JP3217552B2 - Horizontal high voltage semiconductor device - Google Patents

Horizontal high voltage semiconductor device

Info

Publication number
JP3217552B2
JP3217552B2 JP20228093A JP20228093A JP3217552B2 JP 3217552 B2 JP3217552 B2 JP 3217552B2 JP 20228093 A JP20228093 A JP 20228093A JP 20228093 A JP20228093 A JP 20228093A JP 3217552 B2 JP3217552 B2 JP 3217552B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
type
layer
type semiconductor
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20228093A
Other languages
Japanese (ja)
Other versions
JPH0758319A (en
Inventor
知子 末代
好広 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20228093A priority Critical patent/JP3217552B2/en
Publication of JPH0758319A publication Critical patent/JPH0758319A/en
Application granted granted Critical
Publication of JP3217552B2 publication Critical patent/JP3217552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、横型高耐圧半導体素子
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lateral high withstand voltage semiconductor device.

【0002】[0002]

【従来の技術】近年、コンピュータや通信機器の重要部
分には、多数のトランジスタや抵抗等を電気回路を達成
するようにむすびつけ、1チップ上に集積化して形成し
た集積回路(IC)が多用されている。このようなIC
中で、高耐圧素子を含むものはパワーICと呼ばれてい
る。
2. Description of the Related Art In recent years, an integrated circuit (IC) formed by integrating a large number of transistors, resistors and the like so as to achieve an electric circuit and integrating them on one chip has been frequently used in important parts of computers and communication equipment. ing. Such an IC
Among them, a device including a high breakdown voltage element is called a power IC.

【0003】複数個の高耐圧素子を集積化するには、こ
れらの素子間を電気的に分離する必要があり、一般に
は、アノード電極,カソード電極等の主電極を半導体基
板の同一の表面に形成し、高耐圧素子を横型にすること
により集積化を実現している。
In order to integrate a plurality of high withstand voltage elements, it is necessary to electrically separate these elements. Generally, main electrodes such as an anode electrode and a cathode electrode are formed on the same surface of a semiconductor substrate. Then, the integration is realized by forming the high breakdown voltage element into a horizontal type.

【0004】図9は、従来の横型IGBTの構造を示す
素子断面図である。図中、71は半導体基板を示してお
り、この半導体基板71上には素子分離絶縁膜としての
シリコン酸化膜72が形成されている。このシリコン酸
化膜72上には高濃度のn+ 型半導体層73が設けら
れ、その上にはシリコンからなる低濃度のn- 型活性層
74が設けられている。
FIG. 9 is a sectional view of an element showing a structure of a conventional horizontal IGBT. In the figure, reference numeral 71 denotes a semiconductor substrate, on which a silicon oxide film 72 as an element isolation insulating film is formed. A high concentration n + -type semiconductor layer 73 is provided on the silicon oxide film 72, and a low concentration n -- type active layer 74 made of silicon is provided thereon.

【0005】n- 型活性層74の表面にはp型ベース層
76が選択的に形成され、このp型ベース層76の表面
にはn+ 型ソース層78が選択的に形成されている。こ
のn+ 型ソース層78とn- 型活性層74とで挟まれた
領域のp型ベース層76上には、厚さ60nm程度のゲ
ート酸化膜79を介してゲート電極80が設けられてい
る。p型ベース層76からn+ 型ソース層78にかけて
の表面にはソース電極82が形成されている。
A p-type base layer 76 is selectively formed on the surface of n -type active layer 74, and an n + -type source layer 78 is selectively formed on the surface of p-type base layer 76. A gate electrode 80 is provided on the p-type base layer 76 in a region sandwiched between the n + -type source layer 78 and the n -type active layer 74 via a gate oxide film 79 having a thickness of about 60 nm. . A source electrode 82 is formed on the surface from the p-type base layer 76 to the n + -type source layer 78.

【0006】また、n- 型活性層74の表面にはn型ベ
ース層75が選択的に形成され、このn型ベース層75
の表面にはp+ 型ドレイン層77が選択的に形成され、
このp+ 型ドレイン層77の表面にはドレイン電極81
が形成されている。
An n-type base layer 75 is selectively formed on the surface of n -type active layer 74.
The p + type drain layer 77 is selectively formed on the surface of
A drain electrode 81 is provided on the surface of the p + type drain layer 77.
Are formed.

【0007】このように構成された横型IGBTにおい
て、半導体基板71,ゲート電極80およびソース電極
82を接地し、ドレイン電極81に正の電圧を印加し
て、逆バイアス状態にすると、ドレイン電極81に印加
された正の電圧は、n型ベース層75の下のn- 型活性
層74および高濃度のn+ 型半導体層73に広がる空乏
層とシリコン酸化膜72とで分圧される。
In the lateral IGBT thus configured, the semiconductor substrate 71, the gate electrode 80, and the source electrode 82 are grounded, and a positive voltage is applied to the drain electrode 81 to make the drain electrode 81 reverse bias. The applied positive voltage is divided by the silicon oxide film 72 and the depletion layer spreading over the n -type active layer 74 and the high-concentration n + -type semiconductor layer 73 under the n-type base layer 75.

【0008】ここで、n型ベース層75の下のn- 型活
性層74の厚みが薄いと、この部分で分担する電界が大
きくなり、n型ベース層75の底部の曲面部の付近70
で電界集中が生じるため、低い印加電圧でもアバランシ
ェ降伏が生じてしまう。このため、n- 型活性層74の
厚さは、一般には、20μm以上になっている。
Here, if the thickness of the n -type active layer 74 below the n-type base layer 75 is small, the electric field shared by this portion becomes large, and the area near the curved surface at the bottom of the n-type base layer 75 is reduced.
Avalanche breakdown occurs even at a low applied voltage. Therefore, the thickness of n type active layer 74 is generally 20 μm or more.

【0009】しかしながら、上記の如きにn- 型活性層
74が厚い場合において、V字等の分離溝を形成して横
方向の素子分離を行なうと、溝の深さが深くなり、素子
分離領域の面積が大きくなってしまう。この結果、ウエ
ハ上の素子の有効面積が小さくなり、高耐圧半導体素子
の高集積化が困難になるという問題があった。
However, in the case where the n -type active layer 74 is thick as described above, if a V-shaped or the like isolation groove is formed and element isolation is performed in the lateral direction, the depth of the groove becomes large and the element isolation region becomes large. Area becomes large. As a result, there is a problem that the effective area of the device on the wafer is reduced, and it is difficult to achieve high integration of the high breakdown voltage semiconductor device.

【0010】このような問題を解決できる高耐圧横型I
GBTとしては、図10に示すような構造のものが考え
られる。すなわち、n+ 型半導体層73が無く、p+
ドレイン層77およびp型ベース層76の底部がシリコ
ン酸化膜72に達する程度にn- 型活性層74が薄くな
った構造のものが考えられる。
A high withstand voltage horizontal type I which can solve such a problem.
The GBT may have a structure as shown in FIG. That is, a structure in which the n type active layer 74 is thin enough so that the n + type semiconductor layer 73 is not provided and the bottoms of the p + type drain layer 77 and the p type base layer 76 reach the silicon oxide film 72 can be considered. .

【0011】しかしながら、この高耐圧横型IGBTに
あっては、p+ 型ドレイン層77の底部がシリコン酸化
膜72に達しているため、p+ 型ドレイン層77とp型
ベース層76との間のn- 型活性層74およびn型ベー
ス層75の底部表面にp型チャネル83が形成されるこ
とがあり、この場合、ターンオフできなくなる恐れがあ
る。
However, in the high breakdown voltage lateral IGBT, since the bottom of the p + -type drain layer 77 reaches the silicon oxide film 72, the gap between the p + -type drain layer 77 and the p-type base layer 76 is formed. The p-type channel 83 may be formed on the bottom surface of the n - type active layer 74 and the n-type base layer 75, and in this case, there is a possibility that the p-type channel 83 cannot be turned off.

【0012】[0012]

【発明が解決しようとする課題】上述の如く、従来の素
子分離絶縁膜上にn+ 型半導体層を有する横型IGBT
にあっては、n型ベース層の底部の曲面部の付近での電
界集中を防止するために、n- 型活性層を厚くする必要
があったが、これによって高集積化が困難になるという
問題があった。
As described above, a conventional lateral IGBT having an n + -type semiconductor layer on a conventional element isolation insulating film.
In this case, it was necessary to increase the thickness of the n -type active layer in order to prevent electric field concentration near the curved surface at the bottom of the n-type base layer, but this makes it difficult to achieve high integration. There was a problem.

【0013】また、上記n+ 型半導体層が無く、上記横
型IGBTよりも高集積化に向いた横型IGBTにあっ
ては、n- 型活性層およびn型ベース層の底部表面にp
型チャネルが形成され、ターンオフが不可能になるとい
う問題があった。
Further, in a lateral IGBT having no n + type semiconductor layer and being more highly integrated than the lateral type IGBT, p - type active layers and n-type base layers have p
There is a problem that a mold channel is formed and turn-off becomes impossible.

【0014】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、ターンオフが不可能と
なることが無い、高集積化に向いた横型高耐圧半導体素
子を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a lateral high withstand voltage semiconductor element suitable for high integration without turning off. It is in.

【0015】[0015]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の横型高耐圧半導体素子は、半導体基板上
に素子分離絶縁膜を介して設けられた第1の第1導電型
半導体層と、この第1の第1導電型半導体層に選択的に
形成され、前記素子分離絶縁膜に達する第1の第2導電
型半導体層と、この第1の第2導電型半導体層の表面に
選択的に形成された第2の第1導電型半導体層と、この
第2の第1導電型半導体層と前記第1の第1導電型半導
体層とで挟まれた領域の前記第1の第2導電型半導体層
上にゲート絶縁膜を介して設けられたゲート電極と、前
記第1の第1導電型半導体層に選択的に形成され、前記
素子分離絶縁膜に達する第3の第1導電型半導体層と、
この第3の第1導電型半導体層の表面に選択的に形成さ
れた第2の第2導電型半導体層とを備え、少なくとも前
記第3の第1導電型半導体層および前記第2の第2導電
型半導体層を含む半導体層領域が、この半導体層領域以
外の前記第1の第1導電型半導体層のそれよりも厚いこ
とを特徴とする。
In order to achieve the above object, a lateral high withstand voltage semiconductor device according to the present invention comprises a first first conductivity type semiconductor provided on a semiconductor substrate via an element isolation insulating film. Layer, a first second conductivity type semiconductor layer selectively formed on the first first conductivity type semiconductor layer and reaching the element isolation insulating film, and a surface of the first second conductivity type semiconductor layer A second first conductivity type semiconductor layer selectively formed in the first region, and the first first conductivity type semiconductor layer in a region sandwiched between the second first conductivity type semiconductor layer and the first first conductivity type semiconductor layer. A gate electrode provided on the second conductive type semiconductor layer via a gate insulating film; and a third first electrode selectively formed on the first first conductive type semiconductor layer and reaching the element isolation insulating film. A conductive semiconductor layer,
A second second conductivity type semiconductor layer selectively formed on the surface of the third first conductivity type semiconductor layer, wherein at least the third first conductivity type semiconductor layer and the second second conductivity type semiconductor layer are provided. A semiconductor layer region including a conductive semiconductor layer is thicker than that of the first first conductive semiconductor layer other than the semiconductor layer region.

【0016】[0016]

【作用】本発明によれば、第1の第2導電型半導体層お
よび第3の第1導電型半導体層が素子分離絶縁膜に達し
ているので、第3の第1導電型半導体層に印加される電
圧はほとんど素子分離絶縁膜で分担され、更に、第3の
第1導電型半導体層の底部の曲面部の付近での電界集中
も緩和される。このため、耐圧を改善するために、従来
のように第1の第1導電型半導体層を厚くする必要が無
いので、高集積化が容易になる。
According to the present invention, since the first second conductivity type semiconductor layer and the third first conductivity type semiconductor layer have reached the element isolation insulating film, the voltage applied to the third first conductivity type semiconductor layer is increased. Most of the applied voltage is shared by the element isolation insulating film, and the electric field concentration near the curved surface at the bottom of the third first conductivity type semiconductor layer is also reduced. For this reason, it is not necessary to increase the thickness of the first first conductivity type semiconductor layer in order to improve the withstand voltage unlike the related art, so that high integration is facilitated.

【0017】また、第2の第2導電型半導体層は、第3
の第1導電型半導体層の表面に形成され、素子分離絶縁
膜に達していないので、第1の第1導電型半導体層およ
び第3の第1導電型半導体層の底部表面にチャネルは形
成されない。このため、ターンオフが不可能となること
はない。
Further, the second second conductivity type semiconductor layer is formed of a third semiconductor layer.
Is formed on the surface of the first conductive type semiconductor layer and does not reach the element isolation insulating film, so that no channel is formed on the bottom surfaces of the first and third first conductive type semiconductor layers. . Therefore, turn-off is not impossible.

【0018】しかも、第2の第2導電型半導体層を含む
半導体層領域が、この半導体層領域以外の第1の第1導
電型半導体層のそれよりも厚くなっているため、第2の
第2導電型半導体層を拡散形成する際に、第2の第2導
電型半導体層が素子分離絶縁膜に達するのを防止でき
る。
Further, since the semiconductor layer region including the second second conductivity type semiconductor layer is thicker than that of the first first conductivity type semiconductor layer other than this semiconductor layer region, the second second conductivity type semiconductor layer is formed. When the two-conductivity-type semiconductor layer is formed by diffusion, the second second-conductivity-type semiconductor layer can be prevented from reaching the element isolation insulating film.

【0019】[0019]

【実施例】以下、図面を参照しながら実施例を説明す
る。図1は、本発明の第1の実施例に係る横型IGBT
の構造を示す素子断面図である。
Embodiments will be described below with reference to the drawings. FIG. 1 shows a horizontal IGBT according to a first embodiment of the present invention.
FIG. 4 is an element cross-sectional view showing the structure of FIG.

【0020】これを製造工程に従い説明すると、まず、
シリコン基板1を厚さ1〜5μm程度のシリコン酸化膜
2によって誘電体分離する。次にシリコン酸化膜2上
に、シリコンからなり、n型ベース層4となる部分を含
む半導体領域12が他の領域よりも厚いn- 型活性層3
を形成する。このn-型活性層3中の不純物濃度は、
1.0×1010〜2.0×1012cm-2程度、好ましく
は、0.5〜1.8×1012cm-2程度とする。また、
- 型活性層3の厚さは、10μm以下、好ましくは、
2〜5μm程度とする。
This will be described according to the manufacturing process.
The silicon substrate 1 is dielectrically separated by a silicon oxide film 2 having a thickness of about 1 to 5 μm. Then on the silicon oxide film 2, a silicon, a semiconductor region 12 including a portion serving as the n-type base layer 4 is thicker than other regions n - -type active layer 3
To form The impurity concentration in the n type active layer 3 is:
It is about 1.0 × 10 10 to 2.0 × 10 12 cm −2 , preferably about 0.5 to 1.8 × 10 12 cm −2 . Also,
The thickness of the n type active layer 3 is 10 μm or less, preferably,
It is about 2-5 μm.

【0021】次にn- 型活性層3に、シリコン酸化膜2
に達するn型ベース層4およびp型ベース層5を選択的
に拡散形成する。この後、n型ベース層4の表面にp+
型ドレイン層6を選択的に拡散形成し、p型ベース層5
の表面にはn+ 型ソース層7を選択的に拡散形成する。
Next, the silicon oxide film 2 is formed on the n type active layer 3.
, The n-type base layer 4 and the p-type base layer 5 are selectively diffused. Thereafter, the surface of the n-type base layer 4 has p +
Type drain layer 6 is selectively formed by diffusion, and p-type base layer 5 is formed.
The n + -type source layer 7 is selectively diffused on the surface.

【0022】次にn- 型活性層3とn+ 型ソース層7と
で挟まれた領域のp型ベース層5上に厚さ60nm程度
のゲート酸化膜8を介してゲート電極9を形成する。最
後に、p+ 型ドレイン層6にコンタクトするドレイン電
極10を形成し、p型ベース層5およびn+ 型ソース層
7にコンタクトするソース電極11を形成して完成す
る。
Next, a gate electrode 9 is formed on the p-type base layer 5 in a region sandwiched between the n -type active layer 3 and the n + -type source layer 7 via a gate oxide film 8 having a thickness of about 60 nm. . Finally, a drain electrode 10 that contacts the p + -type drain layer 6 is formed, and a source electrode 11 that contacts the p + -type base layer 5 and the n + -type source layer 7 is completed.

【0023】なお、図1に示した構造の横型IGBTの
製造方法は、上述した工程順序に限定されるものではな
い。このように構成された横型IGBTにおいて、従来
と同様に、半導体基板1,ゲート電極9およびソース電
極11を接地し、ドレイン電極10に正の電圧を印加し
て、逆バイアス状態にした場合を考える。
The method of manufacturing the lateral IGBT having the structure shown in FIG. 1 is not limited to the above-described process order. In the lateral IGBT thus configured, as in the conventional case, the semiconductor substrate 1, the gate electrode 9 and the source electrode 11 are grounded, and a positive voltage is applied to the drain electrode 10 to make a reverse bias state. .

【0024】本実施例の場合、n型ベース層4の底部が
シリコン酸化膜2に達しているので、n型ベース層4に
印加される電圧はほとんどシリコン酸化膜2で分担さ
れ、更に、n型ベース層4の底部の曲面部の付近での電
界集中も緩和される。
In this embodiment, since the bottom of the n-type base layer 4 has reached the silicon oxide film 2, most of the voltage applied to the n-type base layer 4 is shared by the silicon oxide film 2. Electric field concentration near the curved surface at the bottom of the mold base layer 4 is also reduced.

【0025】このため、高い電圧を印加してもアバラン
シェ降伏は起き難くなるので、耐圧を改善するために、
従来のようにn- 型活性層3を厚くする必要が無いの
で、高集積化が容易になる。
For this reason, even when a high voltage is applied, avalanche breakdown hardly occurs.
Since it is not necessary to increase the thickness of the n -type active layer 3 as in the related art, high integration is facilitated.

【0026】また、p+ 型ドレイン層6はn型ベース層
4の表面に形成され、シリコン酸化膜2には達していな
いので、図10に示した横型IGBTのように、n-
活性層3およびn型ベース層4の底部表面にpチャネル
が形成され、p型ベース層5とp+ 型ドレイン層6とが
短絡し、ターンオフが不可能になるという問題は生じな
い。
Since the p + -type drain layer 6 is formed on the surface of the n-type base layer 4 and does not reach the silicon oxide film 2, the p + -type drain layer 6 has an n -type active layer, as in the lateral IGBT shown in FIG. A p-channel is formed on the bottom surfaces of the n-type base layer 3 and the n-type base layer 4, so that the p-type base layer 5 and the p + -type drain layer 6 are short-circuited, so that there is no problem that turn-off becomes impossible.

【0027】更にまた、半導体領域12は、半導体領域
12以外の領域のn- 型活性層3よりも厚いので、p+
型ドレイン層6を拡散形成する際に、p+ 型ドレイン層
6がシリコン酸化膜2に達するのを防止できる。
Furthermore, since the semiconductor region 12 is thicker than the n type active layer 3 in a region other than the semiconductor region 12, p +
When the diffusion layer 6 is formed, the p + type drain layer 6 can be prevented from reaching the silicon oxide film 2.

【0028】したがって、本実施例によれば、ターンオ
フが不可能となることが無い、高集積化に向いた横型I
GBTが容易に得られる。以下、本発明の他の実施例
(第2〜第6の実施例)について説明する。なお、以下
の図2〜図8において、図1の横型IGBTと対応する
部分には図1と同一符号を付してあり、詳細な説明は省
略する。
Therefore, according to the present embodiment, the horizontal type I which is suitable for high integration without turning off becomes impossible.
GBT is easily obtained. Hereinafter, other embodiments (second to sixth embodiments) of the present invention will be described. In FIGS. 2 to 8 below, parts corresponding to the horizontal IGBT in FIG. 1 are denoted by the same reference numerals as those in FIG.

【0029】図2は、本発明の第2の実施例に係る横型
IGBTの構造を示す素子断面図である。本実施例の横
型IGBTが先の実施例のそれと異なる点は、n型ベー
ス層4がよりソース側に延びているこにある。すなわ
ち、先の実施例では半導体領域12はn- 型活性層3の
一部と、n型ベース層4と、p+ 型ドレイン層6とで構
成されていたが、本実施例では、n型ベース層4と、p
+ 型ドレイン層6とだけで構成されている。
FIG. 2 is a sectional view showing the structure of a lateral IGBT according to a second embodiment of the present invention. The horizontal IGBT of this embodiment differs from that of the previous embodiment in that the n-type base layer 4 extends further toward the source. That is, in the previous embodiment, the semiconductor region 12 was constituted by a part of the n -type active layer 3, the n-type base layer 4, and the p + -type drain layer 6. Base layer 4 and p
It is composed of only the + type drain layer 6.

【0030】図3は、本発明の第3の実施例に係る横型
IGBTの構造を示す素子断面図である。本実施例の横
型IGBTが第1の実施例のそれと異なる点は、n型ベ
ース層4およびp+ 型ドレイン層の双方がよりソース側
に延びているこにある。換言すれば、図2の第2の実施
例の横型IGBTにおいて、p+ 型ドレイン層6がより
ソース側に延びた構造になっている。
FIG. 3 is an element sectional view showing the structure of a lateral IGBT according to a third embodiment of the present invention. The difference between the horizontal IGBT of the present embodiment and that of the first embodiment is that both the n-type base layer 4 and the p + -type drain layer extend further to the source side. In other words, the lateral IGBT of the second embodiment shown in FIG. 2 has a structure in which the p + -type drain layer 6 extends further to the source side.

【0031】図4は、本発明の第4の実施例に係る横型
IGBTの構造を示す素子断面図である。本実施例の横
型IGBTが第1の実施例のそれと異なる点は、半導体
領域12が上方では無く下方に厚くなっていることにあ
る。このような横型IGBTは、例えば、張り合わせ法
を用いて製造できる。
FIG. 4 is an element sectional view showing the structure of a lateral IGBT according to a fourth embodiment of the present invention. The difference between the horizontal IGBT of the present embodiment and that of the first embodiment is that the semiconductor region 12 is thicker below but not above. Such a horizontal IGBT can be manufactured by using, for example, a bonding method.

【0032】図5は、本発明の第5の実施例に係る横型
IGBTの構造を示す素子断面図である。本実施例の横
型IGBTが第1の実施例のそれと異なる点は、半導体
領域12が上方および下方の両方向に厚くなっているこ
とにある。
FIG. 5 is an element sectional view showing the structure of a lateral IGBT according to a fifth embodiment of the present invention. The difference between the horizontal IGBT of the present embodiment and that of the first embodiment is that the semiconductor region 12 is thicker in both the upper and lower directions.

【0033】図6は、本発明の第6の実施例に係る横型
IGBTの構造を示す素子断面図である。本実施例の横
型IGBTが第1の実施例のそれと異なる点は、ドレイ
ン電極10側の半導体領域12aだけではなく、ソース
電極11側の半導体領域12bも厚くなっていることに
ある。
FIG. 6 is an element sectional view showing the structure of a lateral IGBT according to a sixth embodiment of the present invention. The difference between the lateral IGBT of the present embodiment and that of the first embodiment is that not only the semiconductor region 12a on the drain electrode 10 side but also the semiconductor region 12b on the source electrode 11 side is thicker.

【0034】図7,図8は、本発明の変形例を示す素子
断面図で、図7は横型ダイオードを示しており、図8は
横型MOSFETを示している。なお、図中、13はn
型カソード層、14はp型アノード層、15はカソード
電極、16はアノード電極、17はn型ドレイン層を示
している。
7 and 8 are cross-sectional views of a device showing a modification of the present invention. FIG. 7 shows a lateral diode, and FIG. 8 shows a lateral MOSFET. In the figure, 13 is n
A cathode layer, 14 is a p-type anode layer, 15 is a cathode electrode, 16 is an anode electrode, and 17 is an n-type drain layer.

【0035】なお、本発明は上述した実施例に限定され
るものではなく、例えば、第6の実施例の横型IGBT
の特徴構造を第2〜第5の実施例の横型IGBTに適用
するなど、上記実施例を種々組み合わせても良い。その
他、本発明の要旨を逸脱しない範囲で、種々変形して実
施できる。
The present invention is not limited to the above-described embodiment. For example, the horizontal IGBT of the sixth embodiment
The above embodiments may be variously combined, for example, by applying the characteristic structure to the horizontal IGBTs of the second to fifth embodiments. In addition, various modifications can be made without departing from the scope of the present invention.

【0036】[0036]

【発明の効果】以上詳述したように本発明によれば、タ
ーンオフが不可能となることが無い、高集積化に有利な
構造の横型高耐圧半導体素子が得られる。
As described in detail above, according to the present invention, a lateral high withstand voltage semiconductor element having a structure advantageous for high integration without turning off becomes impossible can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係る横型IGBTの構
造を示す素子断面図。
FIG. 1 is an element cross-sectional view showing a structure of a lateral IGBT according to a first example of the present invention.

【図2】本発明の第2の実施例に係る横型IGBTの構
造を示す素子断面図。
FIG. 2 is an element cross-sectional view showing a structure of a lateral IGBT according to a second embodiment of the present invention.

【図3】本発明の第3の実施例に係る横型IGBTの構
造を示す素子断面図。
FIG. 3 is an element cross-sectional view showing a structure of a lateral IGBT according to a third embodiment of the present invention.

【図4】本発明の第4の実施例に係る横型IGBTの構
造を示す素子断面図。
FIG. 4 is an element cross-sectional view showing a structure of a lateral IGBT according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施例に係る横型IGBTの構
造を示す素子断面図。
FIG. 5 is an element cross-sectional view showing a structure of a lateral IGBT according to a fifth embodiment of the present invention.

【図6】本発明の第6の実施例に係る横型IGBTの構
造を示す素子断面図。
FIG. 6 is an element cross-sectional view showing the structure of a lateral IGBT according to a sixth embodiment of the present invention.

【図7】本発明の変形例に係る横型ダイオードの構造を
示す素子断面図。
FIG. 7 is an element cross-sectional view showing a structure of a lateral diode according to a modification of the present invention.

【図8】本発明の他の変形例に係る横型MOSFETの
構造を示す素子断面図。
FIG. 8 is an element cross-sectional view showing a structure of a lateral MOSFET according to another modification of the present invention.

【図9】従来の横型IGBTの構造を示す素子断面図。FIG. 9 is an element cross-sectional view showing the structure of a conventional horizontal IGBT.

【図10】従来の他の横型IGBTの構造を示す素子断
面図。
FIG. 10 is an element cross-sectional view showing the structure of another conventional horizontal IGBT.

【符号の説明】[Explanation of symbols]

1…シリコン基板 2…シリコン酸化膜(素子分離絶縁膜) 3…n- 型活性層(第1の第1導電型半導体層) 4…n型ベース層(第3の第1導電型半導体層) 5…p型ベース層(第1の第2導電型半導体層) 6…p+ 型ドレイン層(第2の第2導電型半導体層) 7…n+ 型ソース層(第2の第1導電型半導体層) 8…ゲート酸化膜 9…ゲート電極 10…ドレイン電極 11…ソース電極 12…半導体領域 13…n型カソード層 14…p型アノード層 15…カソード電極 16…アノード電極 17…n型ドレイン層REFERENCE SIGNS LIST 1 silicon substrate 2 silicon oxide film (element isolation insulating film) 3 n - type active layer (first first conductivity type semiconductor layer) 4 n-type base layer (third first conductivity type semiconductor layer) 5 ... p-type base layer (the first second-conductivity type semiconductor layer) 6 ... p + -type drain layer (second conductive type second semiconductor layer) 7 ... n + -type source layer (second first conductivity type Semiconductor layer) 8 gate oxide film 9 gate electrode 10 drain electrode 11 source electrode 12 semiconductor region 13 n-type cathode layer 14 p-type anode layer 15 cathode electrode 16 anode electrode 17 n-type drain layer

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 29/78

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板上に素子分離絶縁膜を介して設
けられた第1の第1導電型半導体層と、 この第1の第1導電型半導体層に選択的に形成され、前
記素子分離絶縁膜に達する第1の第2導電型半導体層
と、 この第1の第2導電型半導体層の表面に選択的に形成さ
れた第2の第1導電型半導体層と、 この第2の第1導電型半導体層と前記第1の第1導電型
半導体層とで挟まれた領域の前記第1の第2導電型半導
体層上にゲート絶縁膜を介して設けられたゲート電極
と、 前記第1の第1導電型半導体層に選択的に形成され、前
記素子分離絶縁膜に達する第3の第1導電型半導体層
と、 この第3の第1導電型半導体層の表面に選択的に形成さ
れた第2の第2導電型半導体層とを具備してなり、 少なくとも前記第3の第1導電型半導体層および前記第
2の第2導電型半導体層を含む半導体層領域が、この半
導体層領域以外の前記第1の第1導電型半導体層のそれ
よりも厚いことを特徴とする横型高耐圧半導体素子。
A first conductive type semiconductor layer provided on a semiconductor substrate via an element isolation insulating film; and a first conductive type semiconductor layer selectively formed on the first first conductive type semiconductor layer. A first second conductivity type semiconductor layer reaching the insulating film; a second first conductivity type semiconductor layer selectively formed on a surface of the first second conductivity type semiconductor layer; A gate electrode provided on the first second conductivity type semiconductor layer in a region sandwiched between the one conductivity type semiconductor layer and the first first conductivity type semiconductor layer via a gate insulating film; A third first conductivity type semiconductor layer selectively formed on the first first conductivity type semiconductor layer and reaching the element isolation insulating film; and selectively formed on a surface of the third first conductivity type semiconductor layer. At least the third first conductivity type semiconductor layer and the second first conductivity type semiconductor layer. It said second semiconductor layer region comprising a second conductivity type semiconductor layer, lateral high-voltage semiconductor device according to claim thicker than that of the semiconductor layer above other than the region first of the first conductivity type semiconductor layer.
JP20228093A 1993-08-16 1993-08-16 Horizontal high voltage semiconductor device Expired - Fee Related JP3217552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20228093A JP3217552B2 (en) 1993-08-16 1993-08-16 Horizontal high voltage semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20228093A JP3217552B2 (en) 1993-08-16 1993-08-16 Horizontal high voltage semiconductor device

Publications (2)

Publication Number Publication Date
JPH0758319A JPH0758319A (en) 1995-03-03
JP3217552B2 true JP3217552B2 (en) 2001-10-09

Family

ID=16454927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20228093A Expired - Fee Related JP3217552B2 (en) 1993-08-16 1993-08-16 Horizontal high voltage semiconductor device

Country Status (1)

Country Link
JP (1) JP3217552B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0143459B1 (en) * 1995-05-22 1998-07-01 한민구 Morse-gate type power transistor
JP2006165481A (en) 2004-12-10 2006-06-22 Toshiba Corp Semiconductor apparatus
JP5739767B2 (en) 2011-08-23 2015-06-24 株式会社東芝 Dielectric separation substrate and semiconductor device

Also Published As

Publication number Publication date
JPH0758319A (en) 1995-03-03

Similar Documents

Publication Publication Date Title
US5378920A (en) High breakdown voltage semiconductor device
US6570229B1 (en) Semiconductor device
JPH0357614B2 (en)
JPH02275675A (en) Mos type semiconductor device
US4949142A (en) Integrated N-channel power MOS bridge circuit
JPH08139319A (en) Semiconductor device and its manufacture
JPH01103851A (en) High withstand voltage semiconductor element
JP3730394B2 (en) High voltage semiconductor device
JPH0851197A (en) Mos control thyristor having electric current saturation property
JP2814079B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPH0786580A (en) High-voltage semiconductor device
JP2001345376A (en) Semiconductor device
US6525392B1 (en) Semiconductor power device with insulated circuit
JP3217552B2 (en) Horizontal high voltage semiconductor device
JP3275850B2 (en) High breakdown voltage diode and its manufacturing method
JPH1174530A (en) Semiconductor integrated circuit device and its manufacture
JP2825038B2 (en) Semiconductor device
JPH07142731A (en) Power device and method for forming it
US5270566A (en) Insulated gate semiconductor device
JPH10242454A (en) Semiconductor device
JP3217484B2 (en) High voltage semiconductor device
US20060154430A1 (en) Soi structure comprising substrate contacts on both sides of the box, and method for the production of such a structure
JP3130645B2 (en) High voltage MOS transistor
JPS61174672A (en) Vmos transistor
JPH0729974A (en) Semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees