JPH07180035A - Production of highly corrosion-resistant metallic material for device for producing semiconductor - Google Patents

Production of highly corrosion-resistant metallic material for device for producing semiconductor

Info

Publication number
JPH07180035A
JPH07180035A JP32526293A JP32526293A JPH07180035A JP H07180035 A JPH07180035 A JP H07180035A JP 32526293 A JP32526293 A JP 32526293A JP 32526293 A JP32526293 A JP 32526293A JP H07180035 A JPH07180035 A JP H07180035A
Authority
JP
Japan
Prior art keywords
corrosion resistance
carbide
oxide
gas
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32526293A
Other languages
Japanese (ja)
Inventor
Tsugumoto Ikeda
貢基 池田
Atsushi Hisamoto
淳 久本
Ikuo Hashimoto
郁郎 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP32526293A priority Critical patent/JPH07180035A/en
Publication of JPH07180035A publication Critical patent/JPH07180035A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To remarkably improve the corrosion resistance of a metallic material by protecting the surface of the material with a mixed coating layer consisting of Ti oxide and Ti carbide and to obtain a surface-coated metallic material for a device for producing a semiconductor having superior corrosion resistance and not causing the contamination of a semiconductor even in an atmosphere in which gas having high corrosiveness such as halogen-contg. gas exists. CONSTITUTION:A corrosion-resistant protective layer made of a mixed coating layer of about >=0.002mum thickness consisting of Ti oxide and Ti carbide is formed on the surface of a metallic material such as stainless steel, an Al alloy or a Ti alloy by chemical vapor deposition, vacuum deposition, ion implantation, ion plating or dynamic mixing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造装置用金属
材料の製法に関し、より詳細には、金属材料の表面に、
腐食性の強い塩化水素、塩素、ふっ化水素等のハロゲン
系ガスに対しても優れた耐食性を示す皮膜を形成し、高
耐食性を有する半導体製造装置用金属材料を製造する方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metallic material for a semiconductor manufacturing apparatus, and more particularly, to a surface of the metallic material,
The present invention relates to a method for producing a metal material for a semiconductor manufacturing apparatus having high corrosion resistance by forming a film exhibiting excellent corrosion resistance against a halogen gas such as hydrogen chloride, chlorine, hydrogen fluoride having strong corrosiveness.

【0002】[0002]

【従来の技術】近年の半導体製造分野においては、素子
の高集積化が進むにつれて配線間隔にはサブミクロンの
精度が要求される様になっている。その様な素子の加工
に当たっては、微粒子や細菌が付着しただけでも回路が
短絡し、製品不良となる。そのため、半導体の製造に使
用されるガスや水は超高純度であることが要求され、ま
たガスの使用に際しては導入ガス自体の高純度化だけで
なく、配管や反応室もしくは処理室の壁面からの水分や
不純物ガス、微粒子の発生を極力低減することが必要に
なる。
2. Description of the Related Art In the field of semiconductor manufacturing in recent years, submicron precision is required for wiring intervals as the integration of devices increases. In the processing of such an element, even if fine particles or bacteria are attached, the circuit will be short-circuited and the product will be defective. Therefore, the gas and water used to manufacture semiconductors are required to have ultra-high purity, and when using gas, not only must the purification of the introduced gas itself be high, but also that from the wall of the pipe, reaction chamber, or processing chamber. It is necessary to reduce the generation of water, impurity gas, and fine particles as much as possible.

【0003】半導体製造装置用のガス配管には、従来よ
り溶接性や一般耐食性の面からSUS316L等のオー
ステナイト系ステンレス鋼が使用されており、その表面
を電解研摩処理等によって平滑化し、それにより吸着有
効面積を減少して不純物ガス等の吸着や脱離を少なくし
たものが用いられている。更に、電解研摩後酸化性ガス
雰囲気中で加熱処理することによって表面に非晶質酸化
皮膜を形成し、表面のガス放出量を低減したステンレス
鋼部材(特開昭64−87760号)や、微粒子の発生
源および不純物の吸着・放出場所となる非金属介在物量
を極めて少なくさせたステンレス鋼管(特開昭63−1
61145号)も提案されている。
Gas pipes for semiconductor manufacturing equipment have conventionally used austenitic stainless steel such as SUS316L in view of weldability and general corrosion resistance, and the surface thereof is smoothed by electrolytic polishing treatment or the like, and adsorption is thereby carried out. The one that reduces the effective area to reduce the adsorption and desorption of the impurity gas is used. Furthermore, a stainless steel member (Japanese Patent Laid-Open No. 64-87760), in which an amorphous oxide film is formed on the surface by heat treatment in an oxidizing gas atmosphere after electrolytic polishing to reduce surface gas emission, and fine particles Of stainless steel with a very small amount of non-metallic inclusions, which are the source of generation of aluminum and the place of adsorption / release of impurities (JP-A-63-1).
61145) has also been proposed.

【0004】また、半導体の製造もしくは処理室の構成
材料においても、ガス放出性や一般耐食性の面からステ
ンレス鋼やアルミニウム合金が使用されており、特にア
ルミニウム合金は、重金属汚染を起こしにくいという利
点があるため、その使用量は次第に増大してきている。
そして、これらの構成材料においても、耐ハロゲン系ガ
ス腐食性を改善するため、反応ガスやエッチングガスに
対して耐食性を有する皮膜、例えばTiN,AlN,A
23 等を真空チャンバーや電極材料に耐食保護層と
して形成する方法が提案されている(例えば特公平5−
53871号や特開平1−312088号公報)。
Also, in the production of semiconductors or the constituent materials of processing chambers, stainless steel and aluminum alloys are used in terms of gas release and general corrosion resistance, and aluminum alloys in particular have the advantage that they do not cause heavy metal contamination. Therefore, the amount of use is gradually increasing.
In order to improve the halogen-based gas corrosion resistance of these constituent materials as well, a film having corrosion resistance to a reaction gas or an etching gas, such as TiN, AlN, or A, is used.
A method of forming l 2 O 3 or the like as a corrosion-resistant protective layer on a vacuum chamber or an electrode material has been proposed (for example, Japanese Patent Publication No.
53871 and JP-A 1-312088).

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記のス
テンレス鋼管やステンレス鋼部材は、酸素や窒素等の腐
食性のないガス雰囲気下ではそれなりの効果を発揮する
が、塩化水素、塩素、ふっ化水素等の高腐食性のハロゲ
ン系ガス中では、その表面が比較的短期間のうちに腐食
されるため腐食生成物がガスの吸着・放出場所となり、
ガス純度の維持が困難になる。しかも、金属塩化物等の
腐食生成物自体が微粒子となって離散し、汚染の原因に
なることも考えられる。
However, the above-mentioned stainless steel pipes and stainless steel members have some effects in a gas atmosphere having no corrosiveness such as oxygen and nitrogen, but hydrogen chloride, chlorine, hydrogen fluoride, etc. In the highly corrosive halogen-based gas, the surface is corroded in a relatively short period of time, so the corrosion products serve as gas adsorption / desorption sites.
Maintaining gas purity becomes difficult. Moreover, it is considered that the corrosion products such as metal chlorides themselves become fine particles and are dispersed to cause pollution.

【0006】また、TiNやAlN等のコーティング材
にしても、ハロゲン系ガスに対する耐食性は必ずしも十
分なものとはいえず、特に塩化水素やふっ化水素等の腐
食性の強いガスの共存下においては、腐食とそれに伴う
腐食生成物微粒子の発生が懸念される。
Further, even if a coating material such as TiN or AlN is used, it cannot be said that the corrosion resistance to the halogen-based gas is sufficient, especially in the coexistence of highly corrosive gas such as hydrogen chloride or hydrogen fluoride. However, there is a concern about corrosion and generation of fine particles of corrosion products.

【0007】本発明はこの様な事情に着目してなされた
ものであって、その目的は、ハロゲン系ガスを含む腐食
性雰囲気、特に水分とハロゲン系ガスが共存する様な厳
しい腐食雰囲気に曝された場合でも優れた耐食性を発揮
し、腐食による半導体の汚染原因を惹起することのない
様に表面改質された半導体製造装置用金属材料の製法を
提供しようとするものである。
The present invention has been made in view of such circumstances, and its purpose is to expose it to a corrosive atmosphere containing a halogen-based gas, particularly a severe corrosive atmosphere in which water and a halogen-based gas coexist. The present invention intends to provide a method for producing a metal material for a semiconductor manufacturing apparatus, which has been surface-modified so as to exhibit excellent corrosion resistance even in the case of being exposed, and not to cause a cause of semiconductor contamination due to corrosion.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る製法の構成は、金属材料の表面
に、化学蒸着法、真空蒸着法、イオン注入法、イオンプ
レーティング法およびダイナミックミキシング法のいず
れかによって、Ti酸化物とTi炭化物からなる混合被
覆層を形成するところに要旨を有するものであり、ここ
で形成される被覆層の厚さは0.002μm以上とする
のがよく、また好ましい金属材料としては、ステンレス
鋼、アルミニウム合金またはチタン合金が挙げられる。
The structure of the manufacturing method according to the present invention, which has been capable of solving the above-mentioned problems, is a chemical vapor deposition method, a vacuum vapor deposition method, an ion implantation method, an ion plating method and a dynamic method on the surface of a metal material. It has the gist of forming a mixed coating layer composed of a Ti oxide and a Ti carbide by any of the mixing methods, and the thickness of the coating layer formed here is preferably 0.002 μm or more. Further, preferred metal materials include stainless steel, aluminum alloys or titanium alloys.

【0009】[0009]

【作用】本発明者らは、前述の如く半導体製造装置用金
属材料の腐食に伴う半導体汚染の問題を解決すべく、塩
化水素の如く腐食性の強いハロゲン系ガスに対する耐食
性の改善を目的として、種々の表面処理法について検討
を重ねてきた。その結果、上記の様に金属材料の表面
に、化学蒸着法、真空蒸着法、イオン注入法、イオンプ
レーティング法およびダイナミックミキシング法のいず
れかによって、Ti酸化物とTi炭化物よりなる混合層
を耐食保護層として形成すれば、ハロゲン系ガスの存在
する高腐食性雰囲気下においても優れた耐食性が発揮さ
れることを見出した。
In order to solve the problem of semiconductor contamination due to the corrosion of the metal material for semiconductor manufacturing equipment as described above, the present inventors have aimed to improve the corrosion resistance to highly corrosive halogen-based gas such as hydrogen chloride. We have been studying various surface treatment methods. As a result, as described above, the mixed layer composed of Ti oxide and Ti carbide is corrosion-resistant on the surface of the metal material by any one of the chemical vapor deposition method, the vacuum vapor deposition method, the ion implantation method, the ion plating method and the dynamic mixing method. It has been found that when formed as a protective layer, excellent corrosion resistance is exhibited even in a highly corrosive atmosphere in which a halogen-based gas is present.

【0010】Ti酸化物は耐食性に優れたものであり、
金属材料の保護皮膜として利用できることは従来から知
られている(たとえば特開平4−9428号、特開平4
−74900号)。しかしながら、本発明で意図する様
な耐食性の保護皮膜を得るには、欠陥のないTi酸化物
層を形成することが必要となる。ところが、化学蒸着法
(CVD)や物理蒸着法(PVD)の如き通常の成膜法
で欠陥のないTi酸化物層を得ることは容易でない。即
ち、ピンホール欠陥等をなくすには皮膜厚さを厚くする
必要があるが、膜厚を厚くするとそれに伴って膜応力が
増大し、ひいては被覆層と金属材素地との密着性を劣化
させる原因となり、満足のいく耐食性能が得られない。
Ti oxide has excellent corrosion resistance,
It has been conventionally known that it can be used as a protective film for metal materials (for example, JP-A-4-9428 and JP-A-4).
-74900). However, it is necessary to form a defect-free Ti oxide layer in order to obtain a corrosion-resistant protective film as intended in the present invention. However, it is not easy to obtain a defect-free Ti oxide layer by an ordinary film forming method such as chemical vapor deposition (CVD) or physical vapor deposition (PVD). That is, it is necessary to increase the film thickness to eliminate pinhole defects, etc., but increasing the film thickness causes film stress to increase, which in turn causes the adhesion between the coating layer and the metal material base to deteriorate. Therefore, satisfactory corrosion resistance cannot be obtained.

【0011】ところが、前述の如く金属材料の表面に、
化学蒸着法、真空蒸着法、イオン注入法、イオンプレー
ティング法およびダイナミックミキシング法のいずれか
によってTi酸化物とTi炭化物よりなる混合被覆層を
形成してやれば、従来の耐食性被覆金属材に比べて格段
に優れた耐食性が得られる。
However, as described above, on the surface of the metal material,
If a mixed coating layer made of Ti oxide and Ti carbide is formed by any one of the chemical vapor deposition method, the vacuum vapor deposition method, the ion implantation method, the ion plating method, and the dynamic mixing method, it will be much better than the conventional corrosion-resistant coated metal material. Excellent corrosion resistance is obtained.

【0012】その理由は次の様に考えられる。即ちTi
炭化物は、それ自身耐食性の優れたものであるが、それ
に加えて、該Ti炭化物は被覆層内で耐食性の更に優れ
たTi酸化物の微細な隙間を埋めて被覆を緻密化すると
共に、該Ti炭化物は鋼材等の金属材との親和性にも優
れたものであるから、金属材に対する被覆の密着性も高
められ、これらが相加的もしくは相乗的に好結果を及ぼ
して腐食性ガス遮蔽効果が高められ、優れた耐食性が発
揮されるものと考えられる。
The reason is considered as follows. That is, Ti
The carbide itself has excellent corrosion resistance, and in addition to this, the Ti carbide fills the fine gaps of the Ti oxide having more excellent corrosion resistance in the coating layer to densify the coating and Since carbides also have excellent affinity with metal materials such as steel materials, the adhesion of the coating to metal materials is also enhanced, and these exert additively or synergistically good results and corrosive gas shielding effect. It is considered that the corrosion resistance is enhanced and excellent corrosion resistance is exhibited.

【0013】即ち本発明では、Ti酸化物とTi炭化物
を共存させることによって被覆層を緻密にしてピンホー
ル欠陥をなくすと共に、金属材素地と被覆層との密着性
を高めるものであり、それらTi酸化物とTi炭化物の
存在形態には一切制限がなく、両者が被覆層内でほぼ均
一に分布して共存するものはもとより、それらの存在量
が被覆層内で段階的若しくは連続的に変化している様な
層構造のものであってもよい。しかし、金属素材との界
面側でTi炭化物量が多くなる様な層構造とすれば、被
覆の金属材料に対する密着性が一層高められるので、特
に好ましいものとして推奨される。
That is, in the present invention, by coexisting Ti oxide and Ti carbide, the coating layer is densified to eliminate pinhole defects, and the adhesion between the metal material base and the coating layer is enhanced. There is no limitation on the existence form of the oxide and the Ti carbide, both of which exist in a substantially uniform distribution in the coating layer and the coexistence thereof, and the abundance of them changes stepwise or continuously in the coating layer. It may have a layered structure as described above. However, if the layer structure is such that the amount of Ti carbide increases on the interface side with the metal material, the adhesion of the coating to the metal material is further enhanced, and therefore it is recommended as being particularly preferable.

【0014】上記の様な成分組成を有する被覆の形成法
としては、化学蒸着法、真空蒸着法、イオン注入法、イ
オンプレーティング法またはダイナミックミキシング法
が採用される。
As a method for forming a coating having the above-mentioned composition, a chemical vapor deposition method, a vacuum vapor deposition method, an ion implantation method, an ion plating method or a dynamic mixing method is adopted.

【0015】まず化学蒸着法とは、たとえばTi源とし
て四塩化チタン、酸素源および炭素源として酸素、一酸
化炭素、メタンなどのガスを使用し、これらガスの化学
反応によってTi酸化物やTi炭化物を成膜する方法で
あり、化学反応を利用するため金属材料との密着性に優
れ、また、複雑形状物に対しても均一に成膜できるとい
う利点がある。但し、処理温度が一般的に高温であるた
め、金属材料自身の機械的性質に悪影響を及ぼすことが
あるので注意しなければならない。
First, in the chemical vapor deposition method, for example, titanium tetrachloride is used as a Ti source, gases such as oxygen, carbon monoxide, methane are used as an oxygen source and a carbon source, and a Ti oxide or a Ti carbide is produced by a chemical reaction of these gases. This is a method of forming a film, and has an advantage that it is excellent in adhesion to a metal material because a chemical reaction is used and that even a complicated-shaped object can be formed uniformly. However, it should be noted that the processing temperature is generally high, which may adversely affect the mechanical properties of the metal material itself.

【0016】次に真空蒸着法は、電子ビーム等を加熱源
としてTiを蒸発させると共に、その処理雰囲気内に酸
素源や炭素源となるガス、例えば酸素と一酸化炭素やメ
タン等の炭化水素系ガス等を導入し、金属材料表面にT
i酸化物とTi炭化物を蒸着させる方法である。この方
法は一般的に低温処理が可能であり、成膜速度が速いと
いう特長を有しているが、密着性が不十分になることが
あるので注意を要する。この場合、被覆組成をより厳密
に制御し、あるいは金属材料との密着性を一段と向上さ
せる観点から、イオンビームアシストした真空蒸着法や
イオンプレーティング法は、より好ましい方法として推
奨される。
Next, in the vacuum vapor deposition method, Ti is vaporized by using an electron beam or the like as a heating source, and a gas serving as an oxygen source or a carbon source, for example, oxygen and a hydrocarbon system such as carbon monoxide or methane is provided in the processing atmosphere. By introducing gas etc., T
This is a method of depositing i oxide and Ti carbide. This method is generally capable of low-temperature treatment and has a feature that the film formation rate is high, but caution is required because the adhesion may become insufficient. In this case, the ion beam assisted vacuum deposition method or the ion plating method is recommended as a more preferable method from the viewpoint of more strictly controlling the coating composition or further improving the adhesion with the metal material.

【0017】また、Ti蒸気と処理雰囲気中の酸素源や
炭素源に高エネルギーを付与して金属材料表面に打ち込
むイオン注入法あるいはダイナミックミキシング法を採
用すれば、被覆層と金属材料との密着性を一層高めるこ
とができるので好ましい。この場合、金属基材表面に予
め金属Ti、Tiの酸化物層や炭化物層を形成してお
き、該皮膜に炭素イオンや酸素イオン等をイオン注入し
てTi酸化物やTi炭化物の一部をTi炭化物やTi酸
化物に変える等により、Ti酸化物とTi炭化物の混合
被覆層を形成することもできる。
Further, by adopting an ion implantation method or a dynamic mixing method in which high energy is applied to the Ti vapor and the oxygen source and the carbon source in the processing atmosphere and the energy is applied to the surface of the metal material, the adhesion between the coating layer and the metal material is adopted. Is more preferable because it can be further increased. In this case, metal Ti, an oxide layer or a carbide layer of Ti is previously formed on the surface of the metal base material, and carbon ions, oxygen ions or the like are ion-implanted into the film to partially remove the Ti oxide or Ti carbide. A mixed coating layer of Ti oxide and Ti carbide can be formed by changing to Ti carbide or Ti oxide.

【0018】具体的には(1) Ti酸化物皮膜中へのCイ
オンのイオン注入、(2) Ti炭化物皮膜中へのOイオン
のイオン注入、(3) Ti皮膜中へのO,Cイオンのイオ
ン注入、(4) ステンレス鋼材表面へTiを蒸着しながら
O,Cイオンを注入するダイナミックミキシング、(5)
アルミニウム合金材へTiを蒸着しながらO,Cイオン
を注入するダイナミックミキシング等が例示される。
Specifically, (1) ion implantation of C ions into the Ti oxide film, (2) ion implantation of O ions into the Ti carbide film, (3) O and C ions into the Ti film. Ion implantation, (4) Dynamic mixing that implants O and C ions while depositing Ti on the surface of stainless steel, (5)
An example is dynamic mixing in which O and C ions are implanted while depositing Ti on an aluminum alloy material.

【0019】上記Ti酸化物とTi炭化物よりなる被覆
層による耐食性向上効果を有効に発揮させるには、該被
覆層の厚さを0.002μm程度以上、より好ましくは
0.005μm程度以上にすることが望まれる。しかし
てこの被覆層厚さが0.002μm未満では、被覆効果
が不十分であって満足のいく耐食性向上効果が得られに
くいからである。被覆厚さの上限は特に存在しないが、
あまり厚くするとコスト高になるばかりでなく、膜応力
の増大によってクラックや剥離を起こし易くなるので、
50μm以下、より好ましくは30μm以下、更に好ま
しくは20μm以下に抑えるのがよい。
In order to effectively exert the effect of improving the corrosion resistance of the coating layer made of the Ti oxide and Ti carbide, the thickness of the coating layer should be about 0.002 μm or more, more preferably about 0.005 μm or more. Is desired. However, if the thickness of the coating layer is less than 0.002 μm, the coating effect is insufficient and it is difficult to obtain a satisfactory corrosion resistance improving effect. There is no particular upper limit for the coating thickness,
If it is made too thick, not only will the cost be high, but cracks and peeling will easily occur due to an increase in film stress.
It is preferable that the thickness is 50 μm or less, more preferably 30 μm or less, and further preferably 20 μm or less.

【0020】また本発明では、上記の様に緻密で且つ密
着性の優れた被覆層によって優れた耐食性を確保すると
ころに特徴を有するものであるから、被覆基材となる金
属材料の種類は特に制限されないが、好ましいのは、そ
れ自身耐食性が良好で加工性や物性に優れ、しかも比較
的安価であるステンレス鋼、アルミニウム合金、チタン
合金である。またその形状についても、最も一般的は板
状物や管状物はもとより、線状物や棒状物あるいは異形
成形物など、用途・目的に応じて種々の形状・構造のも
のが使用できる。
Further, the present invention is characterized in that excellent corrosion resistance is ensured by the dense and excellent adhesion layer as described above. Therefore, the kind of metal material used as a coating substrate is particularly Although not limited, preferred are stainless steel, aluminum alloys, and titanium alloys, which have good corrosion resistance themselves, excellent workability and physical properties, and are relatively inexpensive. With respect to the shape, most commonly, not only plate-like objects and tubular objects, but also linear objects, rod-shaped objects, irregular shaped objects, and the like having various shapes and structures can be used.

【0021】[0021]

【実施例】次に本発明の実施例を示すが、本発明はもと
より下記実施例によって制限を受けるものではなく、前
後記の趣旨に適合し得る範囲で適当に変更を加えて実施
することも勿論可能であり、それらはいずれも本発明の
技術的範囲に含まれる。
EXAMPLES Next, examples of the present invention will be shown, but the present invention is not limited by the following examples, and may be carried out with appropriate modifications within a range compatible with the gist of the preceding and following description. Of course, it is possible, and all of them are included in the technical scope of the present invention.

【0022】実施例1 表1に示す如く種々の金属材料の表面に、真空蒸着法ま
たはイオンプレーティング法によって所定厚さのTi酸
化物とTi炭化物よりなる混合皮膜を形成した。また比
較のため、Ti酸化物単独被覆材、Ti炭化物単独被覆
材および未処理材を準備した。
Example 1 As shown in Table 1, a mixed film of Ti oxide and Ti carbide having a predetermined thickness was formed on the surface of various metal materials by a vacuum deposition method or an ion plating method. For comparison, a Ti oxide alone coating material, a Ti carbide alone coating material and an untreated material were prepared.

【0023】得られた各供試材を、5%塩素−アルゴン
混合ガス雰囲気中、350℃で10時間のガス腐食試験
に供し、腐食状態をその外観によって評価した。また、
水分とハロゲン系ガスが共存する腐食環境を模擬して、
40℃の5%NaCl水溶液中でアノード分極を行な
い、孔食発生の有無によって耐食性を評価した。結果を
表1に一括して示す。
Each of the obtained test materials was subjected to a gas corrosion test at 350 ° C. for 10 hours in a 5% chlorine-argon mixed gas atmosphere, and the corrosion state was evaluated by its appearance. Also,
Simulating a corrosive environment in which water and halogen-based gas coexist,
Anodic polarization was performed in a 5% NaCl aqueous solution at 40 ° C., and corrosion resistance was evaluated by the presence or absence of pitting corrosion. The results are collectively shown in Table 1.

【0024】ガス腐食試験:◎ 腐食発生無し ○ 腐食発生面積率5%未満 △ 腐食発生面積率10%未満 × 腐食発生面積率10%以上 水溶液腐食試験:◎ 孔食発生無し ○ 孔食が殆んど認められない △ 僅かに孔食が認められる × 孔食発生有りGas corrosion test: ◎ No corrosion occurred ○ Corrosion occurrence area ratio less than 5% △ Corrosion occurrence area ratio less than 10% × Corrosion occurrence area ratio 10% or more Aqueous solution corrosion test: ◎ No pitting corrosion ○ Almost no pitting corrosion Not observed △ Slight pitting corrosion was observed × Pitting corrosion occurred

【0025】[0025]

【表1】 [Table 1]

【0026】表1からも明らかである様に、本発明の規
定要件を満足する実施例(No.1〜8)は、いずれも
非常に優れた耐食性を有しているのに対し、規定要件を
欠く比較例(No.9〜11)では、ガス雰囲気及び水
溶液中のいずれの耐食性においても、実施例に比べて格
段に劣るものであることが分かる。
As is clear from Table 1, all the Examples (Nos. 1 to 8) satisfying the specified requirements of the present invention have very excellent corrosion resistance, while the specified requirements are satisfied. It is understood that in Comparative Examples (Nos. 9 to 11) lacking No., the corrosion resistance in both the gas atmosphere and the aqueous solution is significantly inferior to the Examples.

【0027】実施例2 表2に示す種々の金属材料の表面に、化学蒸着法によっ
てTi酸化物とTi炭化物の混合被覆を形成し、前記実
施例1と同様にしてそれらの耐食性を調べた。結果は表
2に併記する通りであり、本発明の規定要件を満たす実
施例(No.1〜7)は、比較例(No.8〜10)に
比べて何れも非常に優れた耐食性を有していることが分
かる。
Example 2 A mixed coating of Ti oxide and Ti carbide was formed on the surface of various metal materials shown in Table 2 by a chemical vapor deposition method, and their corrosion resistance was examined in the same manner as in Example 1. The results are shown in Table 2 together, and the examples (No. 1 to 7) satisfying the requirements of the invention have very excellent corrosion resistance as compared with the comparative examples (No. 8 to 10). You can see that

【0028】[0028]

【表2】 [Table 2]

【0029】実施例3 表3に示す種々の金属材料の表面に、イオン注入法また
はダイナミックミキシング法によってTi酸化物とTi
炭化物の混合被覆を形成し、前記実施例1と同様にして
それらの耐食性を調べた。結果は表3に併記する通りで
あり、本発明の規定要件を満たす実施例(No.1〜
7)は、比較例(No.8〜10)に比べて何れも非常
に優れた耐食性を有していることが分かる。
Example 3 Ti oxides and Ti were formed on the surfaces of various metal materials shown in Table 3 by an ion implantation method or a dynamic mixing method.
A mixed coating of carbide was formed and their corrosion resistance was investigated as in Example 1 above. The results are as shown in Table 3 together, and examples (No.
It can be seen that 7) has extremely excellent corrosion resistance as compared with Comparative Examples (Nos. 8 to 10).

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【発明の効果】本発明は以上の様に構成されており、金
属材料の表面をTi酸化物とTi炭化物よりなる混合被
覆層で保護することによって耐食性を著しく高めること
ができ、ハロゲン系ガスの様に強い腐食性を持ったガス
の存在する雰囲気下においても、優れた耐食性を発揮
し、半導体汚染を生じることのない半導体製造装置用の
表面被覆金属材料を提供し得ることになった。
EFFECTS OF THE INVENTION The present invention is constituted as described above, and by protecting the surface of a metal material with a mixed coating layer composed of Ti oxide and Ti carbide, the corrosion resistance can be remarkably enhanced and the halogen-based gas As described above, it has become possible to provide a surface-coated metal material for a semiconductor manufacturing apparatus, which exhibits excellent corrosion resistance even in an atmosphere in which a gas having strong corrosiveness is present and which does not cause semiconductor contamination.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属材料の表面に、化学蒸着法、真空蒸
着法、イオン注入法、イオンプレーティング法およびダ
イナミックミキシング法のいずれかによって、Ti酸化
物とTi炭化物からなる混合被覆層を形成することを特
徴とする半導体製造装置用高耐食性金属材料の製法。
1. A mixed coating layer made of a Ti oxide and a Ti carbide is formed on the surface of a metal material by any one of a chemical vapor deposition method, a vacuum vapor deposition method, an ion implantation method, an ion plating method and a dynamic mixing method. A method for producing a highly corrosion-resistant metal material for semiconductor manufacturing equipment, which is characterized by the above.
【請求項2】 被覆層の厚さが0.002μm以上であ
る請求項1に記載の製法。
2. The method according to claim 1, wherein the coating layer has a thickness of 0.002 μm or more.
【請求項3】 金属材料がステンレス鋼、アルミニウム
合金またはチタン合金である請求項1または2に記載の
製法。
3. The method according to claim 1, wherein the metal material is stainless steel, an aluminum alloy or a titanium alloy.
JP32526293A 1993-12-22 1993-12-22 Production of highly corrosion-resistant metallic material for device for producing semiconductor Withdrawn JPH07180035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32526293A JPH07180035A (en) 1993-12-22 1993-12-22 Production of highly corrosion-resistant metallic material for device for producing semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32526293A JPH07180035A (en) 1993-12-22 1993-12-22 Production of highly corrosion-resistant metallic material for device for producing semiconductor

Publications (1)

Publication Number Publication Date
JPH07180035A true JPH07180035A (en) 1995-07-18

Family

ID=18174854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32526293A Withdrawn JPH07180035A (en) 1993-12-22 1993-12-22 Production of highly corrosion-resistant metallic material for device for producing semiconductor

Country Status (1)

Country Link
JP (1) JPH07180035A (en)

Similar Documents

Publication Publication Date Title
JP3510993B2 (en) Plasma processing container inner member and method for manufacturing the same
JP4563966B2 (en) Semiconductor processing apparatus member and method for manufacturing the same
JP2004003022A (en) Plasma treatment container inside member
JP2003321760A (en) Interior member of plasma processing container and manufacturing method
JPH1161410A (en) Vacuum chamber member and its production
JP7460771B2 (en) Metal body formed by magnesium fluoride region
JPH07180035A (en) Production of highly corrosion-resistant metallic material for device for producing semiconductor
JP5614873B2 (en) Semiconductor processing apparatus member and method for manufacturing the same
JP2004269951A (en) Coated member with resistant film to halogen gas, and manufacturing method therefor
JPH07180032A (en) Production of highly corrosion-resistant metallic material for device for producing semiconductor
JP5119429B2 (en) Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same
JPH07180034A (en) Method for modifying surface of steel
JP3908291B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
JPH08246132A (en) Method for modifying surface of steel
JP3634460B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
JPH07228961A (en) Highly corrosion-resistant surface-coated metallic material
JPH08246131A (en) Method for modifying surface of steel
JP2006089822A (en) Member covered by halogen corrosion-resistant film, and method for manufacturing the same
JPH07180088A (en) Method for reforming steel surface
JP3634461B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
JP3684259B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
JPH08246126A (en) Method for modifying surface of steel
JP2007126752A (en) Member in plasma treatment vessel and its production method
JPH07180026A (en) Method for modifying surface of steel
JP2006152384A (en) Composite layer coating member having excellent halogen corrosion resistance and production method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306