高融点の光学異方性ピツチを用いること
及び、繊維断面形状が楕円形であるため単位断面
積当りの表面積が大きいこと等により、通常の円
形断面から紡糸された従来のピツチ繊維よりも処
理時間を短縮することが可能である。このように
不融化処理した繊維は、直接、不活性ガス中にお
いて、2000〜3000℃に加熱してもよいが、通常
は、不活性ガス中(例えば窒素中)において、い
つたん1000〜1500℃に加熱した後、さらに不活性
ガス中(例えばアルゴン中)で2000〜3000℃に加
熱し、黒鉛繊維とする。 発明の効果 前述の如き本発明のピツチ系黒鉛繊維は、その
断面構造がリーフ状ラメラ配列を有するために、
クラツクが防止され、さらに不融化、焼成、黒鉛
化の段階での収縮が円滑におこなわれるため、引
張り強度が飛躍的に増大し、液晶ピツチ系の持つ
モジユラス面での利点とあわせ従来にない優れた
引張り強度とモジユラスとを併せ持つ黒鉛繊維と
なる。従つて該繊維は複合材の補強繊維として好
適に用いられる。 各指標の測定法 次に本発明における紡糸用ピツチ及び繊維特性
を表わす各指標の測定法について説明する。 (a) 紡糸用ピツチの融点 パーキンエルマー社製DSC−1D型を用い、
アルミニウム製セル(内径5m/m)に100メ
ツシユ以下に粉砕したピツチ微粉末10mgを入
れ、上から押えた後、窒素雰囲気中、昇温速度
10℃/分で400℃近くまで昇温しつつ測定し、
DSCのチヤートにおける融点を示す吸熱ピー
クをもつて紡糸用ピツチの融点とする。 (b) 紡糸用ピツチの光学異方性量 反射型偏光顕微鏡を用いて紡糸ピツチの偏光
顕微鏡写真を任意に5枚とり、画像解析処理装
置を用いて、等方性領域の面積分率(%)を出
し、このものの平均値を光学異方性量とする。 (c) 炭素繊維の物性 炭素繊維の繊維径(単糸径)、引張強度、伸
度、モジユラスはJIS R−7601「炭素繊維試験
方法」に従つて測定する。なお繊維径の測定
は、楕円形断面繊維について、走査型電子顕微
鏡写真よりn=15の断面積の平均値を算出す
る。なお、実施例等においては繊維径を相当す
る断面積を有する円に換算したときの直系で表
示した。 (d) リーフ状ラメラ配列の分率 炭素繊維断面の走査型電子顕微鏡写真より、
断面積あたりのリーフ状ラメラ配列部分の面積
比率で表わす。 実施例 以下、実施例をあげて本発明をさらに詳細に説
明するが、本発明はこれらの実施例によつて何ら
限定されるものではない。 実施例 1〜3 市販のコールタールピツチを原料とし、特開昭
59−53717号公報に記載の方法に準じ、全面流れ
構造で光学異方性量を88%有し、キノリン不溶部
39%、融点274℃の紡糸用ピツチを調製した。 該紡糸用ピツチを加熱ヒータを備えた定量フイ
ーダーに仕込み、溶融脱泡後、別に設けら加熱ゾ
ーンを経て、スリツト幅(Wn)60μm、中心線
距離(Ln)540μmの直線状単一スリツト紡糸孔
を有する口金を用いて、紡糸を行つた。 この場合のフイーダーは吐出量は0.06ml/分/
孔、フイーダー部温度(T1)=320℃、加熱ゾー
ン温度(T2)=320℃とし、口金温度(T3)=340
℃で紡糸し、引取り速度800m/分で巻き取つた。 このピツチ繊維をシリカ微粉末を融着防止剤と
して塗布した後、乾燥空気中にて10℃/分の昇温
速度で200℃から300℃まで昇温加熱し、300℃で
30分保持した。 次いで、窒素雰囲気中にて500℃/分の昇温速
度で1300℃まで昇温加熱し、5分間保持すること
により焼成し、次いでアルゴン雰囲気中で2300〜
2700℃に加熱し、黒鉛繊維とした。得られた繊維
のリーフ状ラメラ分率は97%であつた。各黒鉛化
温度に対応する繊維物性を次の第1表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to high-strength, high-modulus graphite fibers made from pitch and having a novel and unique internal structure. Conventional technology Graphite fibers were initially produced using rayon as a raw material, but due to its characteristics and economic efficiency, it is now produced using polyacrylonitrile (PAN) fibers as a raw material.
It is dominated by PAN-based graphite fibers and pitch-based graphite fibers made from coal- or petroleum-based pitches. Among these, the technology to produce high-performance grade graphite fiber using optically anisotropic pitch as a raw material is
Graphite fibers are attracting attention not only because they are economical but also because they can be made into high modulus fibers. Graphite fibers are made by melt-spinning optically anisotropic pitch fibers, making them infusible, firing them, and graphitizing them. It is said that it is possible to obtain a material with higher strength and higher modulus than the conventional pituti-based graphite fiber (Japanese Patent Application Laid-open No. 49-19127
(see publication). It has also been found that by controlling the internal cross-sectional structure of pitch-based graphite fibers, the physical properties of the fibers can be changed. That is, the cross-sectional structure of pitch-based graphite fibers includes random, radial, onion structures, or composite structures thereof. Although the radial structure has a higher modulus, it is more likely to cause cracks, resulting in a decrease in strength due to macro defects. In addition, the random structure of pitch-based graphite fibers is actually a radial structure with small lamella sizes, which is a preferable structure in terms of strength, but cracks tend to occur if the pitch preparation and spinning draft or rapid cooling are not sufficient. Conditions are limited. Also, in terms of modulus, it is inferior to the radial structure. The onion structure can be obtained by spinning after raising the temperature of the spinning pitch to a temperature higher than the viscosity change temperature.
In the case of ordinary optically anisotropic pitches, the viscosity change temperature is as high as 350°C or higher, resulting in poor spinning stability and the resulting fibers tend to contain voids. It is difficult to stably obtain void-free onion-structured fibers. OBJECT OF THE INVENTION The object of the present invention is to create a fiber that has a cross-sectional structure completely different from that of conventional pitch-based graphite fibers, and has significantly improved tensile strength and modulus compared to conventional pitch-based graphite fibers. It is an object of the present invention to provide a new pitch-based graphite fiber that is easy to manufacture and has few manufacturing difficulties. Structure of the Invention The present inventors have discovered a method that maintains the advantages of pitch-based graphite fibers in terms of modulus and has excellent strength.
As a result of intensive research to develop pitch-based graphite fibers with unprecedented performance, it was discovered that when optically anisotropic pitch is melt-spun, the arrangement of pitch molecules can be controlled to a special state by adding specific measures. We investigated this and obtained a new pitch-based graphite fiber that has a unique microstructure that is completely different from conventional radial, random, or onion structures, and also has excellent tensile strength and modulus that have never been achieved before. Based on this knowledge, we have completed the present invention. That is, the novel pitch-based graphite fiber of the present invention has an elliptical cross-sectional shape, and leaves having a large number of lamellae extending on both sides from a substantially single linear central axis in the cross-section of the fiber. The portion exhibiting a shaped lamellar arrangement occupies 50% or more of the cross-sectional area of the fiber, and the tensile strength of the fiber is at least 350 Kg/mm 2 ,
A graphite fiber characterized in that the modulus is at least 40T/mm 2 . The leaf-like lamellar arrangement referred to here can be identified by observing a cross section cut almost perpendicular to the longitudinal direction of graphite fibers using a scanning electron microscope, and basically symmetrically from the axis
It refers to a leaf-like lamellar arrangement in which many lamellae extend on both sides at an angle of 15 to 90 degrees, and is a novel cross-sectional structure that has not been previously known. This leaf-like lamellar arrangement also includes those in which the central axis becomes unclear or disappears. In such a case, by imagining the central axis, it can be determined that the arrangement is a leaf-like lamella arrangement according to the above definition. FIG. 1 is a fiber cross-sectional view schematically showing the cross-sectional structure of the graphite fiber of the present invention. In the fiber of the present invention, the leaf-like lamella arrangement is one in one cross section.
There can be one or two. In other words, what normally appears to include one leaf-like lamella structure as shown in FIG. 1 can also be interpreted as a combination of two leaf-like lamella structures, making it look like a single leaf-like lamella structure. includes such graphite fibers. The central axis of the leaf-like lamellar structure is substantially one straight line, as shown in FIG. The same applies when it is necessary to imagine the central axis. The graphite fiber of the present invention is characterized in that the portion (area) of the above-mentioned leaf-like lamella structure occupies 50% or more of the cross-sectional area of the fiber. That is, in many cases, the graphite fiber of the present invention has a leaf-like lamella structure having a leaf-like lamella arrangement (A) and a surrounding part (B) where the structure is unclear.
However, it is preferable that the ratio of the area of A/(A+B) is 50% or more. The cross-sectional shape (external shape) of the graphite fiber according to the present invention is
It has an oval shape as shown in FIG. This cross-sectional shape has a large leaf-like lamellar structure, resulting in graphite fibers with particularly excellent physical properties. The diameter of the fiber is preferably in the range of 5 to 50 μm when converted to a circular cross section, and the fiber length can be selected arbitrarily. The graphite fiber of the present invention having the above-mentioned special leaf-like lamella arrangement exhibits excellent physical properties never seen before, including a tensile strength of 350 Kg/mm 2 or more and a modulus of 40 T/mm 2 or more. In particular, as shown in the examples below, depending on the manufacturing conditions, 400Kg/mm 2
In some cases, it exhibits a tensile strength of over 45 T/mm 2 and a modulus of over 45 T/mm 2 , and has excellent physical properties that cannot be expected from conventional pitch-based graphite fibers. The excellent physical properties of the graphite fiber of the present invention are due to the cross-sectional structure of the fiber having a leaf-like lamellar arrangement as described above.
It is thought that the occurrence of cracks during the graphitization stage was prevented, the structure became more dense, and high strength and high modulus were achieved. The graphite fiber of the present invention, which has such excellent performance, is obtained by melting a spinning pitch having an optical anisotropy area of 50% or more, and then melt-spinning it through a single slit-shaped spinning hole with specific dimensions. It can be easily and stably produced by making it infusible, firing it, and graphitizing it. Next, this manufacturing method will be explained in detail. As a raw material for producing the graphite fiber of the present invention, pitch having an optical anisotropy region of at least 50% or more, preferably 80% or more is used. Optically anisotropic pitches with an optically anisotropic region ratio of less than 50% have poor spinnability, making it impossible to obtain homogeneous and stable physical properties, and the resulting graphite fiber has a cross-sectional structure similar to that described above. It does not have a leaf-like lamellar structure, and its physical properties are also poor. The melting point of the pitch for spinning is preferably 260 to 320°C,
270-310°C is more preferred. Further, the proportion of the quinoline-soluble portion in the spinning pitch is preferably 30% by weight or more, particularly preferably 40 to 80% by weight. Although these parameters differ depending on the raw material pitch, they are usually correlated; the greater the amount of optical anisotropy, the higher the melting point;
The proportion of quinoline soluble portion becomes low. The ratio of the optically anisotropic region (hereinafter referred to as the amount of optical anisotropy) of the spinning pitch suitably used in the present invention is preferably as high as possible. Such pitches have a homogeneous system and are excellent in spinnability. Raw materials for such spinning pitches include, for example, coal tar, coal tar pitch, coal-based heavy oils such as coal liquefied products, normal pressure residues of petroleum, vacuum distillation residues, and heat treatment of these residues. It is obtained by using refined petroleum-based heavy oils such as tar, pitch, oil sand, and bitumen, which are by-products, and processing this by a combination of heat treatment, solvent extraction, hydrogenation treatment, etc. . In order to produce the graphite fibers of the present invention, the shape of the slit-like spinning hole (nozzle) of the spinneret used when melt-spinning the above-mentioned spinning pitch is particularly important.
That is, the melt in the spinning pitch as described above is melt-spun through a special spinning hole having a linear single slit-shaped opening that simultaneously satisfies the following formulas () and (). For such a spinning hole, when the center line distance (slit length) in the slit is Ln and the corresponding wet edge width (slit width) is Wn, Ln<5.0 (mm) ... () 1.5Ln/Wn20 ... Use something that satisfies () at the same time. In order to form the graphite fiber of the present invention, the above-mentioned Ln and Wn must simultaneously satisfy the above-mentioned formulas () and (). In particular, even the single slit spinning hole described above preferably satisfies 3Ln/Wn15. On the other hand, when using a spinneret with a circular spinning hole, which is used for conventional melt spinning of pitch fibers, or when using a spinneret with an irregularly shaped spinning hole where Ln/Wn is outside the above range, The cross section of the graphite fiber becomes a radial structure or a random structure with unclear structure, or the leaf-like lamella arrangement content becomes extremely small. In such cases, although some fibers that do not generate cracks may be included, it is impossible to completely prevent cracks, and as a result, the physical properties of the graphite fibers obtained deteriorate. The spinning temperature in melt spinning is 40 to 40 degrees below the melting point.
Although a temperature 100°C higher is employed, in order to obtain the excellent physical properties aimed at in the present invention, temperatures exceeding 380°C should be avoided, and more preferably temperatures exceeding 370°C should be avoided. This is because at temperatures above such a temperature, a carbonization reaction is initiated, and the accompanying gas generation has a non-negligible adverse effect on physical properties. The reason why a leaf-like lamellar arrangement is produced when optically anisotropic pitch is spun from the spinning hole as described above is still not fully understood, and will have to wait for detailed investigation in the future, but the idea is as follows. It will be done. Pits having optical anisotropy are presumed to be plate-shaped molecules, and such plate-shaped molecules tend to be arranged at right angles to a constant velocity line in the nozzle (spinning hole) of a spinneret. The uniform velocity line in the circular nozzle is circular, and the molecules are arranged at right angles to this, so the pitch molecules are arranged radially within the cross section of the resulting pitch fiber. For this reason, stress distortion tends to occur when the molecular spacing contracts during the infusibility, firing, and graphitization stages, causing cracks in the fibers. On the other hand, the constant velocity line in the nozzle having the aforementioned centerline is U-shaped, and when the molecules are arranged at right angles to this line, the pitch molecules are arranged in a leaf shape within the fiber cross section. This arrangement is an arrangement that easily absorbs stress strain when the molecular interplanar spacing contracts during the stages of infusibility, sintering, and graphitization, so the molecules are packed densely, which eliminates the occurrence of cracks. It is thought that physical properties such as Furthermore, if necessary, a method of installing a current plate at the upper part (upstream side) of the mouth hole may also be effectively used. Such a current plate may have any shape in the cross section perpendicular to the streamlines, such as parallel slits, a lattice, or a collection of microcircles. The lines must not intertwine with each other in the streamline direction. If the streamlines are intertwined, this will cause turbulence in the flow and impede axial orientation, which is undesirable. The fibers spun from such slit-shaped spinning holes are preferably taken at a draft rate of 30 or more, preferably 50 or more. Here, the draft rate is a value defined by the following formula, and a large value means a high deformation speed during spinning, and if other conditions are the same, the larger the draft rate, the greater the quenching effect. . Draft rate = Spinning take-off speed / Linear speed of discharge from the spinneret When taking off at a draft rate of 30 or more, especially 50 or more,
This is preferable because suitable physical properties are easily exhibited by the subsequent infusibility, calcination, and graphitization treatments. The spinning take-off speed is 1000 under the above spinning conditions.
Although spinning can be carried out very smoothly even at high speeds of m/min or higher, a speed in the range of 300 to 2000 m/min is usually preferred. The pitch fiber obtained by employing the above-mentioned special spinneret is then treated to be infusible in the presence of oxygen. This infusibility treatment step is an important step that affects productivity and fiber properties, and is preferably carried out in as short a time as possible. For this reason, it is necessary to appropriately select the infusibility temperature, temperature increase rate, atmospheric gas, etc. for the spun pitch fiber, but the pitch fiber in the present invention uses optically anisotropic pitch with a high melting point, and the fiber cross section. Due to the elliptical shape, which has a large surface area per unit cross-sectional area, processing time can be reduced compared to conventional pitch fibers spun from a normal circular cross-section. The fibers treated to be infusible in this way may be heated directly to 2000 to 3000°C in an inert gas, but usually they are heated to 1000 to 1500°C in an inert gas (for example, nitrogen). After heating to 2000 to 3000°C in an inert gas (for example, argon), graphite fibers are obtained. Effects of the Invention Since the pitch-based graphite fiber of the present invention as described above has a leaf-like lamellar arrangement in its cross-sectional structure,
Cracks are prevented, and furthermore, shrinkage occurs smoothly during the infusibility, sintering, and graphitization stages, resulting in a dramatic increase in tensile strength, which, along with the advantages of liquid crystal pitch systems in terms of modulus, provides an unprecedented level of superiority. The resulting graphite fiber has both high tensile strength and modulus. Therefore, the fibers are suitably used as reinforcing fibers for composite materials. Methods for Measuring Each Index Next, methods for measuring each index representing the spinning pitch and fiber properties in the present invention will be explained. (a) Melting point of spinning pitch using PerkinElmer DSC-1D model,
Put 10 mg of fine Pitch powder crushed into 100 meshes or less into an aluminum cell (inner diameter 5 m/m), press it down from above, and then heat it up in a nitrogen atmosphere at a heating rate.
Measurement is carried out while raising the temperature to nearly 400℃ at 10℃/min.
The endothermic peak indicating the melting point in the DSC chart is taken as the melting point of the spinning pitch. (b) Amount of optical anisotropy of spinning pitch Five arbitrary polarized micrographs of the spinning pitch were taken using a reflective polarizing microscope, and the area fraction (%) of the isotropic region was calculated using an image analysis processing device. and take the average value as the amount of optical anisotropy. (c) Physical properties of carbon fiber The fiber diameter (single fiber diameter), tensile strength, elongation, and modulus of carbon fiber are measured according to JIS R-7601 "Carbon fiber testing method". Note that the fiber diameter is measured by calculating the average value of the cross-sectional area of n=15 from scanning electron micrographs for fibers with an oval cross section. In addition, in Examples etc., the fiber diameter is expressed in a direct line when it is converted into a circle having a corresponding cross-sectional area. (d) Fraction of leaf-like lamellar arrangement From a scanning electron micrograph of a cross section of carbon fiber,
It is expressed as the area ratio of the leaf-like lamella array part per cross-sectional area. Examples Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way. Examples 1 to 3 Using commercially available coal tar pitch as a raw material,
According to the method described in Publication No. 59-53717, it has a full-surface flow structure and an optical anisotropy of 88%, and a quinoline-insoluble part.
A spinning pitch of 39% and a melting point of 274°C was prepared. The spinning pitch is charged into a metering feeder equipped with a heating heater, and after melting and degassing, it passes through a separately provided heating zone and is formed into a linear single slit spinning hole with a slit width (Wn) of 60 μm and a center line distance (Ln) of 540 μm. Spinning was carried out using a spinneret with a In this case, the feeder has a discharge rate of 0.06ml/min/
Hole and feeder temperature (T 1 ) = 320°C, heating zone temperature (T 2 ) = 320°C, mouth temperature (T 3 ) = 340
It was spun at ℃ and wound at a take-up speed of 800 m/min. After applying fine silica powder as an anti-fusing agent to this pitch fiber, it was heated in dry air at a heating rate of 10°C/min from 200°C to 300°C.
Hold for 30 minutes. Next, the temperature was increased to 1300°C in a nitrogen atmosphere at a heating rate of 500°C/min, and fired by holding for 5 minutes, and then heated to 2300°C in an argon atmosphere.
It was heated to 2700℃ and made into graphite fiber. The leaf-like lamella fraction of the obtained fiber was 97%. The fiber physical properties corresponding to each graphitization temperature are shown in Table 1 below. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る黒鉛繊維の断面構造を
模式的に示す断面図であり、図中のAはリーフ状
構造の部分、Bはその周りの構造が不明確な部分
を示す。
FIG. 1 is a cross-sectional view schematically showing the cross-sectional structure of a graphite fiber according to the present invention, where A indicates a portion with a leaf-like structure and B indicates a portion where the structure around it is unclear.

Claims (1)

【特許請求の範囲】[Claims] 1 光学的異方性ピツチを直線状単一スリツト形
紡糸孔から紡糸したピツチ繊維を原料とする黒鉛
繊維であつて、その繊維断面形状が楕円形であ
り、かつ該繊維の断面において実質的に1本の直
線状中心軸から両側に伸びた多数のラメラを有す
るリーフ状ラメラ配列を呈する部分が繊維断面積
の50%以上を占め、該繊維の引張強度が少なくと
も350Kg/mm2、モジユラスが少なくとも40T/mm2
を示すことを特徴とする黒鉛繊維。
1. A graphite fiber made from a pitch fiber obtained by spinning an optically anisotropic pitch through a linear single-slit spinning hole, the fiber cross-sectional shape being elliptical, and the cross-sectional shape of the fiber being substantially A portion exhibiting a leaf-like lamella arrangement having a large number of lamellae extending on both sides from one linear central axis occupies 50% or more of the fiber cross-sectional area, and the fiber has a tensile strength of at least 350 Kg/mm 2 and a modulus of at least 40T/ mm2
A graphite fiber characterized by exhibiting.
JP23007384A 1984-11-02 1984-11-02 Graphite fiber Granted JPS616316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23007384A JPS616316A (en) 1984-11-02 1984-11-02 Graphite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23007384A JPS616316A (en) 1984-11-02 1984-11-02 Graphite fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59125048A Division JPS616314A (en) 1984-06-20 1984-06-20 Pitch carbon fiber

Publications (2)

Publication Number Publication Date
JPS616316A JPS616316A (en) 1986-01-13
JPH042687B2 true JPH042687B2 (en) 1992-01-20

Family

ID=16902117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23007384A Granted JPS616316A (en) 1984-11-02 1984-11-02 Graphite fiber

Country Status (1)

Country Link
JP (1) JPS616316A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170526A (en) * 1986-01-22 1987-07-27 Osaka Gas Co Ltd Production of carbon fiber having elliptic cross-section
US4859382A (en) * 1986-01-22 1989-08-22 Osaka Gas Company Limited Process for preparing carbon fibers elliptical in section
WO2022255466A1 (en) 2021-06-02 2022-12-08 日本製鉄株式会社 Pitch-based carbon fiber, method for producing same, and fiber-reinforced plastic

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168126A (en) * 1983-03-14 1984-09-21 Toray Ind Inc Production of pitch based carbon fiber
JPS616314A (en) * 1984-06-20 1986-01-13 Teijin Ltd Pitch carbon fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168126A (en) * 1983-03-14 1984-09-21 Toray Ind Inc Production of pitch based carbon fiber
JPS616314A (en) * 1984-06-20 1986-01-13 Teijin Ltd Pitch carbon fiber

Also Published As

Publication number Publication date
JPS616316A (en) 1986-01-13

Similar Documents

Publication Publication Date Title
Fitzer et al. Carbon reinforcements and carbon/carbon composites
JPH0529689B2 (en)
JPH0790725A (en) Milled meso-phase pitch carbon fiber and production thereof
JPH042687B2 (en)
JPH10298829A (en) Production of pitch-based carbon fiber
JPS6327447B2 (en)
JPH0561367B2 (en)
JPH0133572B2 (en)
JPH0718057B2 (en) Pitch-based fiber manufacturing method
JPS61186520A (en) Production of pitch carbon yarn
JPH0545685B2 (en)
JPH0370011B2 (en)
JPH0380888B2 (en)
JPS60104528A (en) Preparation of carbon fiber
JPH0788604B2 (en) Method for manufacturing pitch-based carbon fiber
US4859382A (en) Process for preparing carbon fibers elliptical in section
JP2849156B2 (en) Method for producing hollow carbon fiber
JPS60239520A (en) Carbon fiber
JP2722270B2 (en) Carbon fiber and non-woven fabric containing it as a main component
JPH0112851B2 (en)
JPS5936726A (en) Precursor pitch fiber for carbon fiber
JPH05272017A (en) Carbon fiber and its production
JPH0811844B2 (en) Method for producing pitch-based carbon fiber
JPS5976925A (en) Manufacture of pitch-based carbon fiber
JPS60259631A (en) Production of pitch carbon fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term