JPH07180032A - Production of highly corrosion-resistant metallic material for device for producing semiconductor - Google Patents

Production of highly corrosion-resistant metallic material for device for producing semiconductor

Info

Publication number
JPH07180032A
JPH07180032A JP32526393A JP32526393A JPH07180032A JP H07180032 A JPH07180032 A JP H07180032A JP 32526393 A JP32526393 A JP 32526393A JP 32526393 A JP32526393 A JP 32526393A JP H07180032 A JPH07180032 A JP H07180032A
Authority
JP
Japan
Prior art keywords
oxide
carbide
coating layer
vapor deposition
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32526393A
Other languages
Japanese (ja)
Inventor
Atsushi Hisamoto
淳 久本
Ikuo Hashimoto
郁郎 橋本
Tsugumoto Ikeda
貢基 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP32526393A priority Critical patent/JPH07180032A/en
Publication of JPH07180032A publication Critical patent/JPH07180032A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the metallic material having superior corrosion resistance even to halogen-contg. gas by forming a mixed coating layer of a prescribed thickness consisting of Ti oxide, Ti carbide and Cr oxide on the surface of a metallic material by vacuum deposition, ion implantation or other method. CONSTITUTION:A metallic material made of stainless steel, an Al alloy or a Ti alloy is prepd. and a mixed coating layer of >=0.002mum thickness consisting of Ti oxide, Ti carbide and Cr oxide is formed on the surface of the metallic material by vacuum deposition, ion implantation, ion plating, dynamic mixing or a combination of chemical vapor deposition with vacuum deposition. Fine gaps between both the oxides of Ti and Cr in the coating layer are mutually filled up, to compact the layer and the gaps are further filled up with the coexisting Ti carbide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造装置用高耐
食性金属材料の製造法に関し、より詳細には、金属材料
の表面に、腐食性の強い塩化水素、塩素、ふっ化水素等
のハロゲン系ガスに対しても優れた耐食性を示す皮膜を
形成し、高耐食性を有する半導体製造装置用金属材料を
製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a highly corrosion-resistant metallic material for semiconductor manufacturing equipment, and more particularly, to a surface of the metallic material, which is highly corrosive, such as hydrogen chloride, chlorine or hydrogen fluoride. The present invention relates to a method for producing a metal material for semiconductor manufacturing equipment, which has high corrosion resistance by forming a film exhibiting excellent corrosion resistance against a system gas.

【0002】[0002]

【従来の技術】近年の半導体製造分野においては、素子
の高集積化が進むにつれて配線間隔にはサブミクロンの
精度が要求される様になっている。その様な素子の加工
に当たっては、微粒子や細菌が付着しただけでも回路が
短絡し、製品不良となる。そのため、半導体の製造に使
用されるガスや水は高純度であることが要求され、また
ガスの使用に際しては導入ガス自体の高純度化だけでな
く、配管や反応もしくは処理室の壁面からの水分や不純
物ガス、微粒子の発生を極力低減することが必要にな
る。
2. Description of the Related Art In the field of semiconductor manufacturing in recent years, submicron precision is required for wiring intervals as the integration of devices increases. In the processing of such an element, even if fine particles or bacteria are attached, the circuit will be short-circuited and the product will be defective. Therefore, it is required that the gas and water used for semiconductor manufacturing have a high purity, and when using the gas, not only the introduced gas itself must be highly purified, but also the water content from the piping, reaction or wall of the processing chamber. It is necessary to reduce the generation of impurities gas and fine particles as much as possible.

【0003】半導体製造装置用のガス配管には、従来よ
り溶接性や一般耐食性の面からSUS316L等のオー
ステナイト系ステンレス鋼が使用されており、その表面
を電解研摩処理等によって平滑化し、それにより吸着有
効面積を減少して不純物ガス等の吸着や脱離を少なくし
たものが用いられている。更に、電解研摩後酸化性ガス
雰囲気中で加熱処理することによって表面に非晶質酸化
皮膜を形成し、表面のガス放出量を低減したステンレス
鋼部材(特開昭64−87760号)や、微粒子の発生
源および不純物の吸着・放出場所となる非金属介在物量
を極めて少なくさせたステンレス鋼管(特開昭63−1
61145号)も提案されている。
Gas pipes for semiconductor manufacturing equipment have conventionally used austenitic stainless steel such as SUS316L in view of weldability and general corrosion resistance, and the surface thereof is smoothed by electrolytic polishing treatment or the like, and adsorption is thereby carried out. The one that reduces the effective area to reduce the adsorption and desorption of the impurity gas is used. Furthermore, a stainless steel member (Japanese Patent Laid-Open No. 64-87760), in which an amorphous oxide film is formed on the surface by heat treatment in an oxidizing gas atmosphere after electrolytic polishing to reduce surface gas emission, and fine particles Of stainless steel with a very small amount of non-metallic inclusions, which are the source of generation of aluminum and the place of adsorption / release of impurities (JP-A-63-1).
61145) has also been proposed.

【0004】また、半導体の製造もしくは処理室の構成
材料においても、ガス放出性や一般耐食性の面からステ
ンレス鋼やアルミニウム合金が使用されており、特にア
ルミニウム合金は、重金属汚染を起こしにくいという利
点があるため、その使用量は次第に増大してきている。
そして、これらの構成材料においても、耐ハロゲン系ガ
ス腐食性を改善するため、反応ガスやエッチングガスに
対して耐食性を有する皮膜、例えばTiN,AlN,A
23 等を真空チャンバーや電極材料に耐食保護層と
して形成する方法が提案されている(例えば特公平5−
53871号や特開平1−312088号公報)。
Also, in the production of semiconductors or the constituent materials of processing chambers, stainless steel and aluminum alloys are used in terms of gas release and general corrosion resistance, and aluminum alloys in particular have the advantage that they do not cause heavy metal contamination. Therefore, the amount of use is gradually increasing.
In order to improve the halogen-based gas corrosion resistance of these constituent materials as well, a film having corrosion resistance to a reaction gas or an etching gas, such as TiN, AlN, or A, is used.
A method of forming l 2 O 3 or the like as a corrosion-resistant protective layer on a vacuum chamber or an electrode material has been proposed (for example, Japanese Patent Publication No.
53871 and JP-A 1-312088).

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記のス
テンレス鋼管やステンレス鋼部材は、酸素や窒素等の腐
食性のないガス雰囲気下ではそれなりの効果を発揮する
が、塩化水素、塩素、ふっ化水素等の高腐食性のハロゲ
ン系ガス中では、その表面が比較的短期間のうちに腐食
されるため腐食生成物がガスの吸着・放出場所となり、
ガス純度の維持が困難になる。しかも、金属塩化物等の
腐食生成物自体が微粒子となって離散し、汚染の原因に
なることも考えられる。
However, the above-mentioned stainless steel pipes and stainless steel members have some effects in a gas atmosphere having no corrosiveness such as oxygen and nitrogen, but hydrogen chloride, chlorine, hydrogen fluoride, etc. In the highly corrosive halogen-based gas, the surface is corroded in a relatively short period of time, so the corrosion products serve as gas adsorption / desorption sites.
Maintaining gas purity becomes difficult. Moreover, it is considered that the corrosion products such as metal chlorides themselves become fine particles and are dispersed to cause pollution.

【0006】また、TiNやAlN等のコーティング材
にしても、ハロゲン系ガスに対する耐食性は必ずしも十
分なものとはいえず、特に塩化水素やふっ化水素等の腐
食性の強いガスの共存下においては、腐食とそれに伴う
腐食生成物微粒子の発生が懸念される。
Further, even if a coating material such as TiN or AlN is used, it cannot be said that the corrosion resistance to the halogen-based gas is sufficient, especially in the coexistence of highly corrosive gas such as hydrogen chloride or hydrogen fluoride. However, there is a concern about corrosion and generation of fine particles of corrosion products.

【0007】本発明はこの様な事情に着目してなされた
ものであって、その目的は、ハロゲン系ガスを含む高腐
食性雰囲気、特に水分とハロゲン系ガスが共存する様な
厳しい腐食雰囲気に曝された場合でも優れた耐食性を発
揮し、腐食による半導体の汚染原因を惹起することのな
い様に表面改質された半導体製造装置用金属材料の製法
を提供しようとするものである。
The present invention has been made in view of such circumstances, and its purpose is to provide a highly corrosive atmosphere containing a halogen-based gas, particularly a severe corrosive atmosphere in which water and a halogen-based gas coexist. An object of the present invention is to provide a method for producing a metal material for a semiconductor manufacturing apparatus, which has been surface-modified so as to exhibit excellent corrosion resistance even when exposed, and not to cause a cause of semiconductor contamination due to corrosion.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る製造法の構成は、金属材料の表面
に、真空蒸着法、イオン注入法、イオンプレーティング
法、ダイナミックミキシング法、化学蒸着と真空蒸着と
の併用法のいずれかによって、Ti酸化物とTi炭化物
およびCr酸化物よりなる混合被覆層を形成するところ
に要旨を有するものであり、ここで形成される被覆層の
厚さは0.002μm以上とするのがよく、また好まし
い金属材料としては、ステンレス鋼、アルミニウム合金
またはチタン合金が挙げられる。
The structure of the manufacturing method according to the present invention, which has been able to solve the above-mentioned problems, is a vacuum deposition method, an ion implantation method, an ion plating method, a dynamic mixing method, The gist is to form a mixed coating layer composed of Ti oxide, Ti carbide, and Cr oxide by either of the combined use of chemical vapor deposition and vacuum vapor deposition, and the thickness of the coating layer formed here. The thickness is preferably 0.002 μm or more, and preferable metal materials include stainless steel, aluminum alloys, and titanium alloys.

【0009】[0009]

【作用】本発明者らは、前述の如く半導体製造装置用金
属材料の腐食に伴う半導体汚染の問題を解決すべく、塩
化水素の如く腐食性の強いハロゲン系ガスに対する耐食
性の改善を目的として、種々の表面処理法について検討
を重ねてきた。その結果、上記の様に金属材料の表面
に、真空蒸着法、イオン注入法、イオンプレーティング
法、ダイナミックミキシング法、化学蒸着と真空蒸着と
の併用法のいずれかによって、Ti酸化物とTi炭化物
とCr酸化物の3成分よりなる混合層を耐食保護層とし
て形成すれば、ハロゲン系ガスの存在する高腐食性雰囲
気下においても優れた耐食性が発揮されることを見出し
た。
In order to solve the problem of semiconductor contamination due to the corrosion of the metal material for semiconductor manufacturing equipment as described above, the present inventors have aimed to improve the corrosion resistance to highly corrosive halogen-based gas such as hydrogen chloride. We have been studying various surface treatment methods. As a result, as described above, the Ti oxide and the Ti carbide are formed on the surface of the metal material by any of the vacuum deposition method, the ion implantation method, the ion plating method, the dynamic mixing method, and the combined method of the chemical vapor deposition and the vacuum vapor deposition. It has been found that when a mixed layer composed of three components of Cr and Cr oxide is formed as a corrosion resistant protective layer, excellent corrosion resistance is exhibited even in a highly corrosive atmosphere in which a halogen-based gas is present.

【0010】Ti酸化物が耐食性に優れたものであり、
金属材料の保護皮膜として利用できることは従来から知
られている(たとえば特開平4−9428号、特開平4
−74900号)。しかしながら、本発明で意図する様
な高レベルの耐食性保護皮膜を得るには、欠陥のないT
i酸化物層を形成することが必要となる。ところが、化
学蒸着法(CVD)や物理蒸着法(PVD)の如き通常
の成膜法で欠陥のないTi酸化物層を得ることは容易で
ない。即ち、ピンホール欠陥等をなくすには皮膜厚さを
厚くする必要があるが、膜厚を厚くするとそれに伴って
膜応力が増大し、ひいては被覆層と金属材素地との密着
性を劣化させる原因となり、満足のいく耐食性能が得ら
れない。
Ti oxide is excellent in corrosion resistance,
It has been conventionally known that it can be used as a protective film for metal materials (for example, JP-A-4-9428 and JP-A-4).
-74900). However, to obtain high levels of corrosion resistant protective coatings as contemplated by the present invention, the defect-free T
It is necessary to form an i-oxide layer. However, it is not easy to obtain a defect-free Ti oxide layer by an ordinary film forming method such as chemical vapor deposition (CVD) or physical vapor deposition (PVD). That is, it is necessary to increase the film thickness to eliminate pinhole defects, etc., but increasing the film thickness causes film stress to increase, which in turn causes the adhesion between the coating layer and the metal material base to deteriorate. Therefore, satisfactory corrosion resistance cannot be obtained.

【0011】また、Cr酸化物も、Ti酸化物と同様に
優れた耐食性を有していることが知られており、金属材
の保護皮膜として利用されている(例えば特開平3−3
9498号や特開昭63−56319号等)が、上記T
i酸化物で指摘したのとほぼ同様の課題を残している
他、厳しい腐食環境下で十分な耐食性を維持させること
は容易でない。
Cr oxide is also known to have excellent corrosion resistance like Ti oxide, and is used as a protective film for metal materials (for example, Japanese Patent Laid-Open No. 3-3).
9498 and JP-A-63-56319), the above T
Almost the same problems as those pointed out for the i-oxide remain, and it is not easy to maintain sufficient corrosion resistance in a severe corrosive environment.

【0012】ところが、前述の如く金属材料の表面に、
真空蒸着法、イオン注入法、イオンプレーティング法、
ダイナミックミキシング法、化学蒸着と真空蒸着との併
用法のいずれかによってTi酸化物とTi炭化物とCr
酸化物の3成分よりなる混合被覆層を形成してやれば、
従来の耐食性被覆金属材に比べて格段に優れた耐食性が
得られる。
However, as described above, on the surface of the metal material,
Vacuum deposition method, ion implantation method, ion plating method,
Ti oxide, Ti carbide and Cr by either dynamic mixing method or combined method of chemical vapor deposition and vacuum vapor deposition
If a mixed coating layer consisting of three components of oxide is formed,
Remarkably superior corrosion resistance can be obtained compared with conventional coated metal materials.

【0013】その理由は次の様に考えられる。即ちTi
酸化物とCr酸化物は夫々優れた耐食性を有している
が、これらを共存させると、被覆層内で両酸化物の微細
な隙間が相互に埋め合わされて緻密化されると共に、共
存するTi炭化物も被覆層内でそれら酸化物の微細な隙
間を埋める作用を発揮する。すなわち、Crの酸化物
は、耐食性と皮膜の緻密性向上の両方に寄与するもので
あり、より強固な皮膜形成が可能になる。しかもCrの
酸化物は比較的容易に形成できるので、Tiの酸化物や
炭化物の形成が十分でない場合においても、その特性の
補填に大きな効果を発揮し、本発明の目的達成に寄与す
る。しかも該Ti炭化物は、鋼材等の金属材との親和性
にも優れたものであるから、金属材に対する被覆の密着
性も高められ、これらが相加的もしくは相乗的に好結果
を及ぼして腐食性ガス遮蔽効果が高められ、優れた耐食
性が発揮されるものと考えられる。
The reason is considered as follows. That is, Ti
Oxides and Cr oxides each have excellent corrosion resistance. However, when they coexist, the fine gaps of both oxides are mutually filled in the coating layer to densify and coexist Ti. Carbides also have the function of filling the minute gaps between these oxides in the coating layer. That is, the oxide of Cr contributes to both the corrosion resistance and the improvement of the denseness of the film, and a stronger film can be formed. Moreover, since the oxide of Cr can be formed relatively easily, even when the formation of the oxide or carbide of Ti is not sufficient, it exerts a great effect in compensating for the characteristics and contributes to the achievement of the object of the present invention. Moreover, since the Ti carbide has an excellent affinity with a metal material such as a steel material, the adhesion of the coating to the metal material is also enhanced, and these exert additively or synergistically a favorable result to cause corrosion. It is considered that the effective gas shielding effect is enhanced and the excellent corrosion resistance is exhibited.

【0014】即ち本発明では、Cr酸化物とTi炭化物
とTi酸化物の3成分を共存させることによって被覆層
を緻密にしてピンホール欠陥をなくすと共に、金属材素
地と被覆層との密着性を高めるものであり、それらCr
酸化物、Ti炭化物、Ti酸化物の存在形態には一切制
限がなく、それらが被覆層内でほぼ均一に分布して共存
するものはもとより、それらの存在量が被覆層内で段階
的若しくは連続的に変化している様な層構造のものであ
ってもよい。しかし、金属材料との界面側でTi炭化物
量が多くなる様な層構造とすれば、被覆の金属材料に対
する密着性が一層高められるので、特に好ましいものと
して推奨される。
That is, in the present invention, by coexisting the three components of Cr oxide, Ti carbide, and Ti oxide, the coating layer is densified to eliminate pinhole defects, and the adhesion between the metal base material and the coating layer is improved. That enhances those Cr
There is no limitation on the existence form of oxides, Ti carbides, and Ti oxides, not only those that coexist with being distributed almost uniformly in the coating layer, but the existing amount thereof is stepwise or continuous in the coating layer. It may have a layered structure in which it is changed. However, if the layer structure is such that the amount of Ti carbide on the interface side with the metal material is large, the adhesion of the coating to the metal material is further enhanced, and therefore it is recommended as being particularly preferable.

【0015】上記の様な成分組成を有する被覆の形成法
としては、真空蒸着法、イオン注入法、イオンプレーテ
ィング法、ダイナミックミキシング法、化学蒸着と真空
蒸着との併用法が採用される。
As a method for forming a coating having the above-mentioned component composition, a vacuum vapor deposition method, an ion implantation method, an ion plating method, a dynamic mixing method, a combined method of chemical vapor deposition and vacuum vapor deposition is adopted.

【0016】まず真空蒸着法とは、真空条件下にTiと
Crを電子ビーム等により加熱蒸発させると共に、その
処理雰囲気内に酸素源やと炭素源となるガス、例えば酸
素と一酸化炭素やメタン等の炭化水素系ガス等を導入
し、金属材料表面にCr酸化物とTi酸化物とTi炭化
物を蒸着させる方法である。この方法は、一般に低温で
の処理が可能であり、成膜速度が大きいという特長があ
るが、密着性が不十分になることがあるので注意を要す
る。この場合、被覆組成をより厳密に制御し、あるいは
金属材料との密着性を一段と向上させる観点から、イオ
ンビームアシストした真空蒸着法やイオンプレーティン
グ法は、より好ましい方法として推奨される。
First of all, the vacuum vapor deposition method is such that Ti and Cr are heated and vaporized by an electron beam or the like under a vacuum condition, and a gas serving as an oxygen source and a carbon source, such as oxygen, carbon monoxide and methane, is present in the processing atmosphere. Is a method of depositing Cr oxide, Ti oxide, and Ti carbide on the surface of the metal material by introducing a hydrocarbon-based gas or the like. This method is generally capable of processing at a low temperature and has a high film-forming rate, but care must be taken because adhesion may be insufficient. In this case, the ion beam assisted vacuum deposition method or the ion plating method is recommended as a more preferable method from the viewpoint of more strictly controlling the coating composition or further improving the adhesion with the metal material.

【0017】また、Ti蒸気やCr蒸気と処理雰囲気中
の酸素源や炭素源に高エネルギーを付与して金属材料表
面に打ち込むイオン注入法あるいはダイナミックミキシ
ング法を採用すれば、被覆層と金属材料との密着性を一
層高めることができるので好ましい。この場合、金属基
材表面に予め金属Tiや金属CrあるいはTiやCr含
有化合物皮膜を予め形成しておき、これらに炭素イオン
や酸素イオンなどイオン注入してCr酸化物、Ti酸化
物、Ti炭化物に変えることによって、Cr酸化物、T
i酸化物、Ti炭化物の混合被覆層を形成することもで
きる。
If an ion implantation method or a dynamic mixing method, in which high energy is applied to the oxygen source or carbon source in the treatment atmosphere and Ti vapor or Cr vapor, and the surface of the metal material is implanted, or the dynamic mixing method is adopted, the coating layer and the metal material are formed. It is preferable because the adhesion can be further improved. In this case, metal Ti, metal Cr or a compound film containing Ti or Cr is previously formed on the surface of the metal base material, and ions such as carbon ions or oxygen ions are injected into these to deposit Cr oxide, Ti oxide, Ti carbide. Cr oxide, T
It is also possible to form a mixed coating layer of i oxide and Ti carbide.

【0018】具体的には(1) Ti酸化物皮膜中へのC
r,O,Cイオンのイオン注入、(2)Ti炭化物皮膜中
へのCr,Oイオンのイオン注入、(3) Cr酸化物皮膜
中へのTi,O,Cイオンのイオン注入、(4) Ti皮膜
中へのCr,O,Cイオンのイオン注入、(5) ステンレ
ス鋼材表面へCrを蒸着しながらTi,O,Cイオンを
注入するダイナミックミキシング、(6) アルミニウム合
金材へCrを蒸着しながらTi,O,Cイオンを注入す
るダイナミックミキシング等が例示される。
Specifically, (1) C in the Ti oxide film
Ion implantation of r, O and C ions, (2) Ion implantation of Cr and O ions into Ti carbide film, (3) Ion implantation of Ti, O and C ions into Cr oxide film, (4) Ion implantation of Cr, O, C ions into the Ti film, (5) Dynamic mixing by injecting Ti, O, C ions while depositing Cr on the surface of stainless steel material, (6) Deposition of Cr on aluminum alloy material However, dynamic mixing in which Ti, O, and C ions are implanted is exemplified.

【0019】このほか、耐食性被覆形成法として化学蒸
着法を採用することも可能であるが、本発明者等が検討
したところによると、化学蒸着法のみではCr酸化物の
形成が非常に困難であり、本発明で意図する様な3成分
系の高耐食性被覆を得ることができず、この場合は、化
学蒸着と真空蒸着を併用することによってCr酸化物の
生成を促進させることが必要となる。即ち化学蒸着法と
は、たとえばTi源として四塩化チタン、酸素源および
炭素源として酸素、一酸化炭素、メタンなどのガスを使
用し、これらのガスの化学反応によってTi酸化物やT
i炭化物を成膜する方法である。この方法によれば、化
学反応を利用するため金属基材との密着性に優れ、さら
に複雑形状物への均一成膜が可能であるという利点があ
る。但し、処理温度が一般に高温であるため、基材の機
械的性質などに悪影響を及ぼすことがあるので注意が必
要である。本発明では、この化学蒸着法と前述した真空
蒸着法を併用することにより、目的とするTiの酸化
物、Tiの炭化物およびCrの酸化物からなる混合皮膜
を形成することができる。
In addition, although it is possible to employ a chemical vapor deposition method as a method for forming a corrosion resistant coating, the present inventors have studied and found that it is very difficult to form a Cr oxide only by the chemical vapor deposition method. However, it is not possible to obtain a three-component high corrosion resistant coating as intended in the present invention. In this case, it is necessary to promote the formation of Cr oxide by using chemical vapor deposition and vacuum vapor deposition in combination. . That is, the chemical vapor deposition method uses, for example, titanium tetrachloride as a Ti source, oxygen, carbon monoxide, methane, and other gases as an oxygen source and a carbon source, and a Ti oxide or T
This is a method of forming a film of i-carbide. According to this method, since a chemical reaction is used, the adhesiveness to a metal base material is excellent, and there is an advantage that a uniform film can be formed on an object having a complicated shape. However, since the treatment temperature is generally high, the mechanical properties of the base material may be adversely affected, so care must be taken. In the present invention, by using this chemical vapor deposition method and the above-mentioned vacuum vapor deposition method in combination, it is possible to form an intended mixed film of a Ti oxide, a Ti carbide and a Cr oxide.

【0020】尚、本発明で形成される表面被覆は、前述
の如くTi酸化物とTi炭化物およびCr酸化物を主体
とするものであるが、これらの複合効果を阻害しない限
度で少量のTiやCr等の金属や基材金属、セラミック
ス成分等が含まれていてもかまわない。
The surface coating formed in the present invention is mainly composed of Ti oxide, Ti carbide and Cr oxide as described above. However, a small amount of Ti or Ti is contained as long as the combined effect of these is not impaired. A metal such as Cr, a base metal, a ceramic component, etc. may be contained.

【0021】上記3成分系の被覆層による耐食性向上効
果を有効に発揮させるには、該被覆層の厚さを0.00
2μm程度以上、より好ましくは0.005μm程度以
上にすることが望まれる。しかしてこの被覆層厚さが
0.002μm未満では、被覆効果が不十分であって満
足のいく耐食性向上効果が得られにくいからである。被
覆厚さの上限は特に存在しないが、あまり厚くするとコ
スト高になるばかりでなく、膜応力の増大によってクラ
ックや剥離を起こし易くなるので、50μm以下、より
好ましくは30μm以下、更に好ましくは20μm以下
に抑えるのがよい。
In order to effectively exert the effect of improving the corrosion resistance of the above three-component coating layer, the thickness of the coating layer is 0.00
It is desired that the thickness is about 2 μm or more, and more preferably about 0.005 μm or more. However, if the thickness of the coating layer is less than 0.002 μm, the coating effect is insufficient and it is difficult to obtain a satisfactory corrosion resistance improving effect. The upper limit of the coating thickness does not particularly exist, but if it is too thick, not only the cost becomes high, but also cracks and peeling are likely to occur due to an increase in film stress. It is good to keep

【0022】また本発明では、上記の様に緻密で且つ密
着性の優れた被覆層によって優れた耐食性を確保すると
ころに特徴を有するものであるから、被覆基材となる金
属材料の種類は特に制限されないが、好ましいのは、そ
れ自身耐食性が良好で加工性や物性に優れ、しかも比較
的安価であるステンレス鋼、アルミニウム合金、チタン
合金である。またその形状についても、最も一般的は板
状物や管状物はもとより、線状物や棒状物あるいは異形
成形物など、用途・目的に応じて種々の形状・構造のも
のが使用できる。
Further, the present invention is characterized in that excellent corrosion resistance is ensured by the dense and excellent adhesiveness of the coating layer as described above. Although not limited, preferred are stainless steel, aluminum alloys, and titanium alloys, which have good corrosion resistance themselves, excellent workability and physical properties, and are relatively inexpensive. With respect to the shape, most commonly, not only plate-like objects and tubular objects, but also linear objects, rod-shaped objects, irregular shaped objects, and the like having various shapes and structures can be used.

【0023】[0023]

【実施例】次に本発明の実施例を示すが、本発明はもと
より下記実施例によって制限を受けるものではなく、前
後記の趣旨に適合し得る範囲で適当に変更を加えて実施
することも勿論可能であり、それらはいずれも本発明の
技術的範囲に含まれる。
EXAMPLES Next, examples of the present invention will be shown, but the present invention is not limited by the following examples, and may be carried out with appropriate modifications within a range compatible with the gist of the preceding and following description. Of course, it is possible, and all of them are included in the technical scope of the present invention.

【0024】実施例1 表1に示す如く種々の金属材料の表面に、真空蒸着法ま
たはイオンプレーティング法によって所定厚さのCr酸
化物とTi酸化物とTi炭化物よりなる3成分系の混合
皮膜を形成した。また比較のため、Cr酸化物単独被覆
材、Ti酸化物単独被覆材、Ti炭化物単独被覆材およ
び未処理材を準備した。
Example 1 As shown in Table 1, a ternary mixed film composed of Cr oxide, Ti oxide and Ti carbide having a predetermined thickness is formed on the surface of various metal materials by a vacuum deposition method or an ion plating method. Was formed. For comparison, a Cr oxide single coating material, a Ti oxide single coating material, a Ti carbide single coating material and an untreated material were prepared.

【0025】得られた各供試材を、5%塩素−アルゴン
混合ガス雰囲気中、350℃で10時間のガス腐食試験
を行ない、腐食状態をその外観によって評価した。ま
た、水分とハロゲンガスが共存する腐食環境を模擬し
て、40℃の5%NaCl水溶液中でアノード分極を行
ない、孔食発生の有無によって耐食性を評価した。結果
を表1に一括して示す。
Each of the obtained test materials was subjected to a gas corrosion test at 350 ° C. for 10 hours in a 5% chlorine-argon mixed gas atmosphere, and the corrosion state was evaluated by its appearance. Further, a corrosion environment in which water and a halogen gas coexist was simulated, and anodic polarization was performed in a 5% NaCl aqueous solution at 40 ° C. to evaluate corrosion resistance by the presence or absence of pitting corrosion. The results are collectively shown in Table 1.

【0026】ガス腐食試験:◎ 腐食発生無し ○ 腐食発生面積率5%未満 △ 腐食発生面積率10%未満 × 腐食発生面積率10%以上 水溶液腐食試験:◎ 孔食発生無し ○ 孔食が殆んど認められない △ 僅かに孔食が認められる × 孔食発生有りGas corrosion test: ◎ No corrosion occurrence ○ Corrosion occurrence area ratio less than 5% △ Corrosion occurrence area ratio less than 10% × Corrosion occurrence area ratio 10% or more Aqueous corrosion test: ◎ No pitting corrosion ○ Almost no pitting corrosion Not observed △ Slight pitting corrosion was observed × Pitting corrosion occurred

【0027】[0027]

【表1】 [Table 1]

【0028】表1からも明らかである様に、本発明の規
定要件を満足する実施例(No.1〜8)は、いずれも
非常に優れた耐食性を有しているのに対し、規定要件を
欠く比較例(No.9〜13)では、ガス雰囲気及び水
溶液中のいずれの耐食性においても、実施例に比べて格
段に劣るものであることが分かる。
As is clear from Table 1, all the examples (Nos. 1 to 8) satisfying the specified requirements of the present invention have very excellent corrosion resistance, while the specified requirements are satisfied. It is understood that the comparative examples (Nos. 9 to 13) lacking in No. 1 are significantly inferior to the examples in both corrosion resistance in the gas atmosphere and the aqueous solution.

【0029】実施例2 表2に示す種々の金属材料の表面に、イオン注入法また
はダイナミックミキシング法によってCr酸化物、Ti
酸化物、Ti炭化物の混合被覆を形成し、前記実施例1
と同様にしてそれらの耐食性を調べた。結果は表3に併
記する通りであり、本発明の規定要件を満たす実施例
(No.1〜12)は、比較例(No.13〜18)に
比べて何れも非常に優れた耐食性を有していることが分
かる。
Example 2 On the surfaces of various metal materials shown in Table 2, Cr oxide and Ti were formed by ion implantation or dynamic mixing.
A mixed coating of oxide and Ti carbide was formed, and the above-mentioned Example 1 was used.
Similarly, the corrosion resistance of them was investigated. The results are also shown in Table 3, and all the examples (No. 1 to 12) satisfying the specified requirements of the present invention have very excellent corrosion resistance as compared with the comparative examples (No. 13 to 18). You can see that

【0030】[0030]

【表2】 [Table 2]

【0031】実施例3 表3に示す種々の金属材料の表面に、化学蒸着法によっ
てTi酸化物とTi炭化物の混合被覆を形成し、前記実
施例1と同様にしてそれらの耐食性を調べた。結果は表
2に併記する通りであり、本発明の規定要件を満たす実
施例(No.1〜7)は、比較例(No.8〜12)に
比べて何れも非常に優れた耐食性を有していることが分
かる。
Example 3 A mixed coating of Ti oxide and Ti carbide was formed on the surface of various metal materials shown in Table 3 by a chemical vapor deposition method, and their corrosion resistance was examined in the same manner as in Example 1. The results are shown in Table 2 together, and the examples (No. 1 to 7) satisfying the specified requirements of the present invention have very excellent corrosion resistance as compared with the comparative examples (No. 8 to 12). You can see that

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【発明の効果】本発明は以上の様に構成されており、金
属材料の表面をCr酸化物とTi酸化物とTi炭化物よ
りなる3成分系の混合被覆層で保護することによって耐
食性を著しく高めることができ、ハロゲン系ガスの様に
強い腐食性を持ったガスの存在する雰囲気下において
も、優れた耐食性を発揮し、半導体汚染を生じることの
ない半導体製造装置用の高耐食性金属材料を提供し得る
ことになった。
The present invention is constituted as described above, and the surface of the metal material is protected by a three-component mixed coating layer consisting of Cr oxide, Ti oxide and Ti carbide to remarkably enhance the corrosion resistance. Providing a highly corrosion-resistant metal material for semiconductor manufacturing equipment that exhibits excellent corrosion resistance even in an atmosphere in which a highly corrosive gas such as a halogen-based gas exists and that does not cause semiconductor contamination. I was able to do it.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属材料の表面に、真空蒸着法、イオン
注入法、イオンプレーティング法、ダイナミックミキシ
ング法、化学蒸着と真空蒸着との併用法のいずれかによ
って、Ti酸化物とTi炭化物とCr酸化物よりなる混
合被覆層を形成することを特徴とする半導体製造装置用
高耐食性金属材料の製造法。
1. A Ti oxide, a Ti carbide, and a Cr are formed on the surface of a metal material by any one of a vacuum vapor deposition method, an ion implantation method, an ion plating method, a dynamic mixing method, and a combined method of chemical vapor deposition and vacuum vapor deposition. A method for producing a highly corrosion-resistant metal material for a semiconductor manufacturing apparatus, which comprises forming a mixed coating layer made of an oxide.
【請求項2】 被覆層の厚さが0.002μm以上であ
る請求項1に記載の製法。
2. The method according to claim 1, wherein the coating layer has a thickness of 0.002 μm or more.
【請求項3】 金属材料がステンレス鋼、アルミニウム
合金またはチタン合金である請求項1または2に記載の
製法。
3. The method according to claim 1, wherein the metal material is stainless steel, an aluminum alloy or a titanium alloy.
JP32526393A 1993-12-22 1993-12-22 Production of highly corrosion-resistant metallic material for device for producing semiconductor Withdrawn JPH07180032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32526393A JPH07180032A (en) 1993-12-22 1993-12-22 Production of highly corrosion-resistant metallic material for device for producing semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32526393A JPH07180032A (en) 1993-12-22 1993-12-22 Production of highly corrosion-resistant metallic material for device for producing semiconductor

Publications (1)

Publication Number Publication Date
JPH07180032A true JPH07180032A (en) 1995-07-18

Family

ID=18174865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32526393A Withdrawn JPH07180032A (en) 1993-12-22 1993-12-22 Production of highly corrosion-resistant metallic material for device for producing semiconductor

Country Status (1)

Country Link
JP (1) JPH07180032A (en)

Similar Documents

Publication Publication Date Title
JP3510993B2 (en) Plasma processing container inner member and method for manufacturing the same
WO2007108546A1 (en) Ceramic coating member for semiconductor processing apparatus
JPH09509221A (en) Oxidation resistant coating for titanium alloys
JP2004003022A (en) Plasma treatment container inside member
JP2003321760A (en) Interior member of plasma processing container and manufacturing method
JPH07180032A (en) Production of highly corrosion-resistant metallic material for device for producing semiconductor
JP2005523382A (en) Metal powder resistant alloy with oxide
JP2004269951A (en) Coated member with resistant film to halogen gas, and manufacturing method therefor
JPH07180035A (en) Production of highly corrosion-resistant metallic material for device for producing semiconductor
JPH07180088A (en) Method for reforming steel surface
JPH07180034A (en) Method for modifying surface of steel
JPH08246132A (en) Method for modifying surface of steel
JPH07228961A (en) Highly corrosion-resistant surface-coated metallic material
JP5119429B2 (en) Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same
JPH08246131A (en) Method for modifying surface of steel
GB2076432A (en) Cu-Ni coatings on ferrous substrates
JP2006089822A (en) Member covered by halogen corrosion-resistant film, and method for manufacturing the same
JP3908291B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
JPH0874026A (en) Method for surface-reforming metallic material
JP3634460B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
US3574571A (en) Coatings for high-temperature alloys
JP3634461B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
JPH08246126A (en) Method for modifying surface of steel
JP3684259B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
JPH07180026A (en) Method for modifying surface of steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306