JPH07147424A - Manufacture of thin film solar cell module - Google Patents

Manufacture of thin film solar cell module

Info

Publication number
JPH07147424A
JPH07147424A JP5293727A JP29372793A JPH07147424A JP H07147424 A JPH07147424 A JP H07147424A JP 5293727 A JP5293727 A JP 5293727A JP 29372793 A JP29372793 A JP 29372793A JP H07147424 A JPH07147424 A JP H07147424A
Authority
JP
Japan
Prior art keywords
solar cell
film
adhesive resin
conductive
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5293727A
Other languages
Japanese (ja)
Other versions
JP3448924B2 (en
Inventor
Kiyoo Saito
清雄 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP29372793A priority Critical patent/JP3448924B2/en
Publication of JPH07147424A publication Critical patent/JPH07147424A/en
Application granted granted Critical
Publication of JP3448924B2 publication Critical patent/JP3448924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To provide a thin film solar cell which has a small electrode area and a large effective area by electrically connecting a conductive film with an edge electrode by pressing a metal piece contained in an adhesive resin film or a conductive protruding part formed on a solar cell submodule edge electrode or on a conductive film so as to make contact. CONSTITUTION:At the time of adhering a thin film solar cell submodule 2 to both side protecting boards 31 and 32 by adhesive resin 4, connection between the submodules 2 and connection between a generated power conducting film 6 and the edge electrode of the submodule 2 are performed electrically by conductive protruding part 7, which is formed of solder and breaks a copper piece 5 contained in the adhesive resin 4 or the film of the adhesive resin 4 formed on an edge electrode or on the conductive protruding part 7. Thus, soldering process is eliminated, connection of the thin film solar cell which has a small electrode area and uses synthetic resin board can be performed and power generation of the solar cell module 2 per unit is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アモルファスシリコン
等を主成分とする半導体薄膜を用いた薄膜太陽電池サブ
モジュールの複数個を接続してなる薄膜太陽電池モジュ
ールの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film solar cell module in which a plurality of thin film solar cell submodules using a semiconductor thin film containing amorphous silicon as a main component are connected.

【0002】[0002]

【従来の技術】原料ガスのグロー放電分解や光CVDに
より形成されるアモルファス半導体薄膜は、気相成長法
で形成できるために、大面積化が容易であること、ま
た、形成温度が低いために樹脂のような可とう性を有す
る基板に形成できるという特徴を有している。こうした
アモルファス薄膜を用いた太陽電池モジュールは、アモ
ルファス太陽電池のサブモジュールを直列または並列に
電気的に接続し、太陽電池を屋外において劣化せず且つ
湿気を通さないようなガラス等の耐候性材料よりなる保
護基板により挟み、この保護基板と太陽電池との間をエ
チレンビニルアセテート (EVA) 等の接着樹脂にて封
止している。
2. Description of the Related Art An amorphous semiconductor thin film formed by glow discharge decomposition of a raw material gas or photo-CVD can be formed by a vapor phase growth method, so that it is easy to increase the area and the formation temperature is low. It has a feature that it can be formed on a substrate having flexibility such as resin. A solar cell module using such an amorphous thin film is a sub-module of an amorphous solar cell that is electrically connected in series or in parallel, and is made of a weather resistant material such as glass that does not deteriorate the solar cell outdoors and does not allow moisture to pass. It is sandwiched between the protective substrates and the solar cell is sealed with an adhesive resin such as ethylene vinyl acetate (EVA).

【0003】[0003]

【発明が解決しようとする課題】モジュールを作製する
ために太陽電池を直列または並列に接続する方法とし
て、導電性フィルムを用いることが従来行われている。
すなわち、はんだを太陽電池電極部に融着させ、さらに
その上に導電性フィルムを載せて、はんだと導電性フィ
ルムを熱融着させる。これにより、導電性フィルムと太
陽電池電極部とを電気的に接続していた。しかし、この
方法では、電極面積が小さく、有効面積の大きい薄膜太
陽電池や、融点の低い合成樹脂基板を用いた薄膜太陽電
池のモジュール化は困難であった。
As a method of connecting solar cells in series or in parallel to manufacture a module, it is conventional to use a conductive film.
That is, the solder is fused to the solar cell electrode portion, a conductive film is further placed thereon, and the solder and the conductive film are thermally fused. Thereby, the conductive film and the solar cell electrode portion were electrically connected. However, with this method, it was difficult to modularize a thin film solar cell having a small electrode area and a large effective area, or a thin film solar cell using a synthetic resin substrate having a low melting point.

【0004】本発明の目的は、上述の問題を解決し、電
極面積が小さく、有効面積の大きい薄膜太陽電池や、融
点の低い基板を用いた薄膜太陽電池を相互に接続して作
製することのできる薄膜太陽電池モジュールの製造方法
を提供することにある。
An object of the present invention is to solve the above problems and to fabricate a thin film solar cell having a small electrode area and a large effective area, and a thin film solar cell using a substrate having a low melting point, which are connected to each other. An object of the present invention is to provide a method of manufacturing a thin film solar cell module that can be used.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の薄膜太陽電池モジュールの製造方法の第
一は、絶縁性基板上に両端に帯状取出し電極を備えた太
陽電池構造を有するサブモジュールの複数個を取出し電
極の設けられない側で隣接させて一つの保護基板の上に
接着樹脂層を介して載せ、上面の両取出し電極の上に
は、その幅よりやや狭い幅を有する、両端面が露出する
金属片を分散して含む接着樹脂フィルムと、両端が端部
のサブモジュールの上より突出する導電性フィルムを、
取出し電極の上以外の部分には金属片を含まない接着樹
脂フィルムを積層し、さらにそれらの上に他の保護基板
を載せ、加熱圧着することにより、太陽電池サブモジュ
ールの両面を保護基板と接着すると共に、取出し電極を
導電性フィルムと電気的に接続するものとする。金属片
が銅よりなる柱状体であるか、金めっきした金属粉より
なることが良い。
In order to achieve the above object, the first method of manufacturing a thin film solar cell module of the present invention is to provide a solar cell structure having strip-shaped extraction electrodes on both ends on an insulating substrate. Place a plurality of sub-modules that are adjacent to each other on the side where the extraction electrodes are not provided, and place them on a single protective substrate with an adhesive resin layer between them. Having an adhesive resin film containing dispersed metal pieces whose both end surfaces are exposed, and a conductive film having both ends protruding from above the end submodule,
Adhesive resin films that do not contain metal pieces are laminated on parts other than the extraction electrodes, and another protective substrate is placed on top of them, and the two sides of the solar cell submodule are bonded to the protective substrate by thermocompression bonding. In addition, the extraction electrode is electrically connected to the conductive film. The metal piece is preferably a columnar body made of copper or gold-plated metal powder.

【0006】本発明の薄膜太陽電池モジュールの製造方
法の第二は、絶縁性基板上に両端に帯状取出し電極を備
えた太陽電池構造を有するサブモジュールの取出し電極
上に導電性の突起を形成し、そのサブモジュールの複数
個を取出し電極の設けられない側で隣接させて一つの保
護基板の上に接着樹脂層を介して載せ、各モジュールの
上を接着樹脂フィルムで覆い、両取出し電極上には両端
がサブモジュールの上により突出する導電性フィルムを
載せ、さらにその導電性フィルムおよび接着樹脂フィル
ムの露出面上に他の保護基板を載せ、加熱圧着すること
により太陽電池モジュールの両面を保護基板と接着する
と共に、取出し電極を接着樹脂フィルムを突き破った導
電性突起を介して導電性フィルムと電気的に接続するも
のとする。第三は、絶縁性基板上に両端に帯状取出し電
極を備えた太陽電池構造を有するサブモジュールの複数
個を取出し電極の設けられない側で隣接させて一つの保
護基板の上に接着樹脂層を介して載せ、各モジュールの
上を接着樹脂フィルムで覆い、両取出し電極の上には一
面に突起を形成した導電性フィルムを突起を取出し電極
に対向させて載せ、さらにその導電性フィルムおよび接
着樹脂フィルムの露出面上に他の保護基板を載せ、加熱
圧着することにより太陽電池モジュールの両面を保護基
板と接着すると共に、取出し電極を接着樹脂フィルムを
突き破った導電性突起を介して導電性フィルムと電気的
に接続するものとする。導電性突起が、はんだよりなる
ことが良い。いずれの方法でも、接着樹脂がエチレンビ
ニルアセテートであることが有効である。
The second method of manufacturing the thin-film solar cell module of the present invention is to form a conductive protrusion on the extraction electrode of a submodule having a solar cell structure having strip-shaped extraction electrodes on both ends on an insulating substrate. , Multiple sub-modules are placed adjacent to each other on the side where the extraction electrodes are not provided, and placed on one protective substrate via an adhesive resin layer, and each module is covered with an adhesive resin film and placed on both extraction electrodes. Place a conductive film with both ends protruding above the sub-module, then place another protective substrate on the exposed surface of the conductive film and the adhesive resin film, and heat and pressure bond both sides of the solar cell module to the protective substrate. And the extraction electrode is electrically connected to the conductive film through the conductive protrusion that penetrates the adhesive resin film. Thirdly, a plurality of sub-modules having a solar cell structure having strip-shaped extraction electrodes at both ends on an insulating substrate are taken out and adjacent to each other on the side where the extraction electrodes are not provided, and an adhesive resin layer is formed on one protective substrate. And then each module is covered with an adhesive resin film, and a conductive film with a protrusion formed on one surface is placed on both extraction electrodes facing the extraction electrode. Place another protective substrate on the exposed surface of the film, and bond both sides of the solar cell module to the protective substrate by heating and pressure bonding, and connect the extraction electrode to the conductive film through the conductive protrusion that pierces the adhesive resin film. It shall be electrically connected. The conductive protrusions are preferably made of solder. In either method, it is effective that the adhesive resin is ethylene vinyl acetate.

【0007】[0007]

【作用】薄膜太陽電池サブモジュールを両面の保護基板
と接着樹脂で接着する際に、サブモジュール相互間の接
続および外部への発電電力の取出しに用いる導電性フィ
ルムとサブモジュールと端部電極との間を、接着樹脂に
含ませた金属片もしくは端部電極上あるいは導電性フィ
ルム上に形成され接着樹脂フィルムを突き破る導電性突
起により電気的に接続する。これによりはんだ付けによ
る導電性フィルムとの接続が回避される。
When the thin-film solar cell submodule is bonded to the protective substrates on both sides with the adhesive resin, the conductive film, the submodule, and the end electrodes are used to connect the submodules to each other and take out the generated power to the outside. The spaces are electrically connected to each other by conductive projections formed on the metal pieces or the end electrodes included in the adhesive resin or on the conductive film and penetrating the adhesive resin film. This avoids soldering to the conductive film.

【0008】[0008]

【実施例】次に、本発明の実施例を図面に基づいて説明
する。図1(a) 、(b) に示す実施例では、薄膜太陽電池
と耐候性基板間の接着樹脂に金属片を含有させている。
太陽電池の基板1に可とう性を有する膜厚50μmのポリ
エチレンナフタレートフィルムを用いた。この基板の表
面上にスパッタ法によりITO膜を1000Åの厚さに形成
し、このITO膜をレーザスクライブ法により短冊状に
分離した。その後に、プラズマCVD法によりアモルフ
ァスシリコン (以下a−Siと記す) 膜を形成し、これを
再びレーザスクライブ法により短冊状に分離した。さら
にこの上に、スパッタ法により銀を2000Åの厚さに形成
し、レーザスクライブ法により短冊状に分離することに
より、a−Si太陽電池サブモジュール2を作製した。そ
して、透明な耐候性保護基板であるガラス板31の上に接
着樹脂であるEVA4のフィルムを介してa−Si太陽電
池サブモジュール2を実装した基板1を乗せた。そし
て、各サブモジュールの電極部の上には、金属片5とし
て銅片を含有したEVA4のフィルム、例えば日立化成
(株) 商品名異方導電フィルムアニソルムおよび透明電
極部と同じ幅の銅箔の片面に導電性接着剤を塗布した導
電性フィルム6、それ以外の部分にはEVA4のみのフ
ィルムを載せ、その上にさらにガラス板32を載せ熱圧着
した。熱圧着した時の熱により、接着樹脂であるEVA
4が溶け、a−Si太陽電池サブモジュール2とガラス板
31、32が接着する。同時に、銅片5を介して、a−Si太
陽電池サブモジュール2の取出し電極と導電性フィルム
6が電気的に接続され、a−Si太陽電池サブモジュール
2相互間の接続が行われ、また端部61から外部への発電
電力の取出しを行うことができる。このように、a−Si
太陽電池サブモジュール2の出力は、各サブモジュール
の取出し電極をEVA4の中に分散した銅片5を介し
て、導電性フィルム6と接続することにより外部に取り
出されている。この各サブモジュールの接続は、必要電
圧に応じて直列および並列に行う。EVA4の中に分散
した銅片5は、ここでは、直径50μm、高さ100 μmの
円柱状で50μm程度のピッチでランダムに分散している
が、銅片の形状が球状やリベット状の物も同様の効果が
ある。銅片5により、a−Si太陽電池セル間を短絡させ
ないために、銅片5を含有するEVAフィルム6の幅
は、サブモジュール2の裏面電極である銀電極のパター
ニング幅よりもやや狭いことが重要である。EVA4の
中に分散させる金属片5の材料としては、銅に限定され
ず、太陽電池サブモジュール2の取出し電極および導電
性フィルム6との接続を良好にするものであればよく、
例えば金属粉の表面に金をコーティングしたものも有効
である。また、金属粉を含有するEVA4のフィルムの
膜厚は、金属粉がEVAフィルムから露出し、太陽電池
サブモジュール2の取出し電極および導電性フィルム6
と十分に接触するように薄くする必要がある。このこと
から今回の試作では、EVA4のフィルムの膜厚を100
μmとした。またこの実施例では、片側に導電性接着剤
を塗布した導電性フィルム6を用いたが、これは、導電
性フィルム6を導電性接着剤により、EVA4のフィル
ムまたはガラス板32に固定することにより、熱圧着時の
導電性フィルム6の位置ずれを防ぐためである。本構造
にすることにより、太陽電池サブモジュール2の取出し
電極にはんだ付けすることなく、簡単に、太陽電池サブ
モジュール2相互間の直列または並列接続および外部へ
の電力の取出しが行える。また、導電性フィルム6の幅
を太陽電池サブモジュール2の裏面電極幅より小さくす
ることによって、精密な位置合わせが必要なくなるの
で、取出し電極面積が小さく面積効率の高いa−Si太陽
電池モジュールが作製できるということがある。
Embodiments of the present invention will now be described with reference to the drawings. In the embodiment shown in FIGS. 1 (a) and 1 (b), a metal piece is contained in the adhesive resin between the thin film solar cell and the weather resistant substrate.
A flexible polyethylene naphthalate film having a thickness of 50 μm was used as the substrate 1 of the solar cell. An ITO film having a thickness of 1000 Å was formed on the surface of this substrate by a sputtering method, and this ITO film was separated into strips by a laser scribing method. After that, an amorphous silicon (hereinafter referred to as a-Si) film was formed by the plasma CVD method, and this was again separated into strips by the laser scribing method. Further, silver was formed thereon to a thickness of 2000 Å by a sputtering method and separated into strips by a laser scribing method, whereby an a-Si solar cell submodule 2 was produced. Then, the substrate 1 on which the a-Si solar cell sub-module 2 was mounted was placed on the glass plate 31 which was a transparent weather-resistant protective substrate via the EVA4 film which was an adhesive resin. Then, on the electrode portion of each sub-module, a film of EVA4 containing a copper piece as the metal piece 5, for example, Hitachi Chemical
(Trade name) Anisotropic conductive film Anisolm and conductive film 6 with conductive adhesive applied to one side of the copper foil of the same width as the transparent electrode part, and the other part is a film of EVA4 only. A glass plate 32 was further placed on the above and thermocompression bonded. EVA that is an adhesive resin due to the heat of thermocompression bonding
4 melted, a-Si solar cell sub-module 2 and glass plate
31 and 32 adhere. At the same time, the extraction electrode of the a-Si solar cell sub-module 2 and the conductive film 6 are electrically connected via the copper piece 5, and the a-Si solar cell sub-modules 2 are connected to each other, and the ends are also connected. It is possible to take out the generated power from the unit 61 to the outside. Thus, a-Si
The output of the solar cell sub-module 2 is taken out to the outside by connecting the take-out electrode of each sub-module to the conductive film 6 via the copper piece 5 dispersed in the EVA 4. The submodules are connected in series and in parallel according to the required voltage. Here, the copper pieces 5 dispersed in the EVA 4 are columnar with a diameter of 50 μm and a height of 100 μm and are randomly dispersed at a pitch of about 50 μm. However, copper pieces having a spherical shape or a rivet shape are also available. It has the same effect. In order to prevent short circuit between the a-Si solar cells by the copper piece 5, the width of the EVA film 6 containing the copper piece 5 may be slightly narrower than the patterning width of the silver electrode which is the back surface electrode of the submodule 2. is important. The material of the metal piece 5 to be dispersed in the EVA 4 is not limited to copper, and may be any material as long as it makes good connection with the extraction electrode of the solar cell submodule 2 and the conductive film 6.
For example, a metal powder whose surface is coated with gold is also effective. In addition, the film thickness of the EVA4 film containing the metal powder is such that the metal powder is exposed from the EVA film and the extraction electrode of the solar cell sub-module 2 and the conductive film 6 are formed.
Should be thin enough to make good contact with. Therefore, in this trial production, the film thickness of EVA4 film was 100
μm. In addition, in this embodiment, the conductive film 6 coated with a conductive adhesive on one side is used. This is achieved by fixing the conductive film 6 to the EVA 4 film or the glass plate 32 with the conductive adhesive. This is to prevent the conductive film 6 from being displaced during thermocompression bonding. With this structure, it is possible to easily connect the solar cell submodules 2 in series or in parallel with each other and take out the electric power to the outside without soldering to the extraction electrodes of the solar cell submodules 2. Also, by making the width of the conductive film 6 smaller than the back electrode width of the solar cell sub-module 2, it is not necessary to perform precise alignment, so that an a-Si solar cell module having a small extraction electrode area and high area efficiency is produced. There are things you can do.

【0009】同じ効果を有する構造として、本発明の別
の実施例による図2(a) 、(b) の構造がある。本実施例
では、基板1に可とう性を有する膜厚50μmのポリレチ
レンナフタレートフィルムを用いた。この基板にスパッ
タ法によりITO膜を1000Åの厚さに形成し、このIT
O膜をレーザスクライブ法により短冊状に分離した。そ
の後に、プラズマCVD法により、a−Si膜を形成し、
これを再びレーザスクライブ法により短冊状に分離し
た。さらにこの上に、スパッタ法により銀を2000Åの厚
さに形成し、レーザスクライブ法により短冊状に分離す
ることにより裏面電極とし、a−Si太陽電池サブモジュ
ール2を形成した。ここで、裏面電極である銀電極の電
極取出し部へ、超音波はんだ付けにより、導電性突起7
を形成した。この導電性突起は、導電性ペーストをスク
リーン印刷する方法やディスペンダにてはんだや導電性
ペーストを滴下する方法でも同様に行える。そして、こ
のような加工を施した太陽電池サブモジュール2を透明
な耐候性保護基板であるガラス板31の上に、接着樹脂で
あるEVA4を介して載せた。その上にEVA4のフィ
ルム、銅箔の片面に導電性接着剤を塗布した導電性フィ
ルム6、ガラス板32を載せ熱圧着した。熱圧着した時の
熱により、接着樹脂であるEVA4が溶け、太陽電池サ
ブモジュール2とガラス板31、32が接着する。この時、
太陽電池サブモジュール2の銀電極部に形成された導電
性突起7が、上に乗ったEVA4のフィルムを突き破
り、その上の導電性フィルム6と電気的に接続するの
で、太陽電池サブモジュール2相互間の接続を行い、外
部への発電電力の取出しに用いられる。この構造で重要
なことは、導電性突起7の先端を尖らせ、EVA4のフ
ィルムを突き破れるようにすることである。この実施例
では、はんだが円錐状になるようにはんだ付けを行っ
た。また、導電性突起52および導電性フィルム6に低融
点はんだを塗布することにより、熱圧着時に低融点はん
だが溶け、導電性突起7と導電性フィルム6をはんだ付
けする方法も有効である。
As a structure having the same effect, there is a structure shown in FIGS. 2 (a) and 2 (b) according to another embodiment of the present invention. In this example, a flexible polyretylene naphthalate film having a film thickness of 50 μm was used as the substrate 1. An ITO film is formed on this substrate by a sputtering method to a thickness of 1000 Å, and this IT
The O film was separated into strips by the laser scribing method. After that, an a-Si film is formed by the plasma CVD method,
This was again separated into strips by the laser scribing method. Further, silver was formed thereon to a thickness of 2000 Å by a sputtering method and separated into strips by a laser scribing method to form a back electrode, thereby forming an a-Si solar cell submodule 2. Here, the conductive protrusion 7 is formed by ultrasonic soldering on the electrode extraction portion of the silver electrode which is the back surface electrode.
Was formed. This conductive protrusion can be similarly formed by a method of screen-printing a conductive paste or a method of dropping solder or a conductive paste with a dispenser. Then, the solar cell sub-module 2 thus processed was placed on the glass plate 31 which is a transparent weatherproof protective substrate via the EVA 4 which is an adhesive resin. A film of EVA 4, a conductive film 6 in which a conductive adhesive was applied to one surface of a copper foil, and a glass plate 32 were placed thereon and thermocompression bonded. EVA 4 which is an adhesive resin is melted by the heat generated by thermocompression bonding, and the solar cell submodule 2 and the glass plates 31 and 32 are adhered to each other. This time,
Since the conductive protrusion 7 formed on the silver electrode portion of the solar cell sub-module 2 breaks through the EVA 4 film on it and is electrically connected to the conductive film 6 thereon, the solar cell sub-module 2 It is used to take out the generated power to the outside by connecting between. What is important in this structure is to sharpen the tips of the conductive protrusions 7 so that the EVA 4 film can be pierced. In this example, soldering was performed so that the solder had a conical shape. Further, by applying the low melting point solder to the conductive protrusions 52 and the conductive film 6, the low melting point solder is melted during thermocompression bonding, and the conductive protrusions 7 and the conductive film 6 are soldered.

【0010】図3は、本発明の別の実施例により製造さ
れた、薄膜太陽電池サブモジュールを直列または並列に
接続する導電性フィルム6に導電性突起を形成した薄膜
太陽電池モジュールを示している。この場合は、太陽電
池の基板1に可とう性を有する膜厚50μmのポリエチレ
ンナフタレートフィルムを用いた。この基板にスパッタ
法によりITO膜を1000Åの厚さに形成し、このITO
膜をレーザスクライブ法により短冊状に分離した。その
後に、プラズマCVD法により、a−Si膜を形成し、こ
れを再びレーザスクライブ法により短冊状に分離した。
さらにこの上に、スパッタ法により銀を2000Åの厚さに
形成し、レーザスクライブ法により短冊状に分離するこ
とにより、a−Si太陽電池サブモジュール2を作製し
た。そして、この太陽電池サブモジュール2を透明な耐
候性保護基板であるガラス板31、接着樹脂であるEVA
4の上に載せた。その上に、EVA4のフィルム、導電
性突起7のついた導電性フィルム6を突起7を下側にし
て載せ、さらにガラス板32を載せ、熱圧着した。導電性
フィルム6に導電性突起7を付ける方法としては、図2
に示した実施例と同様に超音波はんだ付けによる方法
や、導電性ペーストをスクリーン印刷する方法あるいは
ディスペンダにてはんだや導電性ペーストを滴下する方
法により行える。熱圧着した時の熱により、接着樹脂で
あるEVA4が溶け、太陽電池サブモジュール2とガラ
ス板31、32が接着する。この時、導電性フィルム6の下
面に形成された導電性突起7が下地のEVA4のフィル
ムを突き破り、太陽電池サブモジュール2の取出し電極
と電気的に接続するのでa−Si太陽電池モジュール2相
互間の接続を行い、また外部への発電電力の取出しに用
いられる。この構造で重要なことは、導電性突起7の先
端を尖らせ、EVA4のフィルムを突き破れるようにす
ることである。本実施例では、はんだが円錐状になるよ
うにはんだ付けを行った。また、導電性突起に低融点は
んだを塗布することにより、熱圧着時に低融点はんだが
溶け、導電性突起7と導電性フィルム6をはんだ付けす
る方法も有効である。
FIG. 3 shows a thin film solar cell module manufactured according to another embodiment of the present invention, in which conductive protrusions are formed on a conductive film 6 for connecting thin film solar cell submodules in series or in parallel. . In this case, a flexible polyethylene naphthalate film having a thickness of 50 μm was used for the substrate 1 of the solar cell. An ITO film is formed on this substrate by a sputtering method to a thickness of 1000 Å.
The film was separated into strips by the laser scribing method. After that, an a-Si film was formed by the plasma CVD method, and this was again separated into strips by the laser scribing method.
Further, silver was formed thereon to a thickness of 2000 Å by a sputtering method and separated into strips by a laser scribing method, whereby an a-Si solar cell submodule 2 was produced. Then, the solar cell sub-module 2 is provided with a glass plate 31 which is a transparent weatherproof protective substrate and an EVA which is an adhesive resin.
Placed on top of 4. A film of EVA 4 and a conductive film 6 having conductive projections 7 were placed thereon, with the projections 7 on the lower side, and a glass plate 32 was further placed thereon, followed by thermocompression bonding. As a method for attaching the conductive protrusions 7 to the conductive film 6, a method shown in FIG.
Similar to the embodiment shown in the above, the method can be performed by ultrasonic soldering, a method of screen-printing a conductive paste, or a method of dropping solder or a conductive paste with a dispenser. EVA 4 which is an adhesive resin is melted by the heat generated by thermocompression bonding, and the solar cell submodule 2 and the glass plates 31 and 32 are adhered to each other. At this time, the conductive protrusions 7 formed on the lower surface of the conductive film 6 pierce the EVA 4 film as the base and electrically connect to the extraction electrodes of the solar cell sub-module 2, so that the a-Si solar cell modules 2 are connected to each other. It is also used for connecting the power supply and taking out the generated power to the outside. What is important in this structure is to make the tips of the conductive protrusions 7 sharp so that they can break through the EVA 4 film. In this example, the soldering was performed so that the solder had a conical shape. Further, a method of applying the low melting point solder to the conductive protrusions to melt the low melting point solder during thermocompression bonding and soldering the conductive protrusions 7 and the conductive film 6 is also effective.

【0011】[0011]

【発明の効果】本発明によれば、接着樹脂フィルムに含
まれる金属片もしくは太陽電池サブモジュールの端部電
極あるいは導電性フィルム上に形成した導電性突起の圧
接により導電性フィルムと端部電極を電気的に接続する
ことにより、はんだ付け工程を必要とせず、電極面積が
小さいものや合成樹脂基板を用いた薄膜太陽電池の接続
が行えるという利点を有している。この方法を用いるこ
とにより、薄膜太陽電池モジュールの単位面積当たりの
発電電力を容易に増加させることができる。また、複雑
な配線プロセスを必要としないため薄膜太陽電池モジュ
ールの製造コストを低減できる。
According to the present invention, the conductive film and the end electrode are attached by pressure welding of the metal piece contained in the adhesive resin film or the end electrode of the solar cell sub-module or the conductive protrusion formed on the conductive film. By electrically connecting, there is an advantage that a soldering process is not required and a thin electrode solar cell using a small electrode area or a synthetic resin substrate can be connected. By using this method, the generated power per unit area of the thin film solar cell module can be easily increased. Moreover, since a complicated wiring process is not required, the manufacturing cost of the thin film solar cell module can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】第一の本発明の一実施例による薄膜太陽電池モ
ジュールを示し、(a) が断面図、(b) が平面図
FIG. 1 shows a thin-film solar cell module according to an embodiment of the present invention, (a) is a sectional view and (b) is a plan view.

【図2】第二の本発明の一実施例による薄膜太陽電池モ
ジュールを示し、(a) が断面図、(b) が平面図
FIG. 2 shows a thin-film solar cell module according to an embodiment of the second invention, (a) is a sectional view and (b) is a plan view.

【図3】第三の本発明の一実施例による薄膜太陽電池モ
ジュールを示し、(a) が断面図、(b) が平面図
FIG. 3 shows a thin-film solar cell module according to an embodiment of the third invention, (a) is a cross-sectional view and (b) is a plan view.

【符号の説明】[Explanation of symbols]

1 太陽電池基板 2 太陽電池サブモジュール 31、32 ガラス板 4 EVA 5 銅片 6 導電性フィルム 7 導電性突起 1 solar cell substrate 2 solar cell sub-modules 31, 32 glass plate 4 EVA 5 copper piece 6 conductive film 7 conductive protrusion

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】絶縁性基板上に両端に帯状取出し電極を備
えた太陽電池構造を有するサブモジュールの複数個を取
出し電極の設けられない側で隣接させて一つの保護基板
の上に接着樹脂層を介して載せ、上面の両取出し電極の
上には、その幅よりやや狭い幅を有する、両端面が露出
する金属片を分散して含む接着樹脂フィルムと、両端が
端部のサブモジュールの上より突出する導電性フィルム
を、取出し電極の上以外の部分には金属片を含まない接
着樹脂フィルムを積層し、さらにそれらの上に他の保護
基板を載せ、加熱圧着することにより、太陽電池サブモ
ジュールの両面を保護基板と接着すると共に、取出し電
極を導電性フィルムと電気的に接続することを特徴とす
る薄膜太陽電池モジュールの製造方法。
1. An adhesive resin layer on a protective substrate, wherein a plurality of sub-modules having a solar cell structure having strip-shaped extraction electrodes at both ends on an insulating substrate are adjacent to each other on the side where the extraction electrodes are not provided. On top of both extraction electrodes on the top surface, and an adhesive resin film that has a width that is slightly narrower than that width and that contains metal pieces with exposed end surfaces, and a sub-module whose both ends are ends. The conductive film that protrudes further is laminated on an adhesive resin film that does not contain metal pieces on the part other than the extraction electrode, and then another protective substrate is placed on them, and by thermocompression bonding, the solar cell sub A method for manufacturing a thin-film solar cell module, characterized in that both sides of the module are adhered to a protective substrate and the extraction electrode is electrically connected to a conductive film.
【請求項2】金属片が銅よりなる柱状体である請求項1
記載の薄膜太陽電池モジュールの製造方法。
2. The metal piece is a columnar body made of copper.
A method for manufacturing the thin film solar cell module described.
【請求項3】金属片が金めっきした金属粉よりなる請求
項1記載の薄膜太陽電池モジュールの製造方法。
3. The method of manufacturing a thin film solar cell module according to claim 1, wherein the metal piece is made of gold-plated metal powder.
【請求項4】絶縁性基板上に両端に帯状取出し電極を備
えた太陽電池構造を有するサブモジュールの取出し電極
上に導電性の突起を形成し、そのサブモジュールの複数
個を取出し電極の設けられない側で隣接させて一つの保
護基板の上に接着樹脂層を介して載せ、各モジュールの
上を接着樹脂フィルムで覆い、両取出し電極上には両端
がサブモジュールの上により突出する導電性フィルムを
載せ、さらにその導電性フィルムおよび接着樹脂フィル
ムの露出面上に他の保護基板を載せ、加熱圧着すること
により太陽電池モジュールの両面を保護基板と接着する
と共に、取出し電極を接着樹脂フィルムを突き破った導
電性突起を介して導電性フィルムと電気的に接続するこ
とを特徴とする薄膜太陽電池モジュールの製造方法。
4. An electrically conductive protrusion is formed on an extraction electrode of a submodule having a solar cell structure having strip-shaped extraction electrodes at both ends on an insulating substrate, and a plurality of extraction electrodes of the submodule are provided. Adjacent to the other side, it is placed on one protective substrate via an adhesive resin layer, each module is covered with an adhesive resin film, and both ends of both extraction electrodes project above the submodule. On the exposed surface of the conductive film and the adhesive resin film, and by thermocompression bonding, both sides of the solar cell module are bonded to the protective substrate, and the extraction electrode pierces the adhesive resin film. A method for manufacturing a thin-film solar cell module, which comprises electrically connecting to a conductive film via a conductive protrusion.
【請求項5】絶縁性基板上に両端に帯状取出し電極を備
えた太陽電池構造を有するサブモジュールの複数個を取
出し電極の設けられない側で隣接させて一つの保護基板
の上に接着樹脂層を介して載せ、各モジュールの上を接
着樹脂フィルムで覆い、両取出し電極の上には一面に突
起を形成した導電性フィルムを突起を取出し電極に対向
させて載せ、さらにその導電性フィルムおよび接着樹脂
フィルムの露出面上に他の保護基板を載せ、加熱圧着す
ることにより太陽電池モジュールの両面を保護基板と接
着すると共に、取出し電極を接着樹脂フィルムを突き破
った導電性突起を介して導電性フィルムと電気的に接続
することを特徴とする薄膜太陽電池モジュールの製造方
法。
5. An adhesive resin layer on one protective substrate, wherein a plurality of sub-modules having a solar cell structure having strip-shaped extraction electrodes at both ends on an insulating substrate are adjacent to each other on the side where the extraction electrodes are not provided. The module, cover each module with an adhesive resin film, and place a conductive film with a protrusion on one side of both extraction electrodes facing the extraction electrode. Put another protective substrate on the exposed surface of the resin film, and bond both sides of the solar cell module to the protective substrate by heating and pressure bonding, and at the same time, take out the electrode from the conductive resin through the conductive protrusion that penetrates the adhesive resin film. And a method for manufacturing a thin-film solar cell module, which is characterized in that the thin-film solar cell module is electrically connected to.
【請求項6】導電性突起がはんだよりなる請求項4ある
いは5記載の薄膜太陽電池モジュールの製造方法。
6. The method for manufacturing a thin-film solar cell module according to claim 4, wherein the conductive protrusion is made of solder.
【請求項7】接着樹脂がエチレンビニルアセテートであ
る請求項1ないし6のいずれかに記載の薄膜太陽電池モ
ジュールの製造方法。
7. The method for manufacturing a thin-film solar cell module according to claim 1, wherein the adhesive resin is ethylene vinyl acetate.
JP29372793A 1993-11-25 1993-11-25 Method for manufacturing thin-film solar cell module Expired - Fee Related JP3448924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29372793A JP3448924B2 (en) 1993-11-25 1993-11-25 Method for manufacturing thin-film solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29372793A JP3448924B2 (en) 1993-11-25 1993-11-25 Method for manufacturing thin-film solar cell module

Publications (2)

Publication Number Publication Date
JPH07147424A true JPH07147424A (en) 1995-06-06
JP3448924B2 JP3448924B2 (en) 2003-09-22

Family

ID=17798466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29372793A Expired - Fee Related JP3448924B2 (en) 1993-11-25 1993-11-25 Method for manufacturing thin-film solar cell module

Country Status (1)

Country Link
JP (1) JP3448924B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340812A (en) * 1999-05-28 2000-12-08 Kyocera Corp Solar battery
JP2001144312A (en) * 1999-11-17 2001-05-25 Fuji Electric Co Ltd Method and device for manufacturing thin-film solar cell module
JP2001237444A (en) * 2000-02-22 2001-08-31 Fuji Electric Co Ltd Wiring connection method for thin-film photoelectric conversion device
JP2007158302A (en) * 2005-11-10 2007-06-21 Hitachi Chem Co Ltd Connection structure and method of manufacturing same
JP2007214533A (en) * 2006-01-16 2007-08-23 Hitachi Chem Co Ltd Conductive bonding film and solar cell module
WO2007125903A1 (en) 2006-04-26 2007-11-08 Hitachi Chemical Company, Ltd. Adhesive tape and solar cell module using the same
WO2008026356A1 (en) * 2006-08-29 2008-03-06 Hitachi Chemical Company, Ltd. Conductive adhesive film and solar cell module
WO2008044357A1 (en) * 2006-10-10 2008-04-17 Hitachi Chemical Company, Ltd. Connected structure and method for manufacture thereof
WO2008152865A1 (en) * 2007-06-12 2008-12-18 Sharp Kabushiki Kaisha Thin-film solar cell and its manufacturing method
WO2009041506A1 (en) * 2007-09-26 2009-04-02 Hitachi Chemical Company, Ltd. Member for conductor connection, method for manufacturing the same, connection structure, and solar cell module
JP2009088152A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Solar battery module
JP2009218612A (en) * 2003-09-05 2009-09-24 Hitachi Chem Co Ltd Solar battery unit, method of connecting solar battery cell, connection structure of solar battery cell, and conducting material for connecting solar battery cell
JP2009252975A (en) * 2008-04-04 2009-10-29 Showa Shell Sekiyu Kk Solar cell module, and method for manufacturing same
US20110017261A1 (en) * 2008-02-21 2011-01-27 Sanyo Electric Co., Ltd. Solar cell module
JP2011049612A (en) * 2006-01-16 2011-03-10 Hitachi Chem Co Ltd Method of manufacturing solar cell module
JP2011055008A (en) * 2005-11-10 2011-03-17 Hitachi Chem Co Ltd Connection structure and method of manufacturing the same
JP2011086675A (en) * 2009-10-13 2011-04-28 Namics Corp Solar cell module and method of manufacturing the same
WO2012023663A1 (en) * 2010-08-17 2012-02-23 Lg Electronics Inc. Solar cell panel
JP2012060171A (en) * 2011-12-19 2012-03-22 Sanyo Electric Co Ltd Solar cell module and method for manufacturing the same
JP2012079838A (en) * 2010-09-30 2012-04-19 Toppan Printing Co Ltd Solar cell module and method for manufacturing the same
WO2012169856A2 (en) * 2011-06-09 2012-12-13 주식회사 에스에너지 Back contact solar cell module and method for manufacturing same
US8728352B2 (en) 2010-10-05 2014-05-20 Cheil Industries, Inc. Electrical connection material and a solar cell including the same
CN114660921A (en) * 2020-12-22 2022-06-24 精工爱普生株式会社 Electronic clock

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4697194B2 (en) 2006-10-13 2011-06-08 日立化成工業株式会社 Solar cell connection method and solar cell module
JP2009158858A (en) 2007-12-27 2009-07-16 Sanyo Electric Co Ltd Solar cell module, and its manufacturing method
JP5158238B2 (en) 2010-08-26 2013-03-06 日立化成株式会社 Adhesive film for solar cell electrode and method for producing solar cell module using the same

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340812A (en) * 1999-05-28 2000-12-08 Kyocera Corp Solar battery
JP2001144312A (en) * 1999-11-17 2001-05-25 Fuji Electric Co Ltd Method and device for manufacturing thin-film solar cell module
JP2001237444A (en) * 2000-02-22 2001-08-31 Fuji Electric Co Ltd Wiring connection method for thin-film photoelectric conversion device
JP2009218612A (en) * 2003-09-05 2009-09-24 Hitachi Chem Co Ltd Solar battery unit, method of connecting solar battery cell, connection structure of solar battery cell, and conducting material for connecting solar battery cell
JP2013110420A (en) * 2003-09-05 2013-06-06 Hitachi Chemical Co Ltd Solar cell with conductive material, connection structure, and method for connecting solar cells
JP2013051446A (en) * 2003-09-05 2013-03-14 Hitachi Chemical Co Ltd Solar cell unit, connection method of solar cell, connection structure of solar cell, and usage of conduction material for solar cell connection
JP2012199240A (en) * 2003-09-05 2012-10-18 Hitachi Chem Co Ltd Conduction material for connection of solar cells
JP2012147008A (en) * 2003-09-05 2012-08-02 Hitachi Chem Co Ltd Solar cell unit, connection method of solar cell, connection structure of solar cell, and usage method of conduction material for connection of solar cell
JP2007158302A (en) * 2005-11-10 2007-06-21 Hitachi Chem Co Ltd Connection structure and method of manufacturing same
JP2011055008A (en) * 2005-11-10 2011-03-17 Hitachi Chem Co Ltd Connection structure and method of manufacturing the same
JP2012151486A (en) * 2006-01-16 2012-08-09 Hitachi Chem Co Ltd Conductive adhesive film
JP2017224859A (en) * 2006-01-16 2017-12-21 日立化成株式会社 Manufacturing method of solar cell module
JP2015128179A (en) * 2006-01-16 2015-07-09 日立化成株式会社 Method for manufacturing solar battery module
JP2013239715A (en) * 2006-01-16 2013-11-28 Hitachi Chemical Co Ltd Method for manufacturing solar battery module
JP2007214533A (en) * 2006-01-16 2007-08-23 Hitachi Chem Co Ltd Conductive bonding film and solar cell module
JP2019024097A (en) * 2006-01-16 2019-02-14 日立化成株式会社 Conductive adhesive film and solar battery module
JP2011049612A (en) * 2006-01-16 2011-03-10 Hitachi Chem Co Ltd Method of manufacturing solar cell module
US8969707B2 (en) 2006-04-26 2015-03-03 Hitachi Chemical Company, Ltd. Adhesive tape and solar cell module using the same
US8969706B2 (en) 2006-04-26 2015-03-03 Hitachi Chemical Company, Ltd. Adhesive tape and solar cell module using the same
EP2421054A1 (en) 2006-04-26 2012-02-22 Hitachi Chemical Co., Ltd. Adhesive tape and solar cell module using the same
EP2251910A2 (en) 2006-04-26 2010-11-17 Hitachi Chemical Company, Ltd. Adhesive tape and solar cell module using the same
WO2007125903A1 (en) 2006-04-26 2007-11-08 Hitachi Chemical Company, Ltd. Adhesive tape and solar cell module using the same
KR101040002B1 (en) * 2006-08-29 2011-06-09 히다치 가세고교 가부시끼가이샤 Conductive adhesive film and solar cell module
WO2008026356A1 (en) * 2006-08-29 2008-03-06 Hitachi Chemical Company, Ltd. Conductive adhesive film and solar cell module
US9173302B2 (en) 2006-08-29 2015-10-27 Hitachi Chemical Company, Ltd. Conductive adhesive film and solar cell module
KR101039889B1 (en) * 2006-08-29 2011-06-09 히다치 가세고교 가부시끼가이샤 Method for producing a solar cell module
US9123835B2 (en) 2006-10-10 2015-09-01 Hitachi Chemical Company, Ltd. Connected structure and method for manufacture thereof
WO2008044357A1 (en) * 2006-10-10 2008-04-17 Hitachi Chemical Company, Ltd. Connected structure and method for manufacture thereof
JP2013225712A (en) * 2007-06-12 2013-10-31 Sharp Corp Manufacturing method of thin film solar cell
WO2008152865A1 (en) * 2007-06-12 2008-12-18 Sharp Kabushiki Kaisha Thin-film solar cell and its manufacturing method
JPWO2008152865A1 (en) * 2007-06-12 2010-08-26 シャープ株式会社 Thin film solar cell and manufacturing method thereof
US8735717B2 (en) 2007-06-12 2014-05-27 Sharp Kabushiki Kaisha Thin film solar cell and method of manufacturing the same
JPWO2009041506A1 (en) * 2007-09-26 2011-01-27 日立化成工業株式会社 Conductor connecting member, method for manufacturing the same, connection structure, and solar cell module
WO2009041506A1 (en) * 2007-09-26 2009-04-02 Hitachi Chemical Company, Ltd. Member for conductor connection, method for manufacturing the same, connection structure, and solar cell module
JP2009088152A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Solar battery module
US9082917B2 (en) * 2008-02-21 2015-07-14 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
EP2249397A4 (en) * 2008-02-21 2015-09-23 Sanyo Electric Co Solar cell module
US20110017261A1 (en) * 2008-02-21 2011-01-27 Sanyo Electric Co., Ltd. Solar cell module
JP2009252975A (en) * 2008-04-04 2009-10-29 Showa Shell Sekiyu Kk Solar cell module, and method for manufacturing same
JP2011086675A (en) * 2009-10-13 2011-04-28 Namics Corp Solar cell module and method of manufacturing the same
US9385248B2 (en) 2010-08-17 2016-07-05 Lg Electronics Inc. Solar cell panel
WO2012023663A1 (en) * 2010-08-17 2012-02-23 Lg Electronics Inc. Solar cell panel
JP2012079838A (en) * 2010-09-30 2012-04-19 Toppan Printing Co Ltd Solar cell module and method for manufacturing the same
US8728352B2 (en) 2010-10-05 2014-05-20 Cheil Industries, Inc. Electrical connection material and a solar cell including the same
WO2012169856A3 (en) * 2011-06-09 2013-03-07 주식회사 에스에너지 Back contact solar cell module and method for manufacturing same
WO2012169856A2 (en) * 2011-06-09 2012-12-13 주식회사 에스에너지 Back contact solar cell module and method for manufacturing same
JP2012060171A (en) * 2011-12-19 2012-03-22 Sanyo Electric Co Ltd Solar cell module and method for manufacturing the same
CN114660921A (en) * 2020-12-22 2022-06-24 精工爱普生株式会社 Electronic clock

Also Published As

Publication number Publication date
JP3448924B2 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
JP3448924B2 (en) Method for manufacturing thin-film solar cell module
US6531653B1 (en) Low cost high solar flux photovoltaic concentrator receiver
US5180888A (en) Conductive bonding agent and a conductive connecting method
TWI390747B (en) Photovoltaic modules manufactured using monolithic module assembly techniques
US9159859B2 (en) Solar cell module
JP5063099B2 (en) Solar cell module and method for manufacturing solar cell module
JP5380810B2 (en) Solar cell module
US20120132251A1 (en) Solar cell, solar module comprising said solar cell and method for producing the same and for producing a contact foil
US5580509A (en) Method for electrically contacting thin-film solar modules
JP3099604B2 (en) Flexible photoelectric conversion module, its connection method and its manufacturing apparatus
US20140230878A1 (en) Method for electrically connecting several solar cells and photovoltaic module
JPS60240171A (en) Solar electric generator
JPH02181475A (en) Solar battery cell and manufacture thereof
JP2009302327A (en) Connection structure of wiring member, solar-battery module comprising the same, and its manufacturing method
TW201246584A (en) Solar battery cell, solar battery module, fabricating method of solar battery cell and fabricating method of solar battery module
KR101011025B1 (en) Apparatus and method for manufacturing solar cell mini module
JPH06275858A (en) Photovoltaic module and its manufacture
CN219180527U (en) Novel photovoltaic cell without main grid and photovoltaic module
US9437765B2 (en) Solar cell module and solar cell module manufacturing method
JP2001085711A (en) Thin film solar battery module and its manufacturing method
JP3024367B2 (en) Method of manufacturing solar cell device
JP2003133570A (en) Method of manufacturing solar battery module
JP2010040591A (en) Bonding method, manufacturing method of solar battery module and manufacturing method of electronic component
JP4883891B2 (en) Solar cell module
TWI653644B (en) Conductive tape, solar cell string and solar cell module

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100711

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees