JPH07153951A - Composite semiconductor element and manufacture thereof - Google Patents

Composite semiconductor element and manufacture thereof

Info

Publication number
JPH07153951A
JPH07153951A JP5301463A JP30146393A JPH07153951A JP H07153951 A JPH07153951 A JP H07153951A JP 5301463 A JP5301463 A JP 5301463A JP 30146393 A JP30146393 A JP 30146393A JP H07153951 A JPH07153951 A JP H07153951A
Authority
JP
Japan
Prior art keywords
region
electrode
conductivity type
conductivity
igbt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5301463A
Other languages
Japanese (ja)
Inventor
Masami Yokozawa
眞▲覩▼ 横沢
Hideki Takehara
秀樹 竹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP5301463A priority Critical patent/JPH07153951A/en
Publication of JPH07153951A publication Critical patent/JPH07153951A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT

Abstract

PURPOSE:To provide a composite semiconductor element which can be used over a wide frequency range by making an IGBT and a MOSFET coexist in one chip. CONSTITUTION:The collector region (a P<+> silicon substrate 1) of an IGBT is removed partially up to depth reaching a buffer region (an N<+> layer 2), and a metallic film 9 for an electrode is formed onto the collector surface of the IGBT and the exposed surface 2a of the N<+> layer 2. A section on the exposed surface 2a of the N<+> layer 2 is used as a MOSFET, and the parasitic diode 10 of the MOSFET is formed between the collector and emitter of the IGBT.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高耐圧、大電流を扱
う電力用トランジスタ特に絶縁ゲート型バイポーラトラ
ンジスタ(以下、本文では「IGBT」と略す)とMO
S型電界効果トランジスタ(以下、本文では「MOSF
ET」と略す)を含む複合型半導体素子およびその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power transistor for handling a high withstand voltage and a large current, particularly an insulated gate bipolar transistor (hereinafter abbreviated as "IGBT" in the text) and an MO transistor.
S-type field effect transistor (hereinafter referred to as "MOSF"
And a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来の高耐圧、大電流用のIGBTとM
OSFETの典型的な構造と等価回路を図5(a)
(b)および図6(a)(b)に示す。図5,図6にお
いて、1はP+ シリコン基板、2はN+ 領域、3はN-
領域、4はP+ 領域、5はN+ 領域、6はゲート酸化
膜、7はポリシリコン膜、8はアルミニウム膜からなる
電極、9は電極用の金属膜である。
2. Description of the Related Art Conventional IGBT and M for high breakdown voltage and large current
A typical structure of an OSFET and an equivalent circuit are shown in FIG.
6B and FIG. 6A and FIG. 6B. 5 and 6, 1 is a P + silicon substrate, 2 is an N + region, and 3 is N −.
Regions 4 are P + regions, 5 are N + regions, 6 is a gate oxide film, 7 is a polysilicon film, 8 is an electrode made of an aluminum film, and 9 is a metal film for electrodes.

【0003】図5に示すIGBTと図6に示すMOSF
ETとの構造上の違いは、IGBTはコレクタ領域とし
てP+ 領域(P+ シリコン基板1)を有していることで
あり、そのためにIGBTの出力段はバイポーラモード
となることである。
The IGBT shown in FIG. 5 and the MOSF shown in FIG.
The structural difference from ET is that the IGBT has a P + region (P + silicon substrate 1) as a collector region, and therefore the output stage of the IGBT is in a bipolar mode.

【0004】[0004]

【発明が解決しようとする課題】そのため、電子機器に
用いる際、特に周波数特性に留意して、低速タイプには
IGBTを用い、また高速タイプにはMOSFETを用
いるというように使い分けなければならなかった。ま
た、IGBTをモータ駆動用として用いる際には、還流
用ダイオードとして高速ダイオードをIGBTのコレク
タ・エミッタ間に外付けする必要があった。
Therefore, when used in electronic equipment, it is necessary to use IGBTs for low-speed types and MOSFETs for high-speed types, paying particular attention to frequency characteristics. . Further, when the IGBT is used for driving a motor, it is necessary to externally attach a high speed diode as a free wheeling diode between the collector and the emitter of the IGBT.

【0005】この発明の第1の目的は、種々の電子機器
の仕様に対応させるために、1チップ内にIGBTとM
OSFETを共存させることによって幅広い周波数変化
に対応できる複合型半導体素子およびその製造方法を提
供することである。また、この発明の第2の目的は、I
GBTのコレクタ・エミッタ間に寄生の高速ダイオード
を形成した複合型半導体素子およびその製造方法を提供
することである。
A first object of the present invention is to provide an IGBT and an M in one chip in order to meet the specifications of various electronic devices.
It is to provide a composite semiconductor element capable of coping with a wide range of frequency changes by coexisting OSFETs, and a manufacturing method thereof. A second object of the present invention is I
To provide a composite type semiconductor device in which a parasitic high speed diode is formed between a collector and an emitter of a GBT and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】請求項1記載の複合型半
導体素子は、一導電型基板と、この一導電型基板の一主
面上に形成するとともに一導電型基板がわに露出面を形
成した高濃度他導電型の第1の領域と、この第1の領域
上に形成した低濃度他導電型の第2の領域と、この第2
の領域内の表面に形成した高濃度一導電型の第3の領域
と、この第3の領域内の表面に形成した高濃度他導電型
の第4の領域とを備えている。そして、第3の領域の上
部に第1の電極を設け、第3および第4の領域上に第2
の電極を設け、第1の領域の露出面および一導電型基板
に接続する共通電極を設けている。
According to a first aspect of the present invention, there is provided a composite type semiconductor device having a one-conductivity type substrate and a one-conductivity type substrate formed on one main surface of the one-conductivity type substrate. The formed high concentration other conductivity type first region, the low concentration other conductivity type second region formed on the first region, and the second region
A high-concentration one-conductivity type third region formed on the surface in the region and a high-concentration other-conductivity type fourth region formed on the surface in the third region. Then, the first electrode is provided on the third region, and the second electrode is provided on the third and fourth regions.
Is provided, and a common electrode connected to the exposed surface of the first region and the one conductivity type substrate is provided.

【0007】請求項2記載の複合型半導体素子は、一導
電型基板と、この一導電型基板の一主面上に形成すると
ともに一導電型基板がわに露出面を形成した高濃度他導
電型の第1の領域と、この第1の領域上に形成した低濃
度他導電型の第2の領域と、この第2の領域内の表面に
形成した高濃度一導電型の第3の領域と、この第3の領
域内の表面に形成した高濃度他導電型の第4の領域とを
備えている。そして、第3の領域の上部に第1の電極を
設け、第3および第4の領域上に第2の電極を設け、第
1の領域の露出面に接続する第3の電極を設け、一導電
型基板に接続する第4の電極を設けている。
According to a second aspect of the present invention, there is provided a composite type semiconductor device having a one-conductivity type substrate and a high-concentration other conductor formed on one main surface of the one-conductivity type substrate and having an exposed surface of the one-conductivity type substrate. Type first region, a low concentration other conductivity type second region formed on the first region, and a high concentration one conductivity type third region formed on the surface in the second region. And a high-concentration other conductivity type fourth region formed on the surface of the third region. A first electrode is provided on the third region, a second electrode is provided on the third and fourth regions, and a third electrode connected to the exposed surface of the first region is provided. A fourth electrode connected to the conductive type substrate is provided.

【0008】請求項3記載の複合型半導体素子は、一導
電型基板と、この一導電型基板の一主面上に形成すると
ともに一導電型基板がわに露出面を形成した高濃度他導
電型の第1の領域と、この第1の領域上に形成した低濃
度他導電型の第2の領域と、この第2の領域内の表面に
複数形成した高濃度一導電型の第3の領域と、この複数
の第3の領域内の表面に形成した高濃度他導電型の第4
の領域とを備えている。そして、複数の第3の領域の上
部に第1の電極を設け、複数の第3および第4の領域上
に第2の電極を設け、第1の領域の露出面に接続する第
3の電極を設け、一導電型基板に接続する第4の電極を
設けている。
According to a third aspect of the present invention, there is provided a composite type semiconductor device comprising a one-conductivity type substrate and a high-concentration other conductor formed on one main surface of the one-conductivity type substrate and having an exposed surface of the one-conductivity type substrate. Type first region, a low concentration other conductivity type second region formed on the first region, and a plurality of high concentration one conductivity type third regions formed on the surface in the second region. Region and a high-concentration-other-conductivity-type fourth layer formed on the surface in the plurality of third regions.
Area. A first electrode is provided on the plurality of third regions, a second electrode is provided on the plurality of third and fourth regions, and a third electrode is connected to the exposed surface of the first region. And a fourth electrode connected to the one conductivity type substrate.

【0009】請求項4記載の複合型半導体素子の製造方
法は、一導電型基板の一主面上に高濃度他導電型の第1
の領域を形成し、この第1の領域上に低濃度他導電型の
第2の領域を形成し、この第2の領域内の表面に高濃度
一導電型の第3の領域を形成し、この第3の領域内の表
面に高濃度他導電型の第4の領域を形成する工程と、一
導電型基板の他主面から第1の領域に達するまで部分的
に除去して凹部を形成する工程と、第3の領域の上部、
第3および第4の領域上、第1の領域の露出面、および
一導電型基板の他主面に、それぞれ電極を形成する工程
とを含むことを特徴とする。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a composite type semiconductor device, wherein a high-concentration other-conductivity-type first substrate is provided on one main surface of a one-conductivity-type substrate.
Region is formed, a low concentration other conductivity type second region is formed on the first region, and a high concentration one conductivity type third region is formed on the surface in the second region, A step of forming a fourth region of a high-concentration other conductivity type on the surface in the third region, and a recess by partially removing from the other main surface of the one conductivity type substrate until reaching the first region. And the upper part of the third region,
Forming an electrode on each of the third and fourth regions, the exposed surface of the first region, and the other main surface of the one conductivity type substrate.

【0010】[0010]

【作用】請求項1記載の構成によれば、ゲートを共通と
するIGBTとMOSFETとが1チップ内に共存して
いる。すなわち、IGBTは、第1の電極をゲート電極
とし、第2の電極をエミッタ電極とし、共通電極をコレ
クタ電極として、一導電型基板(コレクタ),第1の領
域,第2の領域,第3の領域および第4の領域(エミッ
タ)からなる。また、MOSFETは、露出面を形成し
た第1の領域(ドレイン),第2の領域,第3の領域お
よび第4の領域(ソース)からなる。そして、第1の領
域の露出面と一導電型基板を共通電極で接続しているこ
とにより、MOSFETの寄生ダイオード(第2および
第3の領域)がIGBTのコレクタ・エミッタ間に形成
されることになる。
According to the structure of the first aspect, the IGBT and the MOSFET having the common gate coexist in one chip. That is, the IGBT uses the first electrode as a gate electrode, the second electrode as an emitter electrode, and the common electrode as a collector electrode, and has one conductivity type substrate (collector), a first region, a second region, and a third region. Area and a fourth area (emitter). The MOSFET is composed of a first region (drain), a second region, a third region and a fourth region (source) having an exposed surface. The parasitic diode (second and third regions) of the MOSFET is formed between the collector and the emitter of the IGBT by connecting the exposed surface of the first region and the substrate of one conductivity type with a common electrode. become.

【0011】請求項2記載の構成によれば、請求項1と
同様、ゲートを共通とするIGBTとMOSFETとが
1チップ内に共存している。そして、第1の領域の露出
面に接続した第3の電極がMOSFETのドレイン電極
となり、一導電型基板に接続した第4の電極がIGBT
のコレクタ電極となる。したがって、IGBTとMOS
FETを選択的に動作させることができる。また、第3
の電極と第4の電極を接続すれば、請求項1と同様、M
OSFETの寄生ダイオードがIGBTのコレクタ・エ
ミッタ間に形成されることになる。
According to the second aspect of the invention, similarly to the first aspect, the IGBT and the MOSFET having the common gate coexist in one chip. The third electrode connected to the exposed surface of the first region becomes the drain electrode of the MOSFET, and the fourth electrode connected to the one conductivity type substrate is the IGBT.
Will be the collector electrode of. Therefore, IGBT and MOS
The FET can be selectively operated. Also, the third
If the electrode of 4 and the fourth electrode are connected, M
The parasitic diode of the OSFET will be formed between the collector and the emitter of the IGBT.

【0012】請求項3記載の構成によれば、第2の領域
内の表面に複数の第3の領域を形成し、この複数の第3
の領域内の表面に第4の領域を形成し、複数の第3の領
域の上部に第1の電極を設け、複数の第3および第4の
領域上に第2の電極を設けることにより、複数の第1・
第2の電極をIGBTのゲート・エミッタ電極とMOS
FETのゲート・ソース電極とに使い分けるようにして
いる。そして、第1の領域の露出面に接続した第3の電
極がMOSFETのドレイン電極となり、一導電型基板
に接続した第4の電極がIGBTのコレクタ電極とな
る。したがって、IGBTとMOSFETは1チップ内
に独立した構成となり、選択的に動作させることができ
る。また、電極間の接続の仕方により、請求項1または
請求項2と同様の動作を行うことができる。
According to the structure of claim 3, a plurality of third regions are formed on the surface in the second region, and the plurality of third regions are formed.
By forming the fourth region on the surface in the region of, the first electrode is provided on the plurality of third regions, and the second electrode is provided on the plurality of third and fourth regions, Multiple 1st
The second electrode is the gate / emitter electrode of the IGBT and the MOS
The gate and source electrodes of the FET are used separately. The third electrode connected to the exposed surface of the first region becomes the drain electrode of the MOSFET, and the fourth electrode connected to the one conductivity type substrate becomes the collector electrode of the IGBT. Therefore, the IGBT and the MOSFET have independent structures in one chip and can be selectively operated. Further, the same operation as in claim 1 or claim 2 can be performed depending on the way of connecting the electrodes.

【0013】[0013]

【実施例】以下、この発明の実施例を図面を参照しなが
ら説明する。図1(a)はこの発明の第1の実施例の複
合型半導体素子の模式断面図、図1(b)はその等価回
路図である。図1において、1はP+ シリコン基板(一
導電型基板)、2はN+ 領域(第1の領域)、2aは露
出面、3はN- 領域(第2の領域)、4はP+ 領域(第
3の領域)、5はN+ 領域(第4の領域)、6はゲート
酸化膜、7はポリシリコン膜、8aはアルミニウム膜か
らなるゲート電極(第1の電極)、8bはアルミニウム
膜からなるエミッタ電極(第2の電極)、9は電極用の
金属膜(共通電極)である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is a schematic sectional view of a composite type semiconductor device according to a first embodiment of the present invention, and FIG. 1B is its equivalent circuit diagram. In FIG. 1, 1 is a P + silicon substrate (one conductivity type substrate), 2 is an N + region (first region), 2a is an exposed surface, 3 is an N region (second region), and 4 is P +. Region (third region), 5 is N + region (fourth region), 6 is a gate oxide film, 7 is a polysilicon film, 8a is a gate electrode (first electrode) made of an aluminum film, and 8b is aluminum. An emitter electrode (second electrode) made of a film, and 9 is a metal film (common electrode) for the electrode.

【0014】この複合型半導体素子には、ゲートを共通
とするIGBTとMOSFETとが1チップ内に共存し
ている。すなわち、IGBTは、P+ シリコン基板1
と、N + 領域2と、N- 領域3と、P+ 領域4と、N+
領域5とからなる。また、MOSFETは、P+ シリコ
ン基板1を除去した露出面2a上のN+ 領域2と、N-
領域3と、P+ 領域4と、N+ 領域5とからなる。
A gate is commonly used for this composite semiconductor device.
IGBT and MOSFET coexist in the same chip
ing. That is, the IGBT is P+Silicon substrate 1
And N +Region 2 and N-Region 3 and P+Region 4 and N+
And area 5. Also, the MOSFET is P+Silico
N on the exposed surface 2a from which the substrate 1 has been removed+Region 2 and N-
Region 3 and P+Region 4 and N+And area 5.

【0015】このように構成される複合型半導体素子の
製造方法を説明する。(100)面のP+ シリコン基板
1にN+ 層2をエピタキシャル法で形成し、つづいてN
- 層3をエピタキシャル法で形成する。つぎにN- 層内
3に選択拡散によってP+ 領域4を形成し、さらにその
+ 領域4内に拡散によってN+ 領域5を形成する。P
+ シリコン基板1はIGBTのコレクタ領域となり、N
+ 層は2はバッファ領域、N+ 領域5はエミッタ領域と
なる。
A method of manufacturing the composite semiconductor device having the above structure will be described. An N + layer 2 is formed by an epitaxial method on a P + silicon substrate 1 having a (100) plane, and then N
- forming a layer 3 in the epitaxial method. Next, a P + region 4 is formed in the N layer 3 by selective diffusion, and an N + region 5 is further formed in the P + region 4 by diffusion. P
+ Silicon substrate 1 becomes the collector region of the IGBT, and N
The + layer 2 serves as a buffer region, and the N + region 5 serves as an emitter region.

【0016】さらに、IGBTのゲートとして、P+
域4上に厚み500〜1000Åの二酸化珪素膜6を形
成し、その上にポリシリコン膜7を形成する。その後、
アルミニウム膜からなるゲート電極8aとエミッタ電極
8bを形成する。このようにして得たIGBTのコレク
タ領域(P+ シリコン基板1)の一部を機械的、化学的
方法などでバッファ領域(N+ 層2)に到達する深さま
で除去して露出面2aを形成し、その後IGBTのコレ
クタ面およびN+ 層2の露出面2a(凹部)に電極用金
属膜9を形成する。
Further, as a gate of the IGBT, a silicon dioxide film 6 having a thickness of 500 to 1000 Å is formed on the P + region 4, and a polysilicon film 7 is formed thereon. afterwards,
A gate electrode 8a and an emitter electrode 8b made of an aluminum film are formed. An exposed surface 2a is formed by removing a part of the collector region (P + silicon substrate 1) of the IGBT thus obtained by a mechanical or chemical method to a depth reaching the buffer region (N + layer 2). After that, the electrode metal film 9 is formed on the collector surface of the IGBT and the exposed surface 2a (recess) of the N + layer 2.

【0017】このようにしてゲートを共通とするIGB
TとMOSFETの複合型半導体素子が完成する。この
実施例によれば、IGBTのコレクタ領域(P+ シリコ
ン基板1)とN+層2の露出面2aを金属膜9で接続す
ることにより、図1(b)に示すように、MOSFET
の寄生ダイオード10がIGBTのコレクタ・エミッタ
間に形成される。そのため、モータ駆動用として用いる
際に、別のダイオードを外付けする必要がない。このよ
うに、ダイオード10を内臓したIGBTを容易に得る
ことができ、これを電子機器に用いることによって幅広
い周波数に対応でき、その結果、部品点数の削減、部品
材料費の低減、信頼性の向上などに効果がある。
Thus, the IGB having the common gate
A composite semiconductor element of T and MOSFET is completed. According to this embodiment, by connecting the collector region (P + silicon substrate 1) of the IGBT and the exposed surface 2a of the N + layer 2 with the metal film 9, as shown in FIG.
Is formed between the collector and the emitter of the IGBT. Therefore, when used for driving a motor, it is not necessary to attach another diode externally. As described above, it is possible to easily obtain an IGBT having the diode 10 built therein, and it is possible to support a wide range of frequencies by using the IGBT in an electronic device. As a result, the number of parts, the material cost of parts, and the reliability are improved. And so on.

【0018】図2(a)はこの発明の第2の実施例の複
合型半導体素子の模式断面図、図2(b)はその等価回
路図である。図2において、図1と対応する部分には同
一符号を付し、その説明を省略する。この実施例が第1
の実施例と異なるところは、IGBTのコレクタ領域
(P+シリコン基板1)とN+ 層2の露出面2aを二酸
化珪素膜11などで絶縁し、P + シリコン基板1にIG
BTのコレクタ電極となる電極用金属膜(第4の電極)
9aを形成するとともに、N+ 層2の露出面2a(凹
部)にMOSFETのドレイン電極となる電極用金属膜
(第3の電極)9bを形成したことである。
FIG. 2A shows a second embodiment of the present invention.
FIG. 2B is a schematic cross-sectional view of the compound semiconductor element
It is a road map. 2 are the same as those in FIG.
A reference numeral is given and its description is omitted. This embodiment is the first
The difference from the embodiment is that the collector region of the IGBT is
(P+Silicon substrate 1) and N+The exposed surface 2a of layer 2 is diacid
Insulate with silicon oxide film 11 etc. +IG on silicon substrate 1
Metal film for electrode that becomes the collector electrode of BT (4th electrode)
9a is formed and N+Exposed surface 2a of layer 2 (concave
Part), a metal film for an electrode to be the drain electrode of the MOSFET
That is, (third electrode) 9b is formed.

【0019】この実施例によれば、IGBTとMOSF
ETを選択的に動作させることができる。また、電極用
金属膜9aと9bを接続すれば、第1の実施例と同様、
MOSFETの寄生ダイオード10がIGBTのコレク
タ・エミッタ間に形成されることになる。図3(a)は
この発明の第3の実施例の複合型半導体素子の模式断面
図、図3(b)はその等価回路図である。図3におい
て、図2と対応する部分には同一符号を付し、その説明
を省略する。
According to this embodiment, the IGBT and the MOSF are
The ET can be selectively operated. Further, if the electrode metal films 9a and 9b are connected, as in the first embodiment,
The parasitic diode 10 of the MOSFET is formed between the collector and the emitter of the IGBT. FIG. 3A is a schematic sectional view of a composite type semiconductor device according to a third embodiment of the present invention, and FIG. 3B is its equivalent circuit diagram. 3, parts corresponding to those in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.

【0020】この実施例が第2の実施例と異なるところ
は、IGBTとMOSFETのそれぞれに対応するP+
領域4、N+ 領域5、ゲート酸化膜6、ポリシリコン膜
7およびアルミニウム膜からなる電極8a,8bを設け
たことであり、それぞれ専用のゲートG1 ,G2 を設け
ている。この実施例によれば、1チップ内にIGBTと
MOSFETを独立させた複合型半導体素子を得ること
ができる。電極8a,8b間および電極用金属膜9a,
9b間の接続の仕方により、第1の実施例または第2の
実施例と同様の動作を行うことができる。
The difference of this embodiment from the second embodiment is that P + corresponding to each of the IGBT and the MOSFET.
The regions 4, N + regions 5, the gate oxide film 6, the polysilicon film 7 and the electrodes 8a and 8b made of an aluminum film are provided, and dedicated gates G 1 and G 2 are provided respectively. According to this embodiment, it is possible to obtain a composite semiconductor device in which the IGBT and the MOSFET are independent in one chip. Between the electrodes 8a and 8b and the electrode metal film 9a,
The same operation as that of the first or second embodiment can be performed depending on the connection method between 9b.

【0021】なお、上記実施例では説明を容易にするた
め図面では、IGBTのコレクタ領域(P+ シリコン基
板1)を左側とし、N+ 層2の露出面2a(凹部)を右
側とした。しかし、実際の製造工程においては、P+
リコン基板1の破損を防ぐため、図4に示すように、凹
部として小さな穴21や溝22を組み合わせることが多
い。また、電流容量を高めるために穴21や溝22を増
やす必要があり、穴21や溝22を精密加工する必要が
あり、たとえば、超音波加工、レーザー加工、放電加工
などで行う。また、複数個の穴21や溝22への電極形
成は、まずバンブ技術またはフリップチップ技術それに
基盤配線技術によって簡単に実現できる。なお、図4
(a),(b)はそれぞれ穴21,溝22を形成したP
+ シリコン基板1の平面図であり、図4(c)はそのと
きの模式断面図である。
In the above embodiment, the collector region (P + silicon substrate 1) of the IGBT is on the left side and the exposed surface 2a (recess) of the N + layer 2 is on the right side in the drawings for ease of explanation. However, in the actual manufacturing process, in order to prevent damage to the P + silicon substrate 1, as shown in FIG. 4, small holes 21 and grooves 22 are often combined as recesses. Further, it is necessary to increase the holes 21 and the grooves 22 in order to increase the current capacity, and the holes 21 and the grooves 22 need to be precisely machined. For example, ultrasonic machining, laser machining, electric discharge machining or the like is performed. Further, the electrodes can be easily formed in the plurality of holes 21 and the grooves 22 by the bump technique, the flip chip technique and the substrate wiring technique. Note that FIG.
(A) and (b) are P in which the hole 21 and the groove 22 were formed, respectively.
+ Is a plan view of a silicon substrate 1, FIG. 4 (c) is a schematic cross-sectional view at that time.

【0022】また、上記実施例では、一導電型をP型と
し、他導電型をN型として説明したが、これに限られる
ものではない。
In the above embodiment, one conductivity type is P type and the other conductivity type is N type. However, the present invention is not limited to this.

【0023】[0023]

【発明の効果】この発明によれば、一導電型基板(コレ
クタ),第1の領域,第2の領域,第3の領域および第
4の領域(エミッタ)からなるIGBTと、露出面上の
第1の領域(ドレイン),第2の領域,第3の領域およ
び第4の領域(ソース)からなるMOSFETとを有し
ている。その結果、この複合型半導体素子を電子機器に
用いることによって幅広い周波数に対応でき、部品点数
の削減、信頼性の向上など総合的な原価低減を実現でき
る。そして、MOSFETの寄生ダイオードをIGBT
のコレクタ・エミッタ間に容易に設けることができ、モ
ータ駆動用として用いる際に、別のダイオードを外付け
する必要がない。
According to the present invention, an IGBT composed of a substrate of one conductivity type (collector), a first region, a second region, a third region and a fourth region (emitter) and an exposed surface. And a MOSFET including a first region (drain), a second region, a third region, and a fourth region (source). As a result, a wide range of frequencies can be supported by using this composite type semiconductor device in electronic equipment, and the total cost reduction such as the reduction of the number of parts and the improvement of reliability can be realized. Then, the parasitic diode of the MOSFET is
It can be easily provided between the collector and the emitter, and when used for driving a motor, it is not necessary to attach another diode externally.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例の複合型半導体素子の
模式断面図と等価回路図である。
FIG. 1 is a schematic cross-sectional view and an equivalent circuit diagram of a composite semiconductor device according to a first embodiment of the present invention.

【図2】この発明の第2の実施例の複合型半導体素子の
模式断面図と等価回路図である。
FIG. 2 is a schematic sectional view and an equivalent circuit diagram of a composite type semiconductor device according to a second embodiment of the present invention.

【図3】この発明の第3の実施例の複合型半導体素子の
模式断面図と等価回路図である。
FIG. 3 is a schematic sectional view and an equivalent circuit diagram of a composite type semiconductor device according to a third embodiment of the present invention.

【図4】この発明の実施例における凹部の形成方法を説
明するための図である。
FIG. 4 is a diagram for explaining a method of forming a recess in the embodiment of the present invention.

【図5】従来のIGBTの模式断面図と等価回路図であ
る。
FIG. 5 is a schematic cross-sectional view and an equivalent circuit diagram of a conventional IGBT.

【図6】従来のMOSFETの模式断面図と等価回路図
である。
FIG. 6 is a schematic cross-sectional view and an equivalent circuit diagram of a conventional MOSFET.

【符号の説明】[Explanation of symbols]

1 P+ シリコン基板(一導電型基板) 2 N+ 層(第1の領域) 2a 露出面 3 N- 層(第2の領域) 4 P+ 領域(第3の領域) 5 N+ 領域(第4の領域) 8a ゲート電極(第1の電極) 8b エミッタ電極(第2の電極) 9 電極用金属膜(共通電極) 9a 電極用金属膜(第4の電極) 9b 電極用金属膜(第3の電極) 10 ダイオード 21 穴(凹部) 22 溝(凹部)1 P + silicon substrate (one conductivity type substrate) 2 N + layer (first region) 2a exposed surface 3 N layer (second region) 4 P + region (third region) 5 N + region (first region) Region 4) 8a gate electrode (first electrode) 8b emitter electrode (second electrode) 9 metal film for electrodes (common electrode) 9a metal film for electrodes (fourth electrode) 9b metal film for electrodes (third) Electrode) 10 diode 21 hole (recess) 22 groove (recess)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一導電型基板と、この一導電型基板の一
主面上に形成するとともに前記一導電型基板がわに露出
面を形成した高濃度他導電型の第1の領域と、この第1
の領域上に形成した低濃度他導電型の第2の領域と、こ
の第2の領域内の表面に形成した高濃度一導電型の第3
の領域と、この第3の領域内の表面に形成した高濃度他
導電型の第4の領域とを備え、 前記第3の領域の上部に第1の電極を設け、前記第3お
よび第4の領域上に第2の電極を設け、前記第1の領域
の露出面および前記一導電型基板に接続する共通電極を
設けた複合型半導体素子。
1. A one-conductivity-type substrate, and a high-concentration other-conductivity-type first region formed on one main surface of the one-conductivity-type substrate and having an exposed surface of the one-conductivity-type substrate, This first
Second region of low-concentration other conductivity type formed on the region of No. 3 and high-concentration one conductivity type of third region formed on the surface in the second region.
And a fourth region of high-concentration other conductivity type formed on the surface in the third region, a first electrode is provided on the third region, and the third and fourth regions are provided. 2. A composite semiconductor device having a second electrode provided on the region, and a common electrode connected to the exposed surface of the first region and the one conductivity type substrate.
【請求項2】 一導電型基板と、この一導電型基板の一
主面上に形成するとともに前記一導電型基板がわに露出
面を形成した高濃度他導電型の第1の領域と、この第1
の領域上に形成した低濃度他導電型の第2の領域と、こ
の第2の領域内の表面に形成した高濃度一導電型の第3
の領域と、この第3の領域内の表面に形成した高濃度他
導電型の第4の領域とを備え、 前記第3の領域の上部に第1の電極を設け、前記第3お
よび第4の領域上に第2の電極を設け、前記第1の領域
の露出面に接続する第3の電極を設け、前記一導電型基
板に接続する第4の電極を設けた複合型半導体素子。
2. A one-conductivity-type substrate, and a first region of a high-concentration other-conductivity type formed on one main surface of the one-conductivity-type substrate and having an exposed surface of the one-conductivity-type substrate. This first
Second region of low-concentration other conductivity type formed on the region of No. 3 and high-concentration one conductivity type of third region formed on the surface in the second region.
And a fourth region of high-concentration other conductivity type formed on the surface in the third region, a first electrode is provided on the third region, and the third and fourth regions are provided. 2. A composite semiconductor device having a second electrode on the region, a third electrode connected to the exposed surface of the first region, and a fourth electrode connected to the one conductivity type substrate.
【請求項3】 一導電型基板と、この一導電型基板の一
主面上に形成するとともに前記一導電型基板がわに露出
面を形成した高濃度他導電型の第1の領域と、この第1
の領域上に形成した低濃度他導電型の第2の領域と、こ
の第2の領域内の表面に複数形成した高濃度一導電型の
第3の領域と、この複数の第3の領域内の表面に形成し
た高濃度他導電型の第4の領域とを備え、 前記複数の第3の領域の上部に第1の電極を設け、前記
複数の第3および第4の領域上に第2の電極を設け、前
記第1の領域の露出面に接続する第3の電極を設け、前
記一導電型基板に接続する第4の電極を設けた複合型半
導体素子。
3. A one-conductivity-type substrate, and a first region of a high-concentration other-conductivity type formed on one main surface of the one-conductivity-type substrate and having an exposed surface of the one-conductivity-type substrate. This first
A second region of low-concentration other conductivity type formed on the region, a plurality of high-concentration one-conductivity type regions formed on the surface in the second region, and a third region of the plurality of third regions A fourth region of high-concentration other conductivity type formed on the surface of the plurality of third regions, a first electrode provided on the plurality of third regions, and a second region formed on the plurality of third and fourth regions. And a third electrode connected to the exposed surface of the first region, and a fourth electrode connected to the one conductivity type substrate.
【請求項4】 一導電型基板の一主面上に高濃度他導電
型の第1の領域を形成し、この第1の領域上に低濃度他
導電型の第2の領域を形成し、この第2の領域内の表面
に高濃度一導電型の第3の領域を形成し、この第3の領
域内の表面に高濃度他導電型の第4の領域を形成する工
程と、 前記一導電型基板の他主面から前記第1の領域に達する
まで部分的に除去して凹部を形成する工程と、 前記第3の領域の上部、前記第3および第4の領域上、
前記第1の領域の露出面、および前記一導電型基板の他
主面に、それぞれ電極を形成する工程とを含むことを特
徴とする複合型半導体素子の製造方法。
4. A high-concentration other-conductivity type first region is formed on one main surface of a one-conductivity type substrate, and a low-concentration other-conductivity type second region is formed on the first region, Forming a high-concentration-one-conductivity-type third region on the surface in the second region and forming a high-concentration-other-conductivity-type fourth region on the surface in the third region; Forming a recess by partially removing from the other main surface of the conductivity type substrate until reaching the first region; and an upper part of the third region, on the third and fourth regions,
And a step of forming electrodes on the exposed surface of the first region and the other main surface of the one conductivity type substrate, respectively.
JP5301463A 1993-12-01 1993-12-01 Composite semiconductor element and manufacture thereof Pending JPH07153951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5301463A JPH07153951A (en) 1993-12-01 1993-12-01 Composite semiconductor element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5301463A JPH07153951A (en) 1993-12-01 1993-12-01 Composite semiconductor element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH07153951A true JPH07153951A (en) 1995-06-16

Family

ID=17897206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5301463A Pending JPH07153951A (en) 1993-12-01 1993-12-01 Composite semiconductor element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH07153951A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094105A (en) * 2007-10-03 2009-04-30 Denso Corp Semiconductor device, and manufacturing method thereof
US7759696B2 (en) 2005-10-20 2010-07-20 Panasonic Corporation High-breakdown voltage semiconductor switching device and switched mode power supply apparatus using the same
WO2011129443A1 (en) * 2010-04-15 2011-10-20 富士電機株式会社 Semiconductor device
JP2013110373A (en) * 2011-08-02 2013-06-06 Rohm Co Ltd Semiconductor device and manufacturing method of the same
JP2014143852A (en) * 2013-01-24 2014-08-07 Denso Corp Overcurrent protection circuit

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7759696B2 (en) 2005-10-20 2010-07-20 Panasonic Corporation High-breakdown voltage semiconductor switching device and switched mode power supply apparatus using the same
JP2009094105A (en) * 2007-10-03 2009-04-30 Denso Corp Semiconductor device, and manufacturing method thereof
US8786024B2 (en) 2010-04-15 2014-07-22 Yoshitaka Sugawara Semiconductor device comprising bipolar and unipolar transistors including a concave and convex portion
CN102782845A (en) * 2010-04-15 2012-11-14 菅原良孝 Semiconductor device
JPWO2011129443A1 (en) * 2010-04-15 2013-07-18 良孝 菅原 Semiconductor device
WO2011129443A1 (en) * 2010-04-15 2011-10-20 富士電機株式会社 Semiconductor device
JP5638067B2 (en) * 2010-04-15 2014-12-10 良孝 菅原 Semiconductor device
JP2013110373A (en) * 2011-08-02 2013-06-06 Rohm Co Ltd Semiconductor device and manufacturing method of the same
US9419117B2 (en) 2011-08-02 2016-08-16 Rohm Co., Ltd. Semiconductor device, and manufacturing method for same
US9620588B2 (en) 2011-08-02 2017-04-11 Rohm Co., Ltd. Semiconductor device
US10192865B2 (en) 2011-08-02 2019-01-29 Rohm Co., Ltd. Method of manufacturing a semiconductor device
US10461077B2 (en) 2011-08-02 2019-10-29 Rohm Co., Ltd. Method of manufacturing a semiconductor device
US10692861B2 (en) 2011-08-02 2020-06-23 Rohm Co., Ltd. Method of manufacturing a semiconductor device
JP2014143852A (en) * 2013-01-24 2014-08-07 Denso Corp Overcurrent protection circuit

Similar Documents

Publication Publication Date Title
US4948748A (en) Manufacture of a substrate structure for a composite semiconductor device using wafer bonding and epitaxial refill
JP3269475B2 (en) Semiconductor device
JP2635828B2 (en) Semiconductor device
WO2019085577A1 (en) Insulated gate bipolar transistor device and manufacturing method therefor, and power electronic equipment
JP3198959B2 (en) High voltage integrated circuit
JP2005064472A (en) Semiconductor device
JPH07153951A (en) Composite semiconductor element and manufacture thereof
US5969401A (en) Silicon on insulator substrate with improved insulation patterns
US5475243A (en) Semiconductor device including an IGBT and a current-regenerative diode
US5569952A (en) Semiconductor device with a semiconductor element provided in a mesa structure
JPH10270689A (en) Semiconductor device
JPH03129764A (en) Semiconductor device
JP3340177B2 (en) Field-effect transistor
JPH10200104A (en) Voltage-driven semiconductor device and its manufacturing method
JP3217552B2 (en) Horizontal high voltage semiconductor device
JP3952967B2 (en) High voltage IC
JPH0251279A (en) Vertical field effect transistor
JPS60154671A (en) Semiconductor device
JP2008091932A (en) High voltage integrated circuit
JPH05206485A (en) Diode bridge device
JPH09283747A (en) Lateral field effect transistor
JPH01290265A (en) Mos type semiconductor device
JPH02271672A (en) Semiconductor device
JPH0513768A (en) Insulating gate type bipolar transistor
KR0131369B1 (en) Manufacturing method for power semiconductor device