JPH0532494B2 - - Google Patents

Info

Publication number
JPH0532494B2
JPH0532494B2 JP58150036A JP15003683A JPH0532494B2 JP H0532494 B2 JPH0532494 B2 JP H0532494B2 JP 58150036 A JP58150036 A JP 58150036A JP 15003683 A JP15003683 A JP 15003683A JP H0532494 B2 JPH0532494 B2 JP H0532494B2
Authority
JP
Japan
Prior art keywords
pitch
weight
heat
less
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58150036A
Other languages
Japanese (ja)
Other versions
JPS6045612A (en
Inventor
Kohei Okuyama
Shiro Suzuki
Shigeki Tomono
Kazuo Shirasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP15003683A priority Critical patent/JPS6045612A/en
Publication of JPS6045612A publication Critical patent/JPS6045612A/en
Publication of JPH0532494B2 publication Critical patent/JPH0532494B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、ピツチ系高特性炭素繊維の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing pitch-based high-performance carbon fiber.

周知のように、重質油、タール、ピツチ等の炭
素質原料を350〜500℃に加熱すると、それら物質
中に粒径が数ミクロンから数百ミクロンの偏光下
光学的異方性を示す小球体が生成する。そして、
更に加熱するとこれらの小球体は成長合体し、つ
いには全体が光学的異方性を示す状態となる。こ
の異方性組織は炭素質原料の熱重縮合反応により
生成した高分子芳香族炭化水素が層状に積み重な
り配向したもので、黒鉛結晶構造の前駆体とみな
されている。
As is well known, when carbonaceous raw materials such as heavy oil, tar, and pitch are heated to 350 to 500°C, small particles with particle sizes ranging from several microns to several hundred microns exhibit optical anisotropy under polarized light. A sphere is generated. and,
When heated further, these small spheres grow and coalesce, and finally the whole becomes in a state exhibiting optical anisotropy. This anisotropic structure is composed of polymeric aromatic hydrocarbons produced by a thermal polycondensation reaction of carbonaceous raw materials, stacked and oriented in layers, and is considered to be a precursor of graphite crystal structure.

この様な熱処理物は、ノズルを通し、溶融紡
糸、不融化、炭化、更に場合により黒鉛化するこ
とによつて、高強度、高弾性率などの特徴をもつ
ピツチ系の高特性炭素繊維の原料として提案され
ている。
This heat-treated material is passed through a nozzle, melt-spun, made infusible, carbonized, and optionally graphitized to produce a raw material for pitch-based high-performance carbon fiber, which has characteristics such as high strength and high modulus. It is proposed as.

炭素繊維は、比強度、比弾性率が高い材料で、
高性能複合材料のフイラー繊維として最も注目さ
れており、中でもピツチ系高特性炭素繊維は、原
料コストが安価である、炭化工程での歩留が大き
い、繊維の弾性率が高い等、ポリアクリロニトリ
ル系炭素繊維に比べて様々な利点を持つている。
Carbon fiber is a material with high specific strength and specific modulus.
Pitch-based high-performance carbon fibers are attracting the most attention as filler fibers for high-performance composite materials, and among them, polyacrylonitrile-based carbon fibers have low raw material costs, high yields in the carbonization process, and high fiber elastic modulus. It has various advantages compared to carbon fiber.

従来、ピツチ系高特性炭素繊維は、通常、所謂
メソフエーズピツチを紡糸原料とし、このメソフ
エーズピツチから繊維状ピツチを紡糸し、次い
で、不融化し、焼成(炭化、黒鉛化)して製造さ
れている。
Conventionally, pitch-based high-performance carbon fibers are produced by using so-called mesophase pitch as a spinning raw material, spinning fibrous pitch from this mesophase pitch, then making it infusible and firing it (carbonization, graphitization). Manufactured.

しかしながら、従来の方法により得られるピツ
チ系炭素繊維はその強度分布の範囲が広く、均等
化した高強度のピツチ系炭素繊維が得られるとは
言い難い状況にあつた。すなわち、紡糸ピツチの
組成を規定して、ピツチ系炭素繊維を製造する方
法は知られているものの、いずれの組成を有する
紡糸ピツチが力学的特性の優れた強度分布のバラ
ツキの小さい炭素繊維を与えるものかは今だ充分
には明らかではなく、この点につき、本発明者等
は鋭意検討を重ね、その結果、紡糸ピツチが実質
的に光学的異方性相を有し、しかもキノリン不溶
分が低いものが一般に有効ではあるが、この様な
特性値のみでは必ずしも充分でなく、かゝる特性
値を得るに至つた覆歴も重要であることを見い出
した。すなわち、紡糸ピツチを調製する際に、炭
素質原料を予備処理することにより、特定の範囲
の組成を有する炭素質原料とすること、換言すれ
ば、幅広い分子量分布を有する炭素質原料を加熱
処理し、熱処理物を取得し、次いで芳香族油と接
触させることにより、以後の処理では適性物質に
変換困難な高分子量部分を予じめ除去し、前記の
有効な紡糸ピツチに変換しうる特定の組成を有す
る炭素質原料を取得することが肝要であり、引続
き、この特定組成の炭素質原料を再び加熱処理
し、紡糸ピツチの光学的異方性相とキノリン不溶
分を特定の範囲に制御することにより、紡糸性を
低下させることなく、強度が向上し、かつ、強度
分布のバラつきの小さいピツチ系炭素繊維を製造
し得ることを見出し、本発明に到達した。
However, pitch-based carbon fibers obtained by conventional methods have a wide range of strength distribution, and it is difficult to say that pitch-based carbon fibers with uniform high strength can be obtained. That is, although methods for producing pitch-based carbon fibers by specifying the composition of a spinning pitch are known, it is difficult to determine whether a spinning pitch having any composition can yield carbon fibers with excellent mechanical properties and small variations in strength distribution. It is still not fully clear whether this is the case, and the inventors of the present invention have conducted extensive studies on this point, and have found that the spinning pitch has a substantially optically anisotropic phase and that the quinoline-insoluble content is Although a low value is generally effective, it has been found that such a characteristic value alone is not necessarily sufficient, and that the history of obtaining such a characteristic value is also important. That is, when preparing a spinning pitch, the carbonaceous raw material is pre-treated to produce a carbonaceous raw material having a composition within a specific range.In other words, the carbonaceous raw material having a wide molecular weight distribution is heat-treated. By obtaining the heat-treated product and then contacting it with an aromatic oil, high molecular weight portions that are difficult to convert into suitable substances in subsequent treatments are removed in advance, and a specific composition that can be converted into the above-mentioned effective spinning pitch is obtained. It is important to obtain a carbonaceous raw material having a specific composition.Subsequently, this carbonaceous raw material with a specific composition is heat-treated again to control the optically anisotropic phase and quinoline insoluble content in the spinning pitch within a specific range. The inventors have discovered that it is possible to produce pitch-based carbon fibers with improved strength and small variations in strength distribution without reducing spinnability, and have arrived at the present invention.

本発明の目的は、力学的特性の優れた強度分布
のバラツキの小さい炭素繊維う製造することであ
り、しかして、かかる目的は、炭素質原料を加熱
処理し、光学的異方性部分を少なくとも30%以上
含む第一次熱処理物を取得し、該第一次熱処理物
を沸点又は初留点が150℃以上の芳香族油と接触
させ、該芳香族油相を分離取得することにより、
ベンゼン不溶分60重量%以下、かつキノリン不溶
分20重量%以下の光学的に実質的に等方性のピツ
チ類を取得して、該ピツチ類を加熱処理し、光学
的異方性相が90%以下であり、しかも、キノリン
不溶分が40重量%以下の紡糸ピツチを取得し、該
紡糸ピツチを紡糸、不融化、炭化必要に応じて黒
鉛化することにより達成される。
An object of the present invention is to produce carbon fibers with excellent mechanical properties and small variations in strength distribution. By obtaining a first heat-treated product containing 30% or more, contacting the first heat-treated product with an aromatic oil having a boiling point or initial boiling point of 150°C or higher, and separating and obtaining the aromatic oil phase.
Obtain optically substantially isotropic pitches having a benzene-insoluble content of 60% by weight or less and a quinoline-insoluble content of 20% by weight or less, and heat-treat the pitches so that the optically anisotropic phase becomes 90% by weight or less. % or less, and the quinoline insoluble content is 40% by weight or less, and the spinning pitch is spun, made infusible, carbonized, and optionally graphitized.

以下、本発明を説明するに、本発明で紡糸ピツ
チを得るために炭素質原料としては、例えば石炭
系のコールタール、コールタールピツチ、石炭液
化物、石油系の重質油、タール、ピツチ等で、ベ
ンゼン不溶分60重量%以下、好ましくは、50重量
%以下、更に好ましくは、5〜45重量%、キノリ
ン不溶分20重量%以下、好ましくは15重量%以
下、更に好ましくは、5重量%以下のものが挙げ
られる。
Hereinafter, to explain the present invention, carbonaceous raw materials used to obtain the spinning pitch in the present invention include, for example, coal-based coal tar, coal tar pitch, coal liquefaction, petroleum-based heavy oil, tar, pitch, etc. The benzene insoluble content is 60% by weight or less, preferably 50% by weight or less, more preferably 5 to 45% by weight, and the quinoline insoluble content is 20% by weight or less, preferably 15% by weight or less, more preferably 5% by weight. These include:

この炭素質原料のベンゼン不溶分、キノリン不
溶分が上記範囲を超えると得られる紡糸ピツチの
溶融粘度が高くなり、従つて、高温にて紡糸しな
ければならなくなる。その為、紡糸中に以下、か
つキノリン不溶分20重量%以下の光学的に実質的
に等方性のピツチ類を取得して、該ピツチ類を加
熱処理し、光学的異方性相が90%以下であり、し
かも、キノリン不溶分が40重量%以下の紡糸ピツ
チを取得し、該紡糸ピツチを紡糸、不融化、炭化
必要に応じて黒鉛化することにより達成される。
If the benzene-insoluble content and quinoline-insoluble content of the carbonaceous raw material exceeds the above range, the resulting spinning pitch will have a high melt viscosity, and therefore, it will be necessary to perform spinning at a high temperature. Therefore, during spinning, optically substantially isotropic pitches having the following and quinoline insoluble content of 20% by weight or less are obtained, and the pitches are heat-treated to obtain an optically anisotropic phase of 90% or less. % or less, and the quinoline insoluble content is 40% by weight or less, and the spinning pitch is spun, made infusible, carbonized, and optionally graphitized.

以下、本発明を発明するに、本発明で紡糸ピツ
チを得るために炭素質原料としては、例えば石灰
系のコールタール、コールタールピツチ、石炭液
化物、石油系の重質油、タヒル、ピツチ等で、ベ
ンゼン不60重量%以下、好ましくは、50重量%以
下、更に好ましくは、5〜45重量%、キノリン不
溶分20重量%以下、好ましくは15重量%以下、更
に好ましくは、5重量%以下のものが挙げられ
る。
Hereinafter, in the present invention, the carbonaceous raw materials used to obtain the spinning pitch in the present invention include, for example, lime-based coal tar, coal tar pitch, coal liquefaction, petroleum-based heavy oil, tahir, pitch, etc. Benzene insoluble content is 60% by weight or less, preferably 50% by weight or less, more preferably 5 to 45% by weight, and quinoline insoluble content is 20% by weight or less, preferably 15% by weight or less, more preferably 5% by weight or less. Examples include:

この炭素質原料のベンゼン不溶分、キノリン不
溶分が上記範囲を超えると得られる紡糸ピツチの
溶融粘度が高くなり、従つて、高温にて紡糸しな
ければならなくなる。その為、紡糸中に紡糸ピツ
チの熱改質を生じやすくなり、好ましくない。
If the benzene-insoluble content and quinoline-insoluble content of the carbonaceous raw material exceeds the above range, the resulting spinning pitch will have a high melt viscosity, and therefore, it will be necessary to perform spinning at a high temperature. Therefore, thermal modification of the spinning pitch tends to occur during spinning, which is undesirable.

予備処理としては、前記炭素質原料を350〜500
℃、常圧〜10Kg/cm3・Gで0.5〜20時間程度加熱
処理して光学的異方性部分を少なくとも30%以
上、好ましくは、50%以上、特に好ましくは、70
%以上含むような熱処理物を得、次いで、この熱
処理物1重量部に対して約0.1〜3重量部の沸点
又は初留点が150℃以上の芳香族油と接触させ、
その可溶分を得るものである。芳香族油として
は、ナフタリン油、吸収油、クレオソート油又は
アントラセン油が好ましい。
As a preliminary treatment, the carbonaceous raw material is
℃, normal pressure to 10 kg/cm 3 ·G for about 0.5 to 20 hours to reduce the optical anisotropy by at least 30%, preferably 50% or more, particularly preferably 70%
% or more, and then contacting 1 part by weight of this heat-treated product with about 0.1 to 3 parts by weight of an aromatic oil having a boiling point or initial boiling point of 150°C or higher,
The soluble content is obtained. Preferred aromatic oils are naphthalene oil, absorption oil, creosote oil or anthracene oil.

この予備処理の意味については、完全に明らか
ではないが、以後の処理では再び適当物質に復原
し得ない比較的高分子部分を予め削除することに
あると本発明者等によつて推測される。なお、か
かる意味を充足する手段として炭素質原料あるい
は、上記芳香族油可溶分をテトラリン、デカリ
ン、テトラヒドロキノリン、水添した芳香族油の
水素供与性溶剤と共に、あるいは、水素供与性溶
剤に容易に転換しうるキノリン、ナフタリン油、
アントラセン油等の溶剤と触媒として鉄系化合
物、Moを含む担持又は非担持触媒を触媒に添加
して、水素ガス加圧下360〜500℃にて水添処理後
必要に応じ過等で固形分を除去し、更に必要に
応じて蒸留等によつて、溶媒を除いて残渣物を得
る方法も考えられる。
The meaning of this pretreatment is not completely clear, but the inventors speculate that it is to remove in advance relatively high molecular parts that cannot be restored to appropriate substances in subsequent treatments. . In addition, as a means to satisfy this meaning, carbonaceous raw materials or the above-mentioned aromatic oil soluble components may be used together with a hydrogen-donating solvent such as tetralin, decalin, tetrahydroquinoline, or hydrogenated aromatic oil, or easily into a hydrogen-donating solvent. quinoline, naphthalene oil, which can be converted into
A solvent such as anthracene oil and a supported or unsupported catalyst containing iron-based compounds and Mo are added to the catalyst, and after hydrogenation treatment at 360 to 500°C under hydrogen gas pressure, the solid content is removed by filtration as necessary. A method can also be considered in which the solvent is removed and, if necessary, the solvent is removed by distillation or the like to obtain a residue.

本発明の紡糸ピツチは、前記の予備処理を行な
つた炭素質原料を350〜500℃、常圧〜10Kg/cm3G
で2分〜20時間程度加熱処理することにより得る
ことができる。その際、不活性ガスの吸込みや攪
拌を行なつてもよい。
The spinning pitch of the present invention uses the carbonaceous raw material that has been pretreated as described above at 350 to 500°C and normal pressure to 10 kg/cm 3G.
It can be obtained by heat treatment for about 2 minutes to 20 hours. At that time, suction of an inert gas or stirring may be performed.

本発明においては、光学的異方性相を90%以
下、好ましくは、40〜85%、特に好ましくは、50
〜80%、更に好ましくは、60〜75%含み、しか
も、キノリン不溶分が40重量%以下、好ましく
は、30重量%以下、特に好ましくは、25重量%以
下の紡糸ピツチを得るように上記加熱処理条件を
選ぶ必要がある。特に、強度分布のバラツキの小
さい炭素繊維を得るための紡糸ピツチを調製する
ためには、温度400°〜500℃、N2ガスの吸込み量
をピツチ10gあたり0.1/分〜5/分、加熱時
間は、温度、N2ガスの吸込み量によつて変化が
あるものの1時間以内とすればよい。光学的異方
性相が90%以上になると、得られる炭素繊維の強
度分布のバラツキが大きくなるので好ましくない
(第1図参照)。異方性相があまり少ないと紡糸性
が低下するので前記範囲のものが好ましい。ま
た、キノリン不溶分は前記範囲を超えると溶融温
度の増加をもたらし、紡糸が不利になる。
In the present invention, the optically anisotropic phase is 90% or less, preferably 40 to 85%, particularly preferably 50%
The above heating is carried out to obtain a spinning pitch containing ~80%, more preferably 60 to 75%, and a quinoline insoluble content of 40% by weight or less, preferably 30% by weight or less, particularly preferably 25% by weight or less. It is necessary to select processing conditions. In particular, in order to prepare a spinning pitch to obtain carbon fibers with small variations in strength distribution, the temperature is 400° to 500°C, the amount of N2 gas sucked is 0.1/min to 5/min per 10g of pitch, and the heating time is 400° to 500°C. Although it varies depending on the temperature and the amount of N 2 gas sucked in, it should be within 1 hour. If the optically anisotropic phase exceeds 90%, it is not preferable because the strength distribution of the resulting carbon fibers will vary greatly (see Figure 1). If the amount of anisotropic phase is too small, spinnability deteriorates, so those in the above range are preferable. Furthermore, if the quinoline insoluble content exceeds the above range, the melting temperature will increase, making spinning unfavorable.

尚、本発明でいう熱処理物の光学的異方性相の
含量は、常温下偏光顕微鏡での熱処理物試料中の
光学的異方性を示す部分の面積割合として求めた
値である。
Incidentally, the content of the optically anisotropic phase in the heat-treated product as used in the present invention is a value determined as the area ratio of the portion exhibiting optical anisotropy in the sample of the heat-treated product under a polarizing microscope at room temperature.

具体的には、例えば、熱処理物試料を数mm角に
粉砕したものを常法に従つて約2cm直径の樹脂の
表面のほぼ全面に試料片を埋込み、表面を研磨
後、表面全体をくまなく偏光顕微鏡(100倍率)
下で観察し、試料の全表面積に占る光学的異方性
相の面積の割合を測定することによつて求める。
Specifically, for example, a sample piece of a heat-treated product is crushed into pieces of several mm square, and the sample piece is embedded in almost the entire surface of a resin with a diameter of about 2 cm using a conventional method. Polarized light microscope (100x magnification)
It is determined by observing the area below and measuring the ratio of the area of the optically anisotropic phase to the total surface area of the sample.

この様にして得られた紡糸ピツチを公知の方法
に従い、溶融紡糸し、得られた繊維状ピツチを不
融化、炭化し、場合によつては更に黒鉛化する事
により、強度が向上し、かつ強度分布のバラツキ
が小さいピツチ系炭素繊維を得る事ができる。
The spun pitch thus obtained is melt-spun according to a known method, and the resulting fibrous pitch is made infusible, carbonized, and in some cases further graphitized to improve strength and Pitch-based carbon fibers with small variations in strength distribution can be obtained.

本発明において、特定の炭素質原料を使用し紡
糸ピツチの光学的異方性相とキノリン不溶分を制
御する事により強度が向上し、強度分布のバラツ
キが小さい炭素繊維を得る事ができる理由につい
ては、必ずしも明らかではないが、光学的異方性
相の割合があまり高いと、炭素平面の積層状態が
良好で、更に紡糸時に、剪断と延伸によつて、規
則的な配向が、促進される為、強度分布のバラツ
キの大きなものが得られると考えられる。
In the present invention, by using a specific carbonaceous raw material and controlling the optically anisotropic phase and quinoline insoluble content in the spinning pitch, it is possible to obtain carbon fibers with improved strength and small variations in strength distribution. Although it is not necessarily clear, if the proportion of the optically anisotropic phase is too high, the stacking state of carbon planes will be good, and regular orientation will be promoted by shearing and stretching during spinning. Therefore, it is thought that an intensity distribution with large variations can be obtained.

以下に実施例を挙げて更に本発明を具体的に説
明する。
EXAMPLES The present invention will be further explained in detail by giving examples below.

実施例 1 コールタール軟ピツチ(BI6.5重量%、QI0重
量%)を窒素雰囲気下で440℃、4時間加熱処理
して光学的異方性部分を約70%含む熱処理物を得
た。次いで、この熱処理物1重量部に対して0.5
重量部のアントラセン油を加えて、350℃で10分
間攪拌後、350℃の温度を維持し、30分間精静置
し、デカンテーシヨン法により上澄液を得た。こ
の上澄液は、QIが12.9重量%、BIが42.9重量%で
光学的に全体が等方性を示した。
Example 1 Coal tar soft pitch (BI6.5% by weight, QI0% by weight) was heat-treated at 440° C. for 4 hours in a nitrogen atmosphere to obtain a heat-treated product containing about 70% of the optically anisotropic portion. Next, 0.5 parts by weight of this heat-treated product
After adding part by weight of anthracene oil and stirring at 350°C for 10 minutes, the mixture was left to stand still for 30 minutes while maintaining the temperature at 350°C, and a supernatant liquid was obtained by the decantation method. This supernatant had a QI of 12.9% by weight, a BI of 42.9% by weight, and was optically isotropic as a whole.

次いで、この上澄液を窒素雰囲気下、420℃で
約20分熱処理して光学的異方性相が約75%で、
200ポイズの粘度を示す温度が334℃で、QIが36.9
重量%、BIが92.2重量%であるピツチを得た。
Next, this supernatant liquid was heat-treated at 420°C for about 20 minutes in a nitrogen atmosphere to obtain an optically anisotropic phase of about 75%.
The temperature showing a viscosity of 200 poise is 334℃, and the QI is 36.9
Pitch with a BI of 92.2% by weight was obtained.

このピツチを約358℃で溶融紡糸したところ平
均径11μのピツチ繊維を得た。このピツチ繊維を
空気中で310℃にて不融化後、窒素雰囲気下、
1400℃で炭化して炭素繊維を得た。
When this pitch was melt-spun at about 358°C, pitch fibers with an average diameter of 11 μm were obtained. After making this pitch fiber infusible at 310℃ in air, under nitrogen atmosphere,
Carbon fibers were obtained by carbonization at 1400°C.

得られた炭素繊維の強度分布のバラツキは小さ
く、平均引張り強度は20.0t/cm3であつた。
The variation in strength distribution of the obtained carbon fibers was small, and the average tensile strength was 20.0 t/cm 3 .

比較例 1 実施例1の上澄液を、窒素雰囲気下、420℃で
約40分熱処理して光学的異方性相が約94%で、
200ボイスの粘度を示す温度が350℃で、QIが38.5
重量%、BIが94.4%であるピツチ得た。
Comparative Example 1 The supernatant liquid of Example 1 was heat-treated at 420°C for about 40 minutes in a nitrogen atmosphere, and the optically anisotropic phase was about 94%.
The temperature that shows the viscosity of 200 voices is 350℃, and the QI is 38.5
A pitch was obtained whose BI was 94.4% by weight.

このピツチを365℃で溶融紡糸し、以下実施例
1と同条件にて不融化、炭化し、炭素繊維を得
た。得られた炭素繊維の強度分布のバラツキは大
きく、平均引張り強度は12.0t/cm2であつた。
This pitch was melt-spun at 365°C, and then infusible and carbonized under the same conditions as in Example 1 to obtain carbon fibers. The strength distribution of the obtained carbon fibers had large variations, and the average tensile strength was 12.0 t/cm 2 .

実施例 2 実施例1のコールタール軟ピツチを窒素雰囲気
下で450℃、90分加熱処理して光学的異方性部分
を約75%含む熱処理物を得た。次いで、実施例1
と同様にしてアントラセン油処理し、QIが11.4重
量%、BIが48.5重量%で光学的に全体が等方性を
示すアントラセン油可溶分を得た。
Example 2 The coal tar soft pitch of Example 1 was heat-treated at 450° C. for 90 minutes in a nitrogen atmosphere to obtain a heat-treated product containing about 75% of the optically anisotropic portion. Next, Example 1
Anthracene oil was treated in the same manner as above to obtain an anthracene oil soluble component having QI of 11.4% by weight, BI of 48.5% by weight, and exhibiting optical isotropy as a whole.

このアントラセン油可溶分を、窒素雰囲気(1
/min/10gの吹き込み量)下、420℃で約17分
加熱処理して光学的異方性相が約65%で、200ボ
イスの粘度を示す温度が316℃で、QIが19.1重量
%、BIが86.7重量%のピツチを得た。
This anthracene oil soluble content was dissolved in a nitrogen atmosphere (1
After heat treatment at 420℃ for about 17 minutes (injection amount of /min/10g), the optically anisotropic phase was about 65%, the temperature at which the viscosity of 200 voices was shown was 316℃, the QI was 19.1% by weight, Pitch with BI of 86.7% by weight was obtained.

このピツチを実施例1と同様に紡糸、不融化、
炭化して炭素繊維を得た。得られた炭素繊維の強
度分布のバラツキは小さく、平均引張り強度は
19.9t/cm2であつた。
This pitch was spun, infusible, and
Carbonization was performed to obtain carbon fibers. The variation in the strength distribution of the obtained carbon fibers was small, and the average tensile strength was
It was 19.9t/ cm2 .

実施例 3 コールタール軟ピツチ(BI4重量%、QI0重量
%)を窒素雰囲気下、440℃で4.5時間加熱処理
後、実施例1と同様にしてアントラセン油処理し
て、QIが8.6重量%、BIが40.3重量%で光学的に
全体が等方性を示すアントラセン油可溶分を得
た。
Example 3 Coal tar soft pitch (4 wt% BI, 0 wt% QI) was heat treated at 440°C for 4.5 hours in a nitrogen atmosphere, and then treated with anthracene oil in the same manner as in Example 1 to give a product with QI of 8.6 wt% and BI. An anthracene oil-soluble component was obtained which was 40.3% by weight and was optically isotropic as a whole.

このアントラセン油可溶分を窒素雰囲気(1
/min/10gの吹き込み量)下、420℃で約18分
加熱処理して、光学的異方性相が約71%で、200
ポイズの粘度を示す温度が318℃で、QIが22.9重
量%、BIが90.2重量%のピツチを得た。
This anthracene oil soluble content was dissolved in a nitrogen atmosphere (1
The optically anisotropic phase was about 71%, and the optically anisotropic phase was about 71%.
A pitch was obtained whose temperature indicating the viscosity of poise was 318°C, QI was 22.9% by weight, and BI was 90.2% by weight.

このピツチを実施例1と同様に紡糸、不融化
後、2000℃で炭化して炭素繊維を得た。得られた
炭素繊維の強度分布のバラツキは小さく、平均引
張り強度は20.2t/cm2であつた。
This pitch was spun and infusible in the same manner as in Example 1, and then carbonized at 2000°C to obtain carbon fibers. The variation in strength distribution of the obtained carbon fibers was small, and the average tensile strength was 20.2 t/cm 2 .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1(紡糸ピツチの光学的異方性
相75%)と比較例1(同94%)の炭素繊維の引張
り強度と頻度との関係を表わしたものである。
FIG. 1 shows the relationship between the tensile strength and frequency of the carbon fibers of Example 1 (75% optically anisotropic phase in the spinning pitch) and Comparative Example 1 (94% optically anisotropic phase).

Claims (1)

【特許請求の範囲】 1 炭素質原料を加熱処理し、光学的異方性部部
を少なくとも30%以上含む第一次熱処理物を取得
し、該第一次熱処理物を沸点又は初留点が150℃
以上の芳香族油と接触させ、該芳香族油相を分離
取得することにより、ベンゼン不溶分60重量%以
下、かつキノリン不溶分20重量%以下の光学的に
実質的に等方性のピツチ類を取得して、該ピツチ
類を加熱処理し、光学的異方性相が90%以下であ
り、しかもキノリン不溶分が40重量%以下の紡糸
ピツチを取得し、該紡糸ピツチを紡糸、不融化、
炭化必要に応じて黒鉛化することを特徴とする炭
素繊維の製造方法 2 紡糸ピツチの光学的異方性相が40〜85%であ
る特許請求の範囲第1項記載の方法 3 紡糸ピツチのキノリン不溶分が20〜35重量%
である特許請求の範囲第1項記載の方法 4 第1次熱処理物が光学的異方性部分を50%以
上含む特許請求の範囲第1項記載の方法 5 炭素質原料がコールタール系ピツチである特
許請求の範囲第1項記載の方法 6 芳香族油が、ナフタリン油、吸収油、クレオ
ソート油、又はアントラセン油である特許請求の
範囲第1項の方法 7 第1次熱処理物が光学的異方性部分を70%以
上含む特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. Heat-treating a carbonaceous raw material to obtain a first heat-treated product containing at least 30% or more of optically anisotropic portions; 150℃
By contacting with the above aromatic oil and separating the aromatic oil phase, optically substantially isotropic pituti with a benzene insoluble content of 60% by weight or less and a quinoline insoluble content of 20% by weight or less are produced. is obtained, the pitches are heat-treated to obtain a spinning pitch having an optically anisotropic phase of 90% or less and a quinoline insoluble content of 40% by weight or less, and the spinning pitch is spun and infusible. ,
Method 2 for producing carbon fiber, characterized by carbonization and graphitization as necessary. Method 3 according to claim 1, wherein the optically anisotropic phase in the spinning pitch is 40 to 85%. Quinoline in the spinning pitch. Insoluble content is 20-35% by weight
Method 4 according to Claim 1, wherein the first heat-treated product contains 50% or more of an optically anisotropic portion Method 5 according to Claim 1, wherein the carbonaceous raw material is a coal tar-based pitch. A method 6 according to claim 1, wherein the aromatic oil is naphthalene oil, an absorption oil, a creosote oil, or an anthracene oil.A method 7 according to claim 1, wherein the first heat-treated product is optically The method according to claim 1, comprising 70% or more of anisotropic portion.
JP15003683A 1983-08-17 1983-08-17 Preparation of carbon yarn Granted JPS6045612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15003683A JPS6045612A (en) 1983-08-17 1983-08-17 Preparation of carbon yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15003683A JPS6045612A (en) 1983-08-17 1983-08-17 Preparation of carbon yarn

Publications (2)

Publication Number Publication Date
JPS6045612A JPS6045612A (en) 1985-03-12
JPH0532494B2 true JPH0532494B2 (en) 1993-05-17

Family

ID=15488093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15003683A Granted JPS6045612A (en) 1983-08-17 1983-08-17 Preparation of carbon yarn

Country Status (1)

Country Link
JP (1) JPS6045612A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102428396B1 (en) * 2018-05-08 2022-08-02 오씨아이 주식회사 Method for treating high solid coal tar
KR102477035B1 (en) * 2019-07-23 2022-12-13 오씨아이 주식회사 The manufacturing method for petroleum based high softning point pitch
KR102498310B1 (en) * 2021-01-18 2023-02-10 오씨아이 주식회사 Preparation of Impregnation Pitch
KR102529745B1 (en) * 2021-04-19 2023-05-08 재단법인 포항산업과학연구원 Method of producing coal-based pitch for artificial graphite
KR102583031B1 (en) * 2021-07-01 2023-09-27 한국화학연구원 Method for manufacturing hetero-phase binder pitch and hetero-phase binder pitch manufactured therefrom
KR102389550B1 (en) * 2021-09-24 2022-04-21 한국화학연구원 Method for preparing anisotropic pitch derived from heavy oil for carbon fiber based on two-stage solvent extraction method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818419A (en) * 1981-07-27 1983-02-03 Nippon Oil Co Ltd Raw material pitch for carbon fiber
JPS58113292A (en) * 1981-12-28 1983-07-06 Mitsubishi Chem Ind Ltd Preparation of raw material pitch for production of carbon product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818419A (en) * 1981-07-27 1983-02-03 Nippon Oil Co Ltd Raw material pitch for carbon fiber
JPS58113292A (en) * 1981-12-28 1983-07-06 Mitsubishi Chem Ind Ltd Preparation of raw material pitch for production of carbon product

Also Published As

Publication number Publication date
JPS6045612A (en) 1985-03-12

Similar Documents

Publication Publication Date Title
US5356574A (en) Process for producing pitch based activated carbon fibers and carbon fibers
KR860001156B1 (en) A process for the production of carbon fibers
JPH0532494B2 (en)
JPS59196390A (en) Preparation of pitch for carbon fiber
JPH0150272B2 (en)
JPS6065090A (en) Preparation of pitch for carbon fiber spinning
CN107532086B (en) Raw material pitch for carbon fiber production
JP2780231B2 (en) Carbon fiber production method
JPH0432118B2 (en)
US6241923B1 (en) Process for the production of carbon fibers
JPS6030366B2 (en) Manufacturing method for high-strength, high-modulus carbon fiber
JPS60202189A (en) Pitch for carbonaceous material and its preparation
JPH058238B2 (en)
JPH0455237B2 (en)
JPS61185588A (en) Production of pitch for spinning pitch carbon yarn
JP2817232B2 (en) Method for producing high-performance carbon fiber
JP2982406B2 (en) Method for producing spinning pitch for carbon fiber
JPS5834569B2 (en) Carbon fiber manufacturing method
JPS6183319A (en) Carbon fiber and its production
JPH0437167B2 (en)
JPH0583115B2 (en)
JP3055295B2 (en) Pitch-based carbon fiber and method for producing the same
JP2533487B2 (en) Carbon fiber manufacturing method
JPS6233330B2 (en)
JPH0144751B2 (en)